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What is Frequent Pattern Mining?

Setting: Transaction Databases

A database of transactions, where each transaction comprises a set of items, e.g. one
transaction is the basket of one customer in a grocery store.

Frequent Pattern Mining

Finding frequent patterns, associations, correlations, or causal structures among sets of
items or objects in transaction databases, relational databases, and other information
repositories.

Applications

Basket data analysis, cross-marketing, catalogue design, loss-leader analysis, clustering,
classification, recommendation systems, etc.
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What is Frequent Pattern Mining?

Task 1: Frequent Itemset Mining

Find all subsets of items that occur together in many transactions.

Example

Which items are bought together frequently?

D = {{butter , bread ,milk , sugar},
{butter , flour ,milk, sugar},
{butter , eggs,milk, salt},
{eggs},
{butter , flour ,milk, salt, sugar}}

⇝ 80% of transactions contain the itemset {milk, butter}
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What is Frequent Pattern Mining?

Task 2: Association Rule Mining

Find all rules that correlate the presence of one set of items with that of another set of
items in the transaction database.

Example

98% of people buying tires and auto accessories also get automotive service done
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Mining Frequent Itemsets: Basic Notions

▶ Items I = {i1, . . . , im}: a set of literals (denoting items)

▶ Itemset X : Set of items X ⊆ I

▶ Database D: Set of transactions T , each transaction is a set of items T ⊆ I

▶ Transaction T contains an itemset X : X ⊆ T

▶ Length of an itemset X equals its cardinality |X |
▶ k-itemset: itemset of length k

▶ (Relative) Support of an itemset: supp(X ) = |{T ∈ D | X ⊆ T}|/|D|
▶ X is frequent if supp(X ) ≥ minSup for threshold minSup.

Task

Given a database D and a threshold minSup, find all frequent itemsets X ⊆ I .
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Mining Frequent Itemsets: Basic Idea

Näive Algorithm

Count the frequency of all possible subsets of I in the database D.

Problem

Too expensive since there are 2m such itemsets for m items (for |I | = m, 2m =
cardinality of the powerset of I ).
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Mining Frequent Patterns: Apriori Principle

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Hasse diagram shows lattice structure of
complete partial order on item subsets
▶ frequent

▶ non-frequent

Apriori Principle (anti-monotonicity)

▶ Any (non-empty) subset of a frequent itemset A is frequent:

∀A′ ⊆ A : supp(A) ≥ minSup =⇒ supp(A′) ≥ minSup

▶ Any superset of a non-frequent itemset A is non-frequent:

∀A′′ ⊇ A : supp(A) < minSup =⇒ supp(A′′) < minSup
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Apriori Algorithm

Idea

▶ First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on

▶ When counting (k + 1)-itemsets, only consider those (k + 1)-itemsets where all
subsets of length k have been determined as frequent in the previous step
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Apriori Algorithm
variable Ck : candidate itemsets of size k
variable Lk : frequent itemsets of size k
L1 = {frequent items}
for (k = 1; Lk ̸= ∅; k++) do

join Lk with itself to produce Ck+1 ▷ JOIN STEP
discard (k + 1)-itemsets from Ck+1 that . . . ▷ PRUNE STEP

. . . contain non-frequent k-itemsets as subsets

Ck+1 = candidates generated from Lk

for each transaction T ∈ D do
Increment the count of all candidates in Ck+1 . . .
. . . that are contained in T

Lk+1 = candidates in Ck+1 with minSupp

return
⋃

k Lk

Produce
candidates.

Prove
candidates.
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Apriori Algorithm: Generating Candidates – Join Step

Requirements for Candidate (k + 1)-itemsets

▶ Completeness: Must contain all frequent (k + 1)-itemsets (superset property
Ck+1 ⊇ Lk+1)

▶ Selectiveness: Significantly smaller than the set of all (k + 1)-subsets

Suppose the itemsets are sorted by any order (e.g. lexicographic)

Step 1: Joining (Ck+1 = Lk ▷◁ Lk)

▶ Consider frequent k-itemsets p and q

▶ p and q are joined if they share the same first (k − 1) items.
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Apriori Algorithm: Generating Candidates – Join Step

Example

▶ k = 3 ( =⇒ k + 1 = 4)

▶ p = (a, c , f ) ∈ Lk
▶ q = (a, c, g) ∈ Lk
▶ r = (a, c , f , g) ∈ Ck+1

SQL example

insert into Ck+1

select p.i1, p.i2, . . . , p.ik , q.ik

from Lk : p, Lk : q

where p.i1 = q.i1, . . . , p.ik−1 = q.ik−1, p.ik < q.ik
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Apriori Algorithm: Generating Candidates – Prune Step

Step 2: Pruning (Lk+1 = {X ∈ Ck+1 | supp(X ) ≥ minSup})

▶ Näive: Check support of every itemset in Ck+1 ⇝ inefficient for huge Ck+1

▶ Better: Apply Apriori principle first: Remove candidate (k + 1)-itemsets which
contain a non-frequent k-subset s, i.e., s /∈ Lk

