
Proc. 2nd International Workshop on Management of Information on the Web - Web Data and Text Mining (MIW’01)

Feature Weighting and Instance Selection for Collaborative Filtering∗

Kai Yu2, Zhong Wen2, Xiaowei Xu1, Martin Ester2

1 Information and Communications, Corporate Technology, Siemens AG
2 Institute for Computer Science, University of Munich

Xiaowei.Xu@mchp.siemens.de, {yu_k, wen, ester}@dbs.informatik.uni-muenchen.de

∗ The work was performed in Cooperate Technology, Siemens AG. The contact author is Xiaowei Xu: Xiaowei.Xu@mchp.siemens.de

Abstract

Collaborative filtering uses a database about
consumers’ preferences to make personal product
recommendations and is achieving widespread success in
E-Commerce nowadays. In this paper, we present several
feature-weighting methods to improve the accuracy of
collaborative filtering algorithms. Furthermore, we
propose to reduce the training data set by selecting only
highly relevant instances. We evaluate various methods on
the well-known EachMovie data set. Our experimental
results show that mutual information achieves the largest
accuracy gain among all feature-weighting methods. The
most interesting fact is that our data reduction method
even achieves an improvement of the accuracy of about
6% while speeding up the collaborative filtering
algorithm by a factor of 15.

1. Introduction

The Internet is increasingly used as a channel for sales
and marketing. More and more people purchase products
through the Internet. One main problem that the
customers face is how to find the product they like from
millions of products. For the vendor, again, it is crucial to
find out about the customers’ preferences for products.
Collaborative filtering or recommender systems have
emerged in response to these problems[1] [6][10].

Collaborative filtering accumulates a database of
consumers’ product preferences, and then uses them to
make customer-tailored recommendations for products
such as clothing, music, books, furniture, and movies. The
consumer's preference can be either explicit votes or
implicit usage/purchase history. Collaborative filtering
can help E-commerce in converting web surfers into
buyers by personalization of the web interface. It can also
improves cross-sell by suggesting other products the
consumer might be interested in. In a world where an E-
commerce site's competitors are only a click or two away,
gaining customer loyalty is an essential business strategy.
Collaborative filtering can improve the loyalty by creating
a value-added relationship between supplier and

consumer.
Collaborative filtering has been very successful in

both research and practice. However, there still remain
important research issues in overcoming two fundamental
challenges for collaborative filtering [8].

The first challenge is to improve the scalability of the
collaborative filtering algorithms. Existing collaborative
filtering algorithms can deal with thousands of consumers
within a reasonable time, but the demand of modern E-
Commerce systems is to handle tens of millions of
consumers.

The second challenge is to improve the quality of the
recommendations for the consumers. Consumers need
recommendations they can trust to help them find
products they will like. If a consumer trusts a recomender
system, purchases a product, but finds out he does not like
the product, the consumer will be unlikely to use the
recommender systems again.

In this paper, we present different feature weighting
methods to improve the accuracy of collaborative filtering
algorithm. Furthermore, we introduce a relevance
measure of an instance to the target and propose to reduce
the training data set by selecting only highly relevant
instances.

In section 2, we briefly introduce collaborative
filtering algorithms. We present different feature
weighting methods including inverse user frequency,
entropy and mutual information in section 3. We propose
a mutual information based data reduction method for
collaborative filtering in section 4. The empirical
evaluation of these methods and results are reported in
section 5. The paper ends with a summary and some
interesting future work.

2. Collaborative Filtering

The task in collaborative filtering is to predict the
preference of an active consumer to a given product based
on a database of consumer' product preferences. There are
two general classes of collaborative filtering algorithms:
memory-based methods and model-based methods.

