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Introduction

What is an outlier?
Hawkins (1980) ”An outlier is an observation which deviates so much from

the other observations as to arouse suspicions that it was generated by a
different mechanism.”

▶ Statistics-based intuition:
▶ Normal data objects follow a

“generating mechanism”, e.g. some
given statistical process

▶ Abnormal objects deviate from this
generating mechanism
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Introduction

Applications

▶ Fraud detection
▶ Purchasing behavior of a credit card owner usually changes when the card is stolen
▶ Abnormal buying patterns can characterize credit card abuse

▶ Medicine
▶ Whether a particular test result is abnormal may depend on other characteristics of

the patients (e.g. gender, age, . . . )
▶ Unusual symptoms or test results may indicate potential health problems of a patient

▶ Public health
▶ The occurrence of a particular disease, e.g. tetanus, scattered across various

hospitals of a city indicate problems with the corresponding vaccination program in
that city

▶ Whether an occurrence is abnormal depends on different aspects like frequency,
spatial correlation, etc.
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Introduction

Applications (cont’d)

▶ Sports statistics
▶ In many sports, various parameters are recorded for players in order to evaluate the

players’ performances
▶ Outstanding (in a positive as well as a negative sense) players may be identified as

having abnormal parameter values
▶ Sometimes, players show abnormal values only on a subset or a special combination

of the recorded parameters

▶ Detecting measurement errors
▶ Data derived from sensors (e.g. in a given scientific experiment) may contain

measurement errors
▶ Abnormal values could provide an indication of a measurement error
▶ Removing such errors can be important in other data mining and data analysis tasks
▶ ”One person’s noise could be another person’s signal.”
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Introduction

Important Properties of Outlier Models

▶ Global vs. local approach
▶ ”Outlierness” regarding whole dataset (global) or regarding a subset of data (local)?

▶ Labeling vs. Scoring
▶ Binary decision or outlier degree score?

▶ Assumptions about ”Outlierness”
▶ What are the characteristics of an outlier object?

▶ An object is a cluster-based outlier if it does not strongly belong to any cluster.
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Clustering-based Outliers

An object is a cluster-based outlier if it does not strongly belong to any cluster.

Basic Idea

▶ Cluster the data into groups

▶ Choose points in small clusters as candidate
outliers.

▶ Compute the distance between candidate
points and non-candidate clusters.

▶ If candidate points are far from all other
non-candidate points and clusters, they are
outliers
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Clustering-based Outliers

More Systematic Approaches

▶ Find clusters and then assess the degree to
which a point belongs to any cluster
▶ E.g. for k-Means, use distance to the

centroid

▶ If eliminating a point results in substantial
improvement of the objective function, we
could classify it as an outlier
▶ Clustering creates a model of the data and

the outliers distort that model.
▶ Applicable to clustering algorithms optimizing

some objective function (e.g. k-means)
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Statistical Tests

General Idea

▶ Given a certain kind of statistical
distribution (e.g., Gaussian)

▶ Compute the parameters assuming all
data points have been generated by
such a statistical distribution (e.g.,
mean and standard deviation)

▶ Outliers are points that have a low
probability to be generated by the
overall distribution (e.g., deviate
more than 3 times the standard
deviation from the mean)
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Statistical Tests

Basic Assumption

▶ Normal data objects follow a (known)
distribution and occur in a high
probability region of this model

▶ Outliers deviate strongly from this
distribution
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Statistical Tests

A huge number of different tests are available differing in

▶ Type of data distribution (e.g. Gaussian)

▶ Number of variables, i.e., dimensions of the data objects (univariate/multivariate)

▶ Number of distributions (mixture models)

▶ Parametric versus non-parametric (e.g. histogram-based)

Example on the Following Slides

▶ Gaussian distribution

▶ Multivariate

▶ Single model

▶ Parametric

4. 4.2 Outlier Detection Page 4.330



Statistical Outliers: Gaussian Distribution

Probability Density Function of a Multivariate
Normal Distribution

N (x | µ, σ2) = 1√
2πσ2

exp

(
− 1

2σ2
(x − µ)2

)

▶ µ is the mean value of all points (usually data
are normalized such that µ = 0)

▶ Σ is the covariance matrix from the mean
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Statistical Outliers: Mahalanobis Distance

Mahalanobis Distance

Mahalanobis distance of point x to µ :

MDist(x , µ) =
√
(x − µ)TΣ−1(x − µ)