Pseudocode

for all c ∈ Ck+1 do
for all k-subsets s of c do

if s /∈ Lk then
Delete c from Ck+1
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Apriori Algorithm: Generating Candidates – Prune Step

Example

▶ L3 = {acf , acg , afg , afh, cfg}
▶ Candidates after join step: {acfg , afgh}
▶ In the pruning step: delete afgh because fgh /∈ L3, i.e. fgh is not a frequent

3-itemset (also agh /∈ L3)

▶ C4 = {acfg} ⇝ check the support to generate L4
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Apriori Algorithm: Full example

Database
TID items

0 acdf
1 bce
2 abce
3 aef

minSup = 0.5

Alphabetic Ordering
k candidate prune count threshold

1

a 3 a
b 2 b
c 3 c
d 1
e 3 e
f 2 f

2

ab 1
ac 2 ac
ae 2 ae
af 2 af
bc 2 bc
be 2 be
bf 0
ce 2 ce
cf 1
ef 1

3

ace 1
acf with cf
aef with ef
bce 2 bce

Frequency-Ascending Ordering
k candidate prune count threshold

1

d 1
b 2 b
f 2 f
a 3 a
c 3 c
e 3 e

2

bf 0
ba 1
bc 2 bc
be 2 be
fa 2 fa
fc 1
fe 1
ac 2 ac
ae 2 ae
ce 2 ce

3

bce 2 bce
ace 1
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Counting Candidate Support

Motivation

Why is counting supports of candidates a problem?

▶ Huge number of candidates

▶ One transaction may contain many candidates

Solution

Store candidate itemsets in hash-tree
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Counting Candidate Support: Hash Tree

Hash-Tree

▶ Leaves contain itemset lists with their support (e.g. counts)

▶ Interior nodes comprise hash tables

▶ subset function to find all candidates contained transaction

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree: Construction

Search

▶ Start at the root (level 1)

▶ At level d : Apply hash function h to d-th item in the itemset

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree: Construction

Insertion

▶ Search for the corresponding leaf node
▶ Insert the itemset into leaf; if an overflow occurs:

▶ Transform the leaf node into an internal node
▶ Distribute the entries to the new leaf nodes according to the hash function h

Example

3-itemsets; h(i) = i mod 3
0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)
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Hash-Tree: Counting
Search all candidates of length k in transaction T = (t1, . . . , tn)
▶ At root:

▶ Compute hash values for all items t1, . . . , tn−k+1

▶ Continue search in all resulting child nodes
▶ At internal node at level d (reached after hashing of item ti ):

▶ Determine the hash values and continue the search for each item tj with
i < j ≤ n − k + d

▶ At leaf node:
▶ Check whether the itemsets in the leaf node are contained in transaction T

Example

3-itemsets;
h(i) = i mod 3
Transaction:
{1, 3, 7, 9, 12}

0 1 2

0 1 2 0 1 2 0 1 2

(3 6 7) 0 1 2 (3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(1 4 11)
(1 7 9)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

0 1 2 (2 5 6)
(2 5 7)

(5 8 11)

(3 4 15) (3 7 11)
(3 4 11)
(3 4 8)

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

3

9 7 3,9 7

1,7

9,12
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Apriori – Performance Bottlenecks

Huge Candidate Sets

▶ 104 frequent 1-itemsets will generate 107 candidate 2-itemsets

▶ To discover a frequent pattern of size 100, one needs to generate 2100 ≈ 1030

candidates.

Multiple Database Scans

▶ Needs n or n + 1 scans, where n is the length of the longest pattern

Is it possible to mine the complete set of frequent itemsets without candidate
generation?
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Mining Frequent Patterns Without Candidate Generation

Idea

▶ Compress large database into compact tree structure; complete for frequent
pattern mining, but avoiding several costly database scans (called FP-tree)

▶ Divide compressed database into conditional databases associated with one
frequent item
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FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

minSup=2/12

1. Scan DB once to identify
frequent items
(1-itemsets)

2. Scan DB again:
2.1 Keep frequent items only;

sort them within itemsets
by descending frequency

2.2 Does path with common
prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch
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FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

1

1. Scan DB once to identify
frequent items
(1-itemsets)

2. Scan DB again:
2.1 Keep frequent items only;

sort them within itemsets
by descending frequency

2.2 Does path with common
prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch
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FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

Freq. Item

c
cd
cef
cef
bcd
bcd
bcd
bde
bd
b
b
b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

1

2.1

1. Scan DB once to identify
frequent items
(1-itemsets)

2. Scan DB again:
2.1 Keep frequent items only;

sort them within itemsets
by descending frequency

2.2 Does path with common
prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch
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FP-Tree Construction

Database
TID Items

1 c
2 cd
3 cef
4 cef
5 bcd
6 bcd
7 bcdg
8 bde
9 bd
10 bh
11 bi
12 b

Freq. Item

c
cd
cef
cef
bcd
bcd
bcd
bde
bd
b
b
b

minSup=2/12

Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

Head

∅

b:8

c:3

d:3

d:2

e:1

c:4

e:2

f:2

d:1

1

2.1

2.2

1. Scan DB once to identify
frequent items
(1-itemsets)

2. Scan DB again:
2.1 Keep frequent items only;

sort them within itemsets
by descending frequency

2.2 Does path with common
prefix exist?
Yes: Increment counter;
append suffix;
No: Create new branch
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Benefits of the FP-Tree Structure