Memory-based algorithm [6][10] is the most popular
prediction technique in collaborative filtering

applications. The basic idea is to compute the active
consumer’s predicted vote of a product as a weighted
average of the votes given to that product by other
consumers. Specifically, the prediction

jaP ,
 of the active

consumer a on product j is given by:

∑
=

−+=
n

i
ijiaja vviawkvP

1
,,))(,((2.1)

where n is the number of the consumers who rated

product j. iv is the mean vote for consumer i. vi,j is the

vote cast by i on j. w(a,i)is the similarity measure between
a and i. k is a normalizing factor such that the absolute
values of the weights sum to unity. There are two popular
similarity measures: a person correlation coefficient and
cosine vector similarity. Since the correlation-based
algorithm outperforms the cosine vector based
algorithm[1], we use the former one as the similarity
measure. The person correlation coefficient [6] between
consumer a and i is defined as:

()
()()

() ()
, ,

2 2

, ,

,
a j a i j ij

a j a i j ij j

v v v v
w a i

v v v v

− −
=

− −

∑
∑ ∑

 (2.2)

Memory-based methods have the advantages of being
able to rapidly incorporate the most up-to-date
information and relatively accurate prediction [1], but
they suffer from poor scalability for large numbers of
consumers. This is because the search for all similar
consumers is slow in large databases.

Model-based collaborative filtering, in contrast, uses
the consumers’ preference database to learn a model,
which is then used for predications. The model can be
built off-line over several hours or days. The resulting
model is very small, very fast, and essentially as accurate
as memory-based methods [1]. Model-based methods
may prove practical for environments in which consumer
preferences change slowly with respect to the time needed
to build the model. Model-based methods, however, are
not suitable for environments in which consumer
preference models must be updated rapidly or frequently.

In this paper, we will focus on memory-based
algorithms and present some new methods to improve the
scalability and the accuracy.

3. Feature Weighting Methods

As indicated before, collaborative filtering is built on
the assumption that a good way to predict the preference
of the active consumer for a target product is to find other
consumers who have similar preferences, and then use
those similar consumers’ preferences for that product to
make a prediction. The similarity measure is based on
preference patterns of consumers. Therefore, a
consumer’s votes on the product set except the target

product can be regarded as features of this consumer.
Hence, introduction of some feature weighting methods
may be useful to improve the accuracy of prediction.
Through weighting, we can focus on the good products
while removing bad ones or reducing their impacts. Votes
on a ‘good product’ are highly relevant to the preference
for the target product, while a ‘bad product’ is irrelevant
or noisy in prediction for the target product. Such
weighting methods can be derived from psychological
and statistical observations. When using weight the
similarity measures between consumers are modified as
follows:

 ()
() ()

() ()

2

, ,

2 22 2
, ,

,
a j a i j ij j

j a j a j i j ij j

w v v v v
w a i

w v v w v v

− −
=

− −

∑
∑ ∑

 (3.1)

where wj represent the weight of product j with respect to
the target product.

3.1 Inverse User Frequency

In applications of vector similarity in information
retrieval, word frequencies are typically modified by the
inverse document frequency [7]. The idea is to reduce
weights for commonly occurring words, capturing the
intuition that they are not useful in identifying the topic of
a document, while words that occur less frequently are
more indicative of the topic. Bresse et al [1] applied an
analogous transformation to votes in a collaborative
filtering database, which is termed inverse user frequency.
The idea is that universally liked products are not as
useful in capturing similarity as less common products.
So inverse user frequency weight is defined as follows:

 logj
j

n
w

n
= (3.2)

where nj is the number of consumers who have voted for
product j, and n is the total number of consumers in the
database. Note that if everyone has voted on product j,
then the weight is zero. However, if in a database every
product received about the same number of votes, this
weighting method can not make sense.

3.2 Entropy

The concept of entropy was introduced as a measure
of uncertainty of a random variable [9]. The diversity (or
distribution) of consumer’ votes to a specific product will
be apparently meaningful in collaborative filtering. Let’s
consider a special case, if all the consumers give a very
high vote on a product, then it is indicated that all the
votes on this product will make no sense in computing
similarity between consumers, because it can’t tell any
distinction among consumers. But if all the votes on a
item are very diverse, almost identically distributed over

the range of the vote, then all the votes on this product
will be very indicative in capturing the bias of consumers.
Based on the above intuition, we propose an entropy-
based weighting method in collaborative filtering:

