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1 Introduction

Are you interested in Active Learning or Domain Adaptation? We are interested
in supervising talented Bachelor/Master students and publishing high-quality
publications.

2 Background

Domain Adaptation [3] is a setting that attempts to transfer a classification
network trained on one data set/domain (called source domain) to a different,
previously unseen domain (called target domain). Here, the goal is to use as few
or as few labels as possible from the new domain as possible. One way of doing
so is Active Domain Adaptation [12]. Here the algorithm is allowed to specify
the unlabeled data points that would be most useful if they received labels.
These are then sent to a so-called oracle (typically a human annotator) which
provides a label for these instances. The algorithm then retrains the network
with the additional labels. Depending on the budget, this process is repeated
until said budget of data that is allowed to be labeled is reached. One aspect to
take into account is that the goal is also to lose as little classification capability
in the source domain as possible.
There are many different ways of selecting these instances. Typically the se-
lection is done based on either uncertainty, diversity, domainness, or a mix of
these properties. Even within these categories, there are many different selec-
tion strategies [4, 11, 20, 18].
Within the setting of domain adaptation, there is a special case called source-
free domain adaptation [2]. Here, the original source domain data set that was
used to train the original source network is no longer available. This requires
specific strategies to handle the training process [19]. Here the usage of pseudo-
labels [10, 6] or generative approaches [8] to supplement the data are common
[14]. This setting finds use in Active Domain Adaptation as well, with multiple
recent strategies being used to address it [9, 17, 7, 16].
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3 Topics

3.1 Adjustment of ADA strategies into the ASFDA set-
ting through the usage of pseudo-labels based on Di-
aNA (MA)

Description While not mainly meant to be an active source-free domain
adaptation approach, another recently published approach called DiaNA [5]
advertises its compatibility with SFDA. Its handling uses a pseudo-labeling ap-
proach.
The primary question of the thesis would be a broad investigation of how this
specific approach works with other common ADA methods as well. This has
already been done to some degree in the past, though not necessarily with the
[14].

Thanks to a repository provided as part of another recent ADA approach
[15], the relevant approaches are already implemented in Python. The repos-
itory was, however, not originally intended for source-free domain adaptation,
so it is necessary to rework the code to account for the change in setting.
To investigate this, the goal would be to investigate the basic selection strategies
(random, entropy, margin, least-confidence, and coreset), intermediate strate-
gies (AADA [13], BADGE [1], k-Means), as well as current state-the-art meth-
ods (CLUE [11] and LAS [15]). The repository also includes the MHP strategy
[17], which has already been used in the SFDA setting and may be useful for
comparison.
Further implementations for SFDA methods [7, 9, 16] are also available, and
some of them (depending on how well the repository codes work) should be
used for comparison. DiaNA itself does not have any code available (yet). If
the code becomes available (reasonably early) during the thesis, it can and
should be included, but it does not need to be reimplemented as part of this
thesis.
The goal here is to see if the approaches are compatible with the SFDA strategy
used in DiaNA [5] and how the change in setting impacts the performance of
the methods both compared to their prior behavior as well as other ASFDA ap-
proaches (including those created during the thesis). Given the aims of the the-
sis, the investigation should also look at the performance on the source dataset
throughout the training process. Due to time and resource constraints, the in-
vestigation should be limited to solely the Office-31 datasets. The number of
domain adaptation pairings can be restricted based on the state of the thesis,
but the current plan is to use all domains available from that baseline.
In case of the approaches not being compatible, an analysis of the reasons why
would be required. If the approaches are compatible, depending on the state of
the thesis, further investigations into incorporating the unique properties of the
selection strategies into the pseudo-labeling process could be performed.
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Relevant Resources : https://github.com/tsun/LADA/tree/master,
https://github.com/divyakraman/SALAD_SourcefreeActiveLabelAgnosticDomainAdaptation,
https://github.com/TL-UESTC/ELPT,
https://github.com/fanwang826/BIAS

Required Reading : [5, 14, 15, 11, 17, 7, 9, 16]

Requirements

• Study in the field of computer science

• Good understanding of machine learning

• Good programming skills in Python

• Independent working

• Beneficial: understanding of active learning/active domain adaptation

Additional Information

• Start: in April

• Length of the work: 26 weeks

• Location: AoE

Contact information If you are interested, please send your CV and tran-
scripts to jahn@dbs.ifi.lmu.de
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