Completeness

▶ never breaks a long pattern of any transaction

▶ preserves complete information for frequent pattern mining

Compactness

▶ reduce irrelevant information – infrequent items are gone

▶ frequency descending ordering: more frequent items are more likely to be shared

▶ never be larger than the original database (if not count node-links and counts)

▶ Experiments demonstrate compression ratios over 100
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Mining Frequent Patterns Using FP-Tree

General Idea: (Divide-and-Conquer)

Recursively grow frequent pattern path using the FP-tree

Method

1. Construct conditional pattern base for each node in the FP-tree

2. Construct conditional FP-tree from each conditional pattern-base

3. Recursively mine conditional FP-trees and grow frequent patterns obtained so far;
If the conditional FP-tree contains a single path, simply enumerate all the patterns
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Major Steps to Mine FP-Tree: Conditional Pattern Base
Header Table
Item Frequency

b 8
c 7
d 6
e 3
f 2

Head

∅

b:8

c:3

d:3

d:2

e:1

c:4

e:2

f:2

d:1Conditional Pattern
Item Cond. Patterns

Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

1

2

3

1. Start from header table

2. Visit all nodes for this
item (following links)

3. Accumulate all
transformed prefix paths
to form conditional
pattern base (the
frequency can be read
from the node).
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Properties of FP-Tree for Conditional Pattern Bases

Node-Link Property

For any frequent item ai , all the possible frequent patterns that contain ai can be
obtained by following ai ’s node-links, starting from ai ’s head in the FP-tree header.

Prefix Path Property

To calculate the frequent patterns for a node ai in a path P, only the prefix sub-path
of ai in P needs to be accumulated, and its frequency count should carry the same
count as node ai .

4. 4.3 Frequent Pattern Mining Page 4.384



Major Steps to Mine FP-Tree: Conditional FP-Tree

Conditional Pattern
Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

Example: e-conditional FP-Tree
Item Frequency

c 2
b 1
d 1

∅ | e

c:2

Construct conditional FP-tree from each
conditional pattern-base

▶ The prefix paths of a suffix represent
the conditional basis ⇝ can be
regarded as transactions of a database.

▶ For each pattern-base:
▶ Accumulate the count for each item

in the base
▶ Re-sort items within sets by

frequency
▶ Construct the FP-tree for the

frequent items of the pattern base

4. 4.3 Frequent Pattern Mining Page 4.385



Major Steps to Mine FP-Tree: Conditional FP-Tree

▶ Build conditional FP-Trees for each item
Item Cond. Patterns

b ∅
c b:3, ∅
d bc:3, b:2, c:1
e c:2, bd:1
f ce:2

∅ | b = ∅ ∅ | c

b:3

∅ | d

b:5

c:3

c:1

∅ | e

c:2

∅ | f

c:2

e:2
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Major Steps to Mine FP-Tree: Recursion

Base Case: Single Path

If the conditional FP-tree contains a single path, simply enumerate all the patterns
(enumerate all combinations of sub-paths)

Example

∅ | f

c:2

e:2

⇝

All frequent patterns concerning f :
f,

fc, fe
fce
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Major Steps to Mine FP-Tree: Recursion

Recursive Case: Non-degenerated Tree

If the conditional FP-tree is not just a single path, create conditional pattern base for
this smaller tree, and recurse.

Example

∅ | d

b:5

c:3

c:1

Conditional Pattern Base
Item Cond. Patterns

b ∅
c b:3, ∅

∅ | db = ∅ ∅ | dc

b:3
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Principles of Frequent Pattern Growth

Pattern Growth Property

Let X be a frequent itemset in D, B be X ’s conditional pattern base, and Y be an
itemset in B. Then X ∪ Y is a frequent itemset in D if and only if Y is frequent in B.

Example

”abcdef” is a frequent pattern, if and only if

▶ ”abcde” is a frequent pattern, and

▶ ”f” is frequent in the set of transactions containing ”abcde”
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Why Is Frequent Pattern Growth Fast?

Performance study1 shows: FP-growth is much
faster than Apriori, and is also faster than
tree-projection

Reasoning:

▶ No candidate generation, no candidate test
(Apriori algorithm has to proceed breadth-first)

▶ Use compact data structure

▶ Eliminate repeated database scan

▶ Basic operation is counting and FP-tree
building

Image Source: [1]

7Han, Pei & Yin, Mining frequent patterns without candidate generation, SIGMOD’00
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Maximal or Closed Frequent Itemsets

Challenge

Often, there is a huge number of frequent itemsets (especially if minSup is set too low), e.g. a
frequent itemset of length 100 contains 2100 − 1 many frequent subsets

Closed Frequent Itemset

Itemset X is closed in dataset D if for all Y ⊃ X : supp(Y ) < supp(X ).

⇒ The set of closed frequent itemsets contains complete information regarding its
corresponding frequent itemsets.

Maximal Frequent Itemset

Itemset X is maximal in dataset D if for all Y ⊃ X : supp(Y ) < minSup.