▶ MDist follows a χ2-distribution with d degrees
of freedom (d = data dimensionality)

▶ Outliers: All points x , with
MDist(x , µ) > χ2(0.975) (≈ 3σ)
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Statistical Outliers: Problems

Problems

▶ Curse of dimensionality: The larger
the degree of freedom, the more
similar the MDist values for all points

▶ x-axis = observed MDist values

▶ y-axis = frequency of observation
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Statistical Outliers: Problems

Problems (cont’d)

▶ Robustness
▶ Mean and standard deviation are

very sensitive to outliers
▶ These values are computed for the

complete data set (including
potential outliers)

▶ The MDist is used to determine
outliers although the MDist values
are influenced by these outliers

4. 4.2 Outlier Detection Page 4.334



Statistical Outliers: Problems

Problems (cont’d)

▶ Data distribution is fixed

▶ Low flexibility (if no mixture models)

▶ Global method
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Distance-Based Approaches

General Idea

Judge a point based on the distance(s) to its neighbors (Several variants proposed)

Basic Assumption

▶ Normal data objects have a dense neighborhood

▶ Outliers are far apart from their neighbors, i.e., have a less dense neighborhood
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Distance-Based Approaches

D(ϵ, π)-Outlier 6

▶ Given: distance threshold ϵ ≥ 0, fraction threshold 0 < π ≤ 1

▶ A point p is considered an outlier if at most fraction π of all points in D have a
distance to q less than or equal ϵ.

OutlierSet(ϵ, π) =

{
p ∈ D

∣∣∣ |{q ∈ D | dist(p, q) < ϵ}|
|D|

≤ π
}

where dist(·, ·) is a distance measure.

6
Han, J., Kamber, M. & Pei, J. (2012). Data mining concepts and techniques
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Distance-Based Approaches: D(ϵ, π) Example

Score (ϵ = 0.3)
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Distance-Based Approaches: kNN

Outlier scoring based on kNN distances

General models: Take the kNN distance of a point as its outlier score

Decision

k-distance above some threshold τ ⇐⇒ Outlier.
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Distance-Based Approaches: kNN Example

Score (k = 1)
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Distance-Based Approaches: kNN Example

Score (k = 5)
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kNN: Problems

Problems

▶ Highly sensitive towards k:
▶ Too small k : small number of close

neighbors can cause low outlier
scores.

▶ Too large: all objects in a cluster
with less than k objects might
become outliers.

▶ cannot handle datasets with regions of
widely different densities due to the
global threshold

Image Source: P. Tan, M. Steinbach, V. Kumar (2006). Classification:

basic concepts, decision trees, and model evaluation. Introduction to data

mining, 1, 145-205.
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Density-Based Approaches

General Idea

▶ Compare the density around a point with the density around its local neighbors.

▶ The relative density of a point compared to its neighbors is computed as an
outlier score.

▶ Approaches also differ in how to estimate density.

Basic Assumption

▶ The density around a normal data object is similar to the density around its
neighbors.

▶ The density around an outlier is considerably different to the density around its
neighbors.
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Density-Based Approaches

Problems

▶ Different definitions of density: e.g.,
#points within a specified distance ϵ
from the given object

▶ The choice of ϵ is critical (too small
=⇒ normal points considered as
outliers; too big =⇒ outliers
considered normal)

▶ A global notion of density is
problematic (as it is in clustering);
fails when data contain regions of
different densities

D has a higher absolute density than A but
compared to its neighborhood, Ds density is

lower.
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Density-Based Approaches

Failure Case of Distance-Based

▶ D(ϵ, π): parameters ϵ, π cannot be
chosen s.t. o2 is outlier, but none of
the points in C1 (e.g. q)

▶ kNN-distance: kNN-distance of
objects in C1 (e.g. q) larger than the
kNN-distance of o2.
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Density-Based Approaches

Score (k = 7)
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Density-Based Approaches

Solution

Consider the relative density w.r.t. to the neighbourhood.

