
Reproducibility package

This package contains code to repeat the research done for
On the Evaluation of Unsupervised Outlier Detection: Measures, Datasets, and
an Empirical Study by G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello,
B. Micenková, E. Schubert, I. Assent and M. E. Houle to appear in Data Mining
and Knowledge Discovery
Supplementary Material Homepage

Prerequisites

1. Lots of CPU power
On a 24 cores Intel Xeon X5650 @ 2.67 GHz with 128 GB RAM, rerunning
all the experiments took:

"make primary": Wall-clock time: 22:05:29
"make eval": Wall-clock time: 00:15:33

Generating all the plots (on a single core) needs additional time. Depending
on your CPU, it may be inbetween of 400 to 600 CPU hours.

2. Disk space
You will need about 50 GB of disk space. More, if you add additional data
or methods.

3. Software prerequisites

• Java 8, for example OpenJDK 8, in a recent version
• Python, with numpy and scipy for evaluation
• R, for visualization, with the following packages (only on one host)

install.packages(c("dplyr", "ggplot2", "RColorBrewer",
"fields", "car"))

• GNU Make, for running the Makefile
• Linux. Most probably other operating systems will not work. We

used Debian Linux and Ubuntu Linux.

4. Data
From the project page, download the literature and semantic archives,
and extract them into the folders input/literature and input/semantic.
You can add additional files in the input, but you may need to adjust
the scripts. Currently, only uncompressed .arff files will automatically
be processed, and they must only have numerical columns, except for an
optional id and a mandatory outlier column.

1

http://www.dbs.ifi.lmu.de/research/outlier-evaluation/


5. ELKI
The ELKI version we used for our experiments is included in this package
(a 0.7.0 pre-release, without the visualization add-on).
You can however download a later version of ELKI
Results with other ELKI versions may change, and you may need to adjust
the scripts appropriately!

Repeating everything

The first (and most expensive) step is to repeat all outlier detectors.

The scripts try to use locking to allow parallel computation on multiple machines,
if you have shared storage (e.g. NFS) with reliable file locking and low latency, it
may be possible to use multiple hosts to build the results. You can then invoke
the make primary command on each node.

make primary

This command will start computing all outlier detectors, using all available CPU
cores. If you only want to use a single core, you can instead use this:

make SOFTFAIL=1 all-primary

When all primary results have been built, you can run the analysis procedures:

make eval

Again, this should be able to run in parallel, using multiple hosts and CPUs.

Finally, generate the figures on a single host using

make plot

This command should not be used in parallel on multiple machines. The runtime
on a single core should be less than one hour. It will probably work if you
parallelize on a single host via make -j4 plot to use 4 cores.

If you only have a single host (and enough time), you should be able to build
everything by calling

make primary eval plot

2

http://elki.dbs.ifi.lmu.de/


Adding new methods

To add a new method to the analysis, we suggest that you add the method to
ELKI first. There is a Tutorial on the ELKI Wiki on implementing a new outlier
detection method. We use the class ComputeKNNOutlierScores to compute the
results, so if you add your method to this class, build a new ELKI package with
mvn package, modify the Makefile to use your new ELKI package, and rerun
everything, your new method should appear in the results. For the plots, add it
to scripts/shared.R, too.

Implementation notes

With SOFTFAIL=1, rules will not fail if the file is currently locked by a different
host. This is only acceptable if it is not a hard prerequisite for a target. Thus,
do not use this for the later stages of the build.

Recovering from failure. If some computation fails (for example due to paral-
lelization clashes or other software failures), you may need to recover by manually
removing lock files (ending in .lock, located either in the tmp folder, or next to
the output file) or incomplete result files (for example .raw). Finished result
files will be compressed into .gz files.

Except for the input data, scripts, and the ELKI binary, you can remove and
regenerate results if in doubt.

3

http://elki.dbs.ifi.lmu.de/wiki/Tutorial/OutlierODIN

	Reproducibility package
	Prerequisites
	Repeating everything
	Adding new methods
	Implementation notes