⇒ The set of maximal itemsets does not contain the complete support information

⇒ More compact representation
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Simple Association Rules: Introduction

Example

Transaction database:

D = {{butter , bread ,milk, sugar},
{butter , flour ,milk, sugar},
{butter , eggs,milk, salt},
{eggs},
{butter , flour ,milk, salt, sugar}}

Frequent itemsets:
items support
{butter} 4
{milk} 4
{butter, milk} 4
{sugar} 3
{butter, sugar} 3
{milk, sugar} 3
{butter, milk, sugar} 3

Question of interest

▶ If milk and sugar are bought, will the customer always buy butter as well?
milk, sugar ⇒ butter?

▶ In this case, what would be the probability of buying butter?
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Simple Association Rules: Basic Notions

Let Items, Itemset, Database, Transaction, Transaction Length, k-itemset, (relative)
Support, Frequent Itemset be defined as before. Additionally:

▶ The items in transactions and itemsets are sorted lexicographically: itemset
X = (x1, . . . , xk), where x1 ≤, . . . ,≤ xk

▶ Association rule: An association rule is an implication of the form X ⇒ Y where
X ,Y ⊆ I are two itemsets with X ∩ Y = ∅

▶ Note: simply enumerating all possible association rules is not reasonable!
What are the interesting association rules w.r.t. D?
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Interestingness of Association Rules

Goal

Quantify the interestingness of an association rule with respect to a transaction
database D.

Support

▶ Frequency (probability) of the entire rule with respect to D:

supp(X ⇒ Y ) = P(X ∩ Y ) =
|{T ∈ D | X ∪ Y ⊆ T}|

|D|
= supp(X ∪ Y )

▶ ”Probability that a transaction in D contains the itemset.”
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Interestingness of Association Rules

Confidence

▶ Indicates the strength of implication in the rule:

conf (X ⇒ Y ) =
supp(X ∪ Y )

supp(X )

(∗)
=

P(X ∩ Y )

P(X )
= P(Y | X )

(*) Note that the support of the union of the items in X and Y , i.e. supp(X ∪Y )
can be interpreted by the joint probability P(X ∩ Y )

▶ P(Y | X ) = conditional probability that a transaction in D containing the itemset
X also contains itemset Y
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Interestingness of Association Rules

Rule form

”Body ⇒ Head [support, confidence]”

Association rule examples

▶ buys diapers ⇒ buys beer [0.5 %, 60%]

▶ major in CS ∧ takes DB ⇒ avg. grade A [1%, 75%]
buys
diapers

buys
beer

buys
both
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Mining of Association Rules

Task of mining association rules

Given a database D, determine all association rules having a supp ≥ minSup and a
conf ≥ minConf (so-called strong association rules).

Key steps of mining association rules

1. Find frequent itemsets, i.e., itemsets that have supp ≥ minSup (e.g. Apriori,
FP-growth)

2. Use the frequent itemsets to generate association rules
▶ For each itemset X and every nonempty subset Y ⊂ X generate rule Y ⇒ (X \ Y )

if minSup and minConf are fulfilled
▶ We have 2|X | − 2 many association rule candidates for each itemset X
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Mining of Association Rules

Example

▶ Frequent itemsets:

1-itemset count 2-itemset count 3-itemset count
{ a } 3 { a,b } 3 { a,b,c } 2
{ b } 4 { a,c } 2
{ c } 5 { b,c } 4

▶ Rule candidates
▶ From 1-itemsets: None
▶ From 2-itemsets: a⇒ b; b ⇒ a; a⇒ c ; c ⇒ a; b ⇒ c ; c ⇒ b
▶ From 3-itemsets: a, b ⇒ c ; a, c ⇒ b; c , b ⇒ a; a⇒ b, c ; b ⇒ a, c ; c ⇒ a, b
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Generating Rules from Frequent Itemsets

Rule generation

▶ For each frequent itemset X :
▶ For each nonempty subset Y of X , form a rule Y ⇒ (X \ Y )
▶ Delete those rules that do not have minimum confidence

▶ Note:
▶ Support always exceeds minSup
▶ The support values of the frequent itemsets suffice to calculate the confidence

▶ Exploit anti-monotonicity for generating candidates for strong association rules!
▶ Y ⇒ Z not strong =⇒ for all A ⊆ D : Y ⇒ Z ∪ A not strong
▶ Y ⇒ Z not strong =⇒ for all Y ′ ⊆ Y : (Y \ Y ′)⇒ (Z ∪ Y ′) not strong
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Generating Rules from Frequent Itemsets

Example: minConf = 60%

conf (a⇒ b) = 3/3 = 1 ✓

conf (b ⇒ a) = 3/4 ✓

conf (a⇒ c) = 2/3 ✓

conf (c ⇒ a) = 2/5 ✗

conf (b ⇒ c) = 4/4 = 1 ✓

conf (c ⇒ b) = 4/5 ✓

conf (a, b ⇒ c) = 2/3 ✓

conf (a, c ⇒ b) = 2/2 = 1 ✓

conf (b, c ⇒ a) = 2/4 = .5 ✗

conf (a⇒ b, c) = 2/3 ✓

conf (b ⇒ a, c) = 2/4 ✗ (pruned wrt. b, c ⇒ a)
conf (c ⇒ a, b) = 2/5 ✗ (pruned wrt. b, c ⇒ a)

itemset count
{ a } 3
{ b } 4
{ c } 5

{ a,b } 3
{ a,c } 2
{ b,c } 4

{ a,b,c } 2
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Interestingness Measurements