Model

▶ Local Density (ld) of point p (inverse of avg. distance of kNNs of p)

ldk(p) =

1

k

∑
o∈kNN(p)

dist(p, o)

−1

▶ Local Outlier Factor (LOF) of p (avg. ratio of lds of kNNs of p and ld of p)

LOFk(p) =
1

k

∑
o∈kNN(p)

ldk(o)

ldk(p)

4. 4.2 Outlier Detection Page 4.347



Density-Based Approaches

Extension (Smoothing factor)

▶ Reachability ”distance”

rdk(p, o) = max{kdist(o), dist(p, o)}

▶ Local reachability distance lrdk

lrdk(p) =

 1

k

∑
o∈kNN(p)

rd(p, o)

−1

▶ Replace ld by lrd

LOFk(p) =
1

k

∑
o∈kNN(p)

lrdk(o)

lrdk(p)
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Density-Based Approaches

Discussion

▶ LOF ≈ 1 =⇒ point in cluster

▶ LOF ≫ 1 =⇒ outlier.

▶ Choice of k defines the reference set
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Angle-Based Approach

General Idea

▶ Angles are more stable than distances
in high dimensional spaces

▶ o outlier if most other objects are
located in similar directions

▶ o no outlier if many other objects are
located in varying directions • inlier

• outlier

Basic Assumption

▶ Outliers are at the border of the data distribution

▶ Normal points are in the center of the data distribution
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Angle-Based Approach

Model

▶ Consider for a given point p the angle between −→px and −→py for any two x , y from
the database

▶ Measure the variance of the angle spectrum

4. 4.2 Outlier Detection Page 4.351



Angle-Based Approach

Model (cont’d)

▶ Weighted by the corresponding distances (for lower dimensional data sets where
angles are less reliable)
Angle-based Outlier Detection7:

ABOD(p) = VARx ,y∈D

(
1

∥−→xp∥2∥−→yp∥2
cos
(−→xp,−→yp)) = VARx ,y∈D

( 〈−→xp,−→yp〉
∥−→xp∥22∥

−→yp∥22

)
▶ Small ABOD ⇐⇒ outlier

7
Kriegel, Hans-Peter, Matthias Schubert, and Arthur Zimek. ”Angle-based outlier detection in high-dimensional data.” Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2008.
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Angle-Based Approaches

Score (all pairs)
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Tree-Based Approaches: Isolation Forest

General Idea

Outlierness = how easy it is to separate a point from the rest by random space
splitting?

Basic Assumption

▶ Anomalies are the minority consisting of fewer instances

▶ Anomalies have attribute-values that are very different from those of normal
instances
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Tree-Based Approaches

Isolation Tree - Training

1. Randomly select one dimension

2. Randomly select a split position in that dimension

3. Repeat until: a) only one point left or b) height reaches predefined threshold h

Example

Normal point path length=10 splits

Example

Outlier point path length=4 splits
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Tree-Based Approaches: Training

Isolation Forest - Training

1. Random sample ψ points, build
an isolation tree

2. Repeat for t times ⇒ a forest of t
isolation trees

Average path lengths converge
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Tree-Based Approaches: Anomaly Score

▶ Let h(x) be the path length of x on an isolation tree, and estimate E (h(x)) by the
average path length among t isolation trees.

▶ Let c(ψ) = 2H(ψ − 1)− 2(ψ − 1)/ψ, which is the expected path length of
unsuccessful search in BST of ψ points; H(·) is the harmonic number.

▶ Define the anomaly score of a point x as s(x) = 2
− E(h(x))

c(ψ)

▶ Observe s(x) ∈ (0, 1)
▶ E (h(x))→ c(ψ) yields s → 0.5,
▶ E (h(x))→ 0 yields s → 1,
▶ E (h(x))→ n − 1 yields s → 0.

▶ Usually, set s = 0.5 as threshold, i.e. the average of the expected path length
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Tree-Based Approaches: Discussion

▶ Advantages:
▶ Anomaly score between 0 and 1
▶ Very efficient, especially on large

dataset
▶ A model (the forest) is learned

from the training dataset
▶ Easy for parallelization
▶ Can be adapted to categorical data

▶ Disadvantages:
▶ Only detects global outliers (of

course, follow-up approaches are
available)

▶ Not efficient on high-dimensional
data

iForest anomaly score contour
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Recap - Outlier Detection

▶ Properties: global vs. local, labeling vs. scoring

▶ Clustering-Based Outliers: Identification as non-(cluster-members)

▶ Statistical Outliers: Assume probability distribution; outliers = unlikely to be
generated by distribution

▶ Distance-Based Outliers: Distance to neighbors as outlier metric

▶ Density-Based Outliers: Relative density around the point as outlier metric

▶ Angle-Based Outliers: Angles between outliers and random point pairs vary only
slightly
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