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• Contrast infrequent patterns with frequent patterns
− Lot of existing work in frequent pattern mining

• Perspective of relative support
− Infrequent patterns seem not important
− For example, 0.1% (rare) vs. 10% (frequent)

• Perspective of absolute support
− Minor patterns maybe nevertheless significant
− In 100.000 transactions: 100 occurrences vs. 10.000 occurrences 

• Many applications with important rare patterns (more than just outliers)
− Scientific and medical domains, vehicle accidents data, synthetic data generation
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Significance of Low-support Patterns
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−Rare deseases affect many people
−Don’t appear as frequent patterns

441 https://rareaction.org/about/rare-diseases/

Low-support patterns in medical datasets

http://invivosciences.com/products-services/drug-discovery/abcd/
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• Dense representation
− Categories for road conditions, speed, 

severity, etc.

• Example
− Pattern {bad-road-condition, high-speed, 

serious-accident} may be rare.
− Should be avoided, nevertheless.

• Actionable
− Improve traffic conditions to prevent from 

high damages and from hurting people 
seriously.
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Low-support patterns in vehicle accidents datasets



Knowledge Discovery and Data Mining
Prof. Dr. Thomas Seidl  |  LMU Munich, Chair of Database Systems and Data Mining

• Extend rare-pattern datasets for benchmarking 
purposes (data augmentation)

• Better generation quality
− Overcome difficulty to cover all low support patterns 

by sampling

• More flexibility in controlling bias
− Increase occurrence of low support patterns
− Decrease occurrence of high support patterns

443

Low-support patterns for synthetic dataset generation with real data

https://tdwi.org/articles/2017/04/12/dimensional-models-in-the-big-data-era.aspx
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Existing approaches (selected)
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Power set lattice of itemsets (Hasse diagram)
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• Sparse datasets
−Large number of distinct items
−Short transactions
−Bottom-up traversal is efficient

• Dense datasets
− (Relatively) small number of distinct items
−Long transactions
−Top-down may be preferred
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Sparse and dense datasets

Infrequent Itemsets

Frequent Itemsets
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Traversal orders for the power set lattice

Breadth-first vs. Depth-first
(e.g., Apriori vs. FP-growth)

Bottom-up vs. Top-down
(Apriori, FP-growth vs. Rarity)
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• Well-known results:
− Breadth-first traversal is slower than depth-first traversal
− Bottom-up traversal (almost all existing algorithms) is extremely slow when 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is small

• Top-down traversal is better if the number of frequent patterns is huge
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Traversal orders: Some observations
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• In reality, dataset is both sparse and dense
−𝑎𝑎: 4, 𝑏𝑏: 5, 𝑐𝑐: 2,𝑑𝑑: 2, 𝑒𝑒: 2
−Less frequent items: 𝑐𝑐,𝑑𝑑, 𝑒𝑒
−More frequent items: 𝑎𝑎, 𝑏𝑏
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Traversal orders: What is the best for real datasets?

Infrequent Itemsets

Frequent Itemsets
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• Basic idea: Combine both, bottom-up and top-down traversal
• Our proposal: Rare Closed Itemset Miner [Lu, Seidl, DSAA 2018]
• As top-down traversal is not efficient, select split point carefully.
• Preliminary heuristics: choose value around inflection point.
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RaCloMiner – Bi-directional traversal

BMS1 data MushroomsTop-down 
traversal

Bottom-up 
traversal

Top-down 
traversal

Bottom-up 
traversal
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• Datasets from FIMI repository (U Antwerp) – 3 sparse datasets, 3 dense datasets
• RaCloMiner, implemented in Java – [Lu, Seidl, DSAA 2018]
• LCM implemented by using SPMF[2] library – [Uno et al., FIMI 2004] [Fournier-Viger et al., ECML PKDD 2016]
• Rarity: a breadth-first top-down approach for comparison – [Troiano, Scibelli, DMKD 2014]
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Experimental setting
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Experimental results for dense datasets
Mushrooms data Chess data Connect data

Mushrooms data Chess data Connect data
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Experimental results for sparse datasets

Retail data BMS1 BMS2

Retail data BMS1 BMS2
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