Objective measures

Two popular measures:

▶ Support

▶ Confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]

A rule (pattern) is interesting if it is

▶ unexpected (surprising to the user) and/or

▶ actionable (the user can do something with it)
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Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]

▶ Among 5000 students
▶ 3000 play basketball (=60%)
▶ 3750 eat cereal (=75%)
▶ 2000 both play basket ball and eat cereal (=40%)

▶ Rule ”play basketball ⇒ eat cereal [40%, 66.7%]” is misleading because the
overall percentage of students eating cereal is 75% which is higher than 66.7%

▶ Rule ”play basketball ⇒ not eat cereal [20%, 33.3%]” is far more accurate,
although with lower support and confidence

▶ Observation: ”play basketball” and ”eat cereal” are negatively correlated

Not all strong association rules are interesting and some can be misleading.

▶ Augment the support and confidence values with interestingness measures such as
the correlation: ”A ⇒ B [supp, conf , corr ]”
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Other Interestingness Measures: Correlation

Correlation

Correlation (sometimes called Lift) is a simple measure between two items A and B:

corrA,B =
P(A ∩ B)

P(A)P(B)
=

P(B | A)
P(B)

=
conf (A⇒ B)

supp(B)

▶ The two rules A⇒ B and B ⇒ A have the same correlation coefficient

▶ Takes both P(A) and P(B) in consideration

▶ corrA,B > 1: The two items A and B are positively correlated

▶ corrA,B = 1: There is no correlation between the two items A and B

▶ corrA,B < 1: The two items A and B are negatively correlated
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Other Interestingness Measures: Correlation

Example 2

T item
X Y Z

1 1 0
1 1 1
1 0 1
1 0 1
0 0 1
0 0 1
0 0 1
0 0 1

rule support confidence correlation
X ⇒ Y 25% 50% 2
X ⇒ Z 37.5% 75% 0.89
Y ⇒ Z 12.5% 50% 0.57

▶ X and Y : positively correlated

▶ X and Z : negatively related

▶ Support and confidence of X ⇒ Z dominates

▶ But: items X and Z are negatively correlated

▶ Items X and Y are positively correlated
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Hierarchical Association Rules: Motivation

Problem

▶ High minSup: apriori finds only few rules

▶ Low minSup: apriori finds unmanagably many rules

Solution

Exploit item taxonomies (generalizations, is-a hierarchies) which exist in many
applications

Example

clothes

outerwear

jackets jeans

shirts
shoes

sport shoes boots

4. 4.3 Frequent Pattern Mining Page 4.405



Hierarchical Association Rules

New Task

Find all generalized association rules between generalized items, i.e. Body and Head of
a rule may have items of any level of the hierarchy

Generalized Association Rule

X ⇒ Y with X ,Y ⊂ I ,X ∩ Y = ∅ and no item in Y is an ancestor of any item in X

Example

▶ Jeans ⇒ Boots; supp < minSup

▶ Jackets ⇒ Boots; supp < minSup

▶ Outerwear ⇒ Boots; supp > minSup
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Hierarchical Association Rules: Characteristics

Y

Xi
. . .X1

. . . Xk

Characteristics

Let Y =
k⊎

i=1
Xi be a generalisation.

▶ For all 1 ≤ i ≤ k it holds supp(Y ⇒ Z ) ≥ supp(Xi ⇒ Z )

▶ In general, supp(Y ⇒ Z ) =
k∑

i=1
supp(Xi ⇒ Z ) does not hold (a transaction might

contain elements from multiple low-level concepts, e.g. boots and sport shoes).
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Mining Multi-Level Associations

Top-Down, Progressive-Deepening Approach

1. First find high-level strong rules, e.g. milk ⇒
bread [20%, 60%]

2. Then find their lower-level ”weaker” rules, e.g.
low-fat milk ⇒ wheat bread [6%, 50%].

Support Threshold Variants

Different minSup threshold across multi-levels lead
to different algorithms:

▶ adopting the same minSup across multi-levels

▶ adopting reduced minSup at lower levels

food

milk bread

. . .1.5% 3.5%

. . . . . .
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Minimum Support for Multiple Levels

Uniform Support

▶ Search procedure is simplified
(monotonicity)

▶ User only specifies one
threshold

milk
supp=10%

1.5%
supp=6%

3.5%
supp=4%

minSup=5%

minSup=5%

Reduced Support (Variable Support)

▶ Takes into account lower
frequency of items in lower
levels

milk
supp=10%

1.5%
supp=6%

3.5%
supp=4%

minSup=3%

minSup=5%
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Multilevel Association Mining using Reduced Support

Level-by-level independent method

Examine each node in the hierarchy, regardless of the frequency of its parent node.

Level-cross-filtering by single item

Examine a node only if its parent node at the preceding level is frequent.

Level-cross-filtering by k-itemset

Examine a k-itemset at a given level only if its parent k-itemset at the preceding level
is frequent.
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Multi-level Association: Redundancy Filtering

Some rules may be redundant due to ”ancestor” relationships between items.

Example

▶ R1: milk ⇒ wheat bread [8%, 70%]

▶ R2: 1.5% milk ⇒ wheat bread [2%, 72%]

We say that rule 1 is an ancestor of rule 2.

Redundancy

A rule is redundant if its support is close to the ”expected” value, based on the rule’s
ancestor.

¸
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Interestingness of Hierarchical Association Rules: Notions

Let X ,X ′,Y ,Y ′ ⊆ I be itemsets.

▶ X ′ is ancestor of X iff there exists ancestors x ′1, . . . , x
′
k of x1, . . . , xk ∈ X and

xk+1, . . . , xn with n = |X | such that X ′ = {x ′1, . . . , x ′k , xk+1, . . . , xn}
▶ Let X ′ and Y ′ be ancestors of X and Y . Then we call the rules X ′ ⇒ Y ′,

X ⇒ Y ′, and X ′ ⇒ Y ancestors of the rule X ⇒ Y .
▶ The rule X ′ ⇒ Y ′ is a direct ancestor of rule X ⇒ Y in a set of rules if:

1. Rule X ′ ⇒ Y ′ is an ancestor of rule X ⇒ Y , and
2. There is no rule X ′′ ⇒ Y ′′ being ancestor of X ⇒ Y and X ′ ⇒ Y ′ is an ancestor of

X ′′ ⇒ Y ′′
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R-Interestingness

R-Interestingness

A hierarchical association rule X ⇒ Y is called R-interesting if:

▶ There are no direct ancestors of X ⇒ Y or

▶ The actual support is larger than R times the expected support or

▶ The actual confidence is larger than R times the expected confidence

Example in tutorial
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R-Interestingness: Expected Support

Given the rule for X ⇒ Y and its ancestor rule X ′ ⇒ Y ′ the expected support of
X ⇒ Y is defined as:

EZ ′ [P(Z )] = P(Z ′) ·
j∏

i=1

P(yi )

P(yi )′

where Z = X ∪ Y = {z1, . . . , zn}, Z ′ = X ′ ∪ Y ′ = {z ′1, . . . , z ′j , zj+1, . . . , zn} and each
z ′i ∈ Z ′ is an ancestor of zi ∈ Z .

R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.
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R-Interestingness: Expected Confidence

Given the rule for X ⇒ Y and its ancestor rule X ′ ⇒ Y ′, then the expected confidence
of X ⇒ Y is defined as:

EX ′⇒Y ′ [P(Y |X )] = P(Y ′ | X ′) ·
j∏

i=1

P(yi )

P(yi )′

where Y = {y1, . . . , yn} and Y ′ = {y ′1, . . . , y ′j , yj+1, . . . , yn} and each y ′i ∈ Y ′ is an
ancestor of yi ∈ Y .

R. Srikant, R. Agrawal: Mining Generalized Association Rules. In VLDB, 1995.
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Summary Frequent Itemset & Association Rule Mining

▶ Frequent Itemsets
▶ Mining: Apriori algorithm, hash trees, FP-tree
▶ support

▶ Simple Association Rules
▶ Mining: (Apriori)
▶ Interestingness measures: support, confidence, correlation

▶ Hierarchical Association Rules
▶ Mining: Top-Down Progressive Deepening
▶ Multilevel support thresholds, redundancy, R-interestingness

▶ Further Topics (not covered)
▶ Quantitative Association Rules (for numerical attributes)
▶ Multi-dimensional association rule mining
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Motivation

Motivation

▶ So far we only considered sets of items. In many applications the order of the
items is the crucial information.

▶ The ordering encodes e.g. temporal aspects, patterns in natural language.

▶ In an ordered sequence, items are allowed to occur more than one time.

Applications

Bioinformatics (DNA/protein sequences), Web mining, text mining (NLP), sensor data
mining, process mining, . . .
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Sequential Pattern Mining: Basic Notions I

We now consider transactions having an order of the items. Define:

▶ Alphabet Σ is a set of symbols or characters (denoting items)
e.g. Σ = {A,B,C ,D,E}

▶ Sequence S = s1s2 . . . sk is an ordered list of a length |S | = k items where
si ∈ Σ is an item at position i also denoted as S [i ]; S ∈ Σ∗.

e.g. S = CAB, s3 = B

▶ A k-sequence S is a sequence of length k: S ∈ Σk

e.g. S = CAB is a 3-sequence

▶ Consecutive subsequence R = r1r2 . . . rm of S = s1s2 . . . sn is also a
sequence in Σ s.t. r1r2 . . . rm = sjsj+1 . . . sj+m−1, with 1 ≤ j ≤ n −m + 1.
We say S contains R and denote this by R ⊆ S

e.g. R1 = AB ⊆ S = CAB
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Sequential Pattern Mining: Basic Notions II

▶ In a more general subsequence R of S we allow for gaps between the items of R,
i.e. the items of the subsequence R ⊆ S must have the same order of the ones in
S but there can be some other items between them

e.g. R2 = CB is a subsequence of S = CAB

▶ A prefix of a sequence S is any consecutive subsequence of the form
S [1 : i ] = s1s2 . . . si with 0 ≤ i ≤ n, S [1 : 0] is the empty prefix

e.g. R3 = C ,R4 = CA,R5 = CAB are prefixes of S = CAB

▶ A suffix of a sequence S is any consecutive subsequence of the form
S [i : n] = si si+1 . . . sn with 1 ≤ i ≤ n + 1, S [n + 1 : n] is the empty suffix.

e.g. R4 = AB is a suffix of S = CAB

▶ (Relative) support of a sequence R in D: supp(R) = |{S ∈ D | R ⊆ S}|/|D|
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Sequential Pattern Mining: Basic Notions III

▶ S is frequent (or sequential) if supp(S) ≥ minSup for threshold minSup.

▶ A frequent sequence is maximal if it is not a subsequence of any other frequent
sequence

▶ A frequent sequence is closed if it is not a subsequence of any other frequent
sequence with the same support

4. 4.3 Frequent Pattern Mining Page 4.420



Sequential Pattern Mining

Task

Find all frequent subsequences occuring in many transactions.

Difficulty

The number of possible patterns is even larger than for frequent itemset mining!

Example

There are |Σ|k different k-sequences, where k > |Σ| is possible and often encountered,
e.g. when dealing with DNA sequences where the alphabet only comprises four
symbols.
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Sequential Pattern Mining Algorithms

Breadth-First Search Based

▶ GSP (Generalized Sequential Pattern) algorithm8

▶ SPADE9

▶ . . .

Depth-First Search Based

▶ PrefixSpan10

▶ SPAM11

▶ . . .

8
Sirkant & Aggarwal: Mining sequential patterns: Generalizations and performance improvements. EDBT 1996

9
Zaki M J. SPADE: An efficient algorithm for mining frequent sequences. Machine learning, 2001, 42(1-2): 31-60.

10
Pei at. al.: Mining sequential patterns by pattern-growth: PrefixSpan approach. TKDE 2004

11
Ayres, Jay, et al: Sequential pattern mining using a bitmap representation. SIGKDD 2002.
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GSP (Generalized Sequential Pattern) algorithm

▶ Breadth-first search: Generate frequent sequences ascending by length

▶ Given the set of frequent sequences at level k , generate all possible sequence
extensions or candidates at level k + 1

▶ Uses the Apriori principle (anti-monotonicity)

▶ Next compute the support of each candidate and prune the ones with
supp(c) < minSup

▶ Stop the search when no more frequent extensions are possible
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Projection-Based Sequence Mining: PrefixSpan: Representation

▶ The sequence search space can be organized in a prefix search tree

▶ The root (level 0) contains the empty sequence with each item x ∈ Σ as one of its
children

▶ A node labelled with sequence: S = s1s2 . . . sk at level k has children of the form
S ′ = s1s2 . . . sksk+1 at level k + 1 (i.e. S is a prefix of S ′ or S ′ is an extension of
S)
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Prefix Search Tree: Example

ID Sequence

S1 CAGAAGT
S2 TGACAG
S3 GAG
S4 AGTT
S5 ATAG

minSup = .8

∅ (5)

A(5)

C(2)

G(4)

T(5)

AA(3)

AC(-)

AG(5)

AT(3)

GA(3)

GC(-)

GG(3)

GT(2)

TA(1)

TC(-)

TG(2)

TT(1)

AGA(-)

AGC(-)

AGG(-)

AGT(-)

seq (count) frequent

seq ( - ) infrequent (pruned)

seq (count) infrequent

prunes

generates
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Projected Database

▶ For a database D and an item s ∈ Σ, the projected database w.r.t. s is denoted
Ds and is found as follows: For each sequence Si ∈ D do
▶ Find the first occurrence of s in Si , say at position p
▶ suffSi ,s ← suffix(Si ) starting at position p + 1
▶ Remove infrequent items from suffSi ,s

▶ Ds = Ds ∪ suffSi ,s

Example

minSup = .8 (i.e. 4 transactions)
ID Sequence DA DG DT

S1 CAGAAGT GAAGT AAGT ∅
S2 TGACAG AG AAG GAAG
S3 GAG G AG -
S4 AGTT GTT TT T
S5 ATAG TAG ∅ AG
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Projection-Based Sequence Mining: PrefixSpan Algorithm

▶ The PrefixSpan algorithm computes the support for only the individual items in
the projected databased Ds

▶ Then performs recursive projections on the frequent items in a depth-first manner

1: Initialization: DR ← D,R ← ∅,F ← ∅
2: procedure PrefixSpan(DR ,R,minSup,F)
3: for all s ∈ Σ such that supp(s,DR) ≥ minSup do
4: Rs ← R + s ▷ append s to the end of R
5: F ← F ∪ {(Rs , sup(s,DR))} ▷ calculate support of s for each Rs within DR

6: Ds ← ∅
7: for all Si ∈ DR do
8: S ′

i ← projection of Si w.r.t. item s
9: Remove all infrequent symbols from S ′

i

10: if S ′ ̸= ∅ then
11: Ds ← Ds ∪ S ′

i

12: if Ds ̸= ∅ then
13: PrefixSpan(Ds ,Rs ,minSup,F)
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PrefixSpan: Example

minSup = 0.8 (i.e. 4 transactions)

D∅

ID Sequence

S1 CAGAAGT
S2 TGACAG
S3 GAG
S4 AGTT
S5 ATAG

A(5)C(2)G(5)T(4)

DG

ID Sequence

S1 AAGT
S2 AAG
S3 AG
S4 TT
S5 ∅
A(3)G(3)T(2)

DT

ID Sequence

S1 ∅
S2 GAAG
- -
S4 T
S5 AG

A(2)G(2)T(1)

DA

ID Sequence

S1 GAAGT
S2 AG
S3 G
S4 GTT
S5 TAG

A(3)G(5)T(3)

DAG

ID Sequence

S1 G
S2 ∅
S3 ∅
S4 ∅
S5 ∅

G(1)

Hence, the frequent sequences are: ∅, A, G, T, AG
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Interval-based (Sequential) Pattern Mining

Interval-Based Representation

▶ Deals with the more common interval-based items s (or events).

▶ Each event has a starting t+s and an ending time point t−s , where t+s < t−s

Application

Health data analysis, Stock market data analysis, etc.

Relationships

Predefined relationships between items are more complex.

▶ Point-based relationships: before, after, same time.

▶ Interval-based relationships: Allen’s relations12, End point representation13, etc.

12
Allen: Maintaining knowledge about temporal intervals. In Communications of the ACM 1983

13
Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007
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Allen’s Relationships of Intervals
Before Overlaps Contains Starts Finished-By Meets Equal
After Overlapped-By During Started-By Finishes Met-by Equal

Problem

▶ Allen’s relationships only describe the relation between two intervals.

▶ Describing the relationship between k intervals unambiguously requires O(k2)
comparisons.

A B

C

A B

C
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Sequential Pattern Mining for Interval Data

▶ TPrefixSpan14 converts interval-based sequences into point-based sequences:

A

B
{A+}, {A−}, {B+}, {B−}

A

B
{A+}, {B+}, {A−}, {B−}

A

B
{A+}, {A−,B+}, {B−}

▶ Similar prefix projection mining approach as PrefixSpan algorithm.

▶ Validation checking is necessary in each expanding iteration to make sure that the
appended time point can form an interval with a time point in the prefix.

14
Wu, Shin-Yi, and Yen-Liang Chen: Mining nonambiguous temporal patterns for interval-based events. TKDE 2007
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New Representation: Point Transformation of Intervals

▶ Map one-dimensional intervals
(X+,X−) ⊂ R to two-dimensional
points (X+,X−) ∈ R2

▶ Example: Interval A starting at time 3
and ending at time 6 is mapped to the
point A(3, 6)

▶ (think-pair-share) How about points
below the diagonal? How about points
on the diagonal?

▶ The principle can be extended to
d-dimensional intervals (rectangles,
boxes) by mapping them to
2d-dimensional points.
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Point Transformation of Intervals: Examples

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

Let us take A as reference and consider
Allen’s relationships ...
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Allen’s Relationships with Point Transformation

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

Before: BA
After: CA
Overlaps: DA
Overlapped-By: EA
During: FA
Contains: GA

Started-By: HA
Starts: IA
Finished-By: JA
Finishes: AJ
Met-By: KA
Meets: LA
Equal: AA
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Allen’s Relations with Point Transformation

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

Before: BA
After: CA
Overlaps: DA
Overlapped-By: EA
During: FA
Contains: GA

Started-By: HA
Starts: IA
Finished-By: JA
Finishes: AJ
Met-By: KA
Meets: LA
Equal: AA
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Allen’s Relations with Point Transformation (just the zones)

4. 4.3 Frequent Pattern Mining Page 4.436



An Open Issue: Considering Timing Information
Idea
Learn pattern from data by clustering, e.g. QTempIntMiner15, Event Space Miner16, PIVOTMiner17

0 2 4 6 8

A

B

CDE F

G

H

I

J KL

0
0

2

2

4

4

6

6

8

8

start

end

I

II

III

IV

V VI

15
Guyet, T., & Quiniou, R.: Mining temporal patterns with quantitative intervals. ICDMW 2008

16
Ruan, G., Zhang, H., & Plale, B.: Parallel and quantitative sequential pattern mining for large-scale interval-based temporal data. IEEE Big

Data 2014
17

Hassani M., Lu Y. & Seidl T.: A Geometric Approach for Mining Sequential Patterns in Interval-Based Data Streams. FUZZ-IEEE 2016
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Interval Patterns Mining: Discussion

▶ Intervals represent extended events. They may overlap, thus causing challenges
for mining patterns from sets of intervals.

▶ Sequential techniques represent sets of intervals as sequences of starting and
ending points. The strict partitioning at (noisy) meeting points may yield
undesired splits of patterns.

▶ Point transformations allow for extracting interval patterns, e.g. by clustering the
resulting two-dimensional point sets.
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