,maxj j jw H H= (3.3)

where , 2 ,logj i j i ji
H p p= − ⋅∑

In eq.(3.3) Hj is the entropy of product j, pI,j is the
probability of votes on product j valued i, and Hj,max

represents the maximum entropy which assumes the
distributions over all classes of vote are identical. This
term is introduced to avoid the impact of different discrete
vote ranges for different products. Thus, a large value of
wj means diverse preference for product j, and hence more
emphases should be put on those votes for j in prediction.
However, the proposed entropy-based weighting scheme
might encounter the risk that there is no significant
difference of the entropy from product to product. In the
case of movie recommendation it is quite possible that the
people’s tastes towards every specific movie are all very
diverse. In such a case, wj is close to 1 for most of the
movies and the entropy-based feature weighting can’t
result in any impressive improvement.

3.3 Mutual Information

The two feature-weighting methods mentioned above
are derived from the characteristics of single products.
But our task is from some knowledge about other features
to make a prediction for the target. So a better way should
be to explore some kind of internal connection between
features and the target. If the votes of the target product
are found to be highly dependent on the votes of product
j, we should assign a large weight to j.

Example 1. If 50 consumers/users give votes for two
movies, i and j, and vote takes the value from 0 to 1, let us
consider two different situations, case 1 and case 2
respectively, as shown in fig.1. In case 1, we find
consumers are nearly uniformly distributed in the movie-
movie vote space. If A and B are two arbitrary users who
both have close interests to movie i, it does not
necessarily indicate that they have also similar
preferences for movie j. But in case 2, the situation is
quite different. We can find for those consumers who
dislike movie i, movie j always is their favorite. While
those consumers who like movie i always rate the other
one just above the average. In summary, in the second
case movie i should play an important role in inferring
some consumer’s preference for movie j, while in case 1
it is not so useful.

Formally, the dependence of product j on i may be
defined by a conditional probability:

, 1 , 2 , 1 , 2(| | | |)j u j u i u i up v v e v v e− < − < (3.4)

where u1 and u2 represent two arbitrary consumers and e
is a threshold. If the difference between two votes is
below e, those two votes are regarded to be ‘close’. The
above conditional probability indicates the probability of
the case that two arbitrary consumers have close
preference for product j given the condition that those two

consumers have close preference for product i.
Figure 1. Consumer in example 1

To apply dependence as a weighting scheme in
collaborative filtering, we could calculate it according to
formula (3.4). However, this would be very expensive
since its runtime complexity is O(n2m2) if n is the number
of consumers and m the number of products. Instead, we
will approximate dependence by the mutual information
between a feature and the target. We will see below that
this approximation behaves well and is significantly more
efficient to calculate.

In information theory, mutual information represents a
measure of statistic dependence between two random
variables X and Y with associated probability distributions
p(x) and p(y) respectively. Following Shannon [9], the
mutual information between X and Y is defined as:

 () ()
() ()

,
(;) , log

x y

p x y
I X Y p x y

p x p y

=

∑ ∑ (3.5)

Furthermore, mutual information can be equivalently
transformed into the following formulas:

 () ()(;) |I X Y H X H X Y= − (3.6)

 () ()(;) |I X Y H Y H Y X= − (3.7)

(;) () () (,)I X Y H X H Y H X Y= + − (3.8)

where H(X) is the entropy of X, H(X|Y) is the conditional
entropy of X given Y and H(X,Y) is the joint entropy of
two random variables. The definition of the conditional
entropy, the joint entropy and the proof of the above
equations can be found in [2]. The equations above
indicate that mutual information also represents the
reduction of entropy (uncertainty) of one variable given
information of the other variable.

Theorem: Given two products i and j, as well as
distributions of votes on them, P(V i) and P (Vj) . And e is
the interval of discrete value for vote. If u1 and u2 are two
arbitrary consumers who have voted for both products,
then

, 1 , 2 , 1 , 2(| | | |)
0

(;)

j u j u i u i u

j i

d p v v e v v e

d I V V

 − < − < >

 (3.9)

Proof:
Since P(V i) and P (Vj) are given, we have:

 (;) () ()

()

j i j j i

j i

d I V V d H V H V V

d H V V

 = −
 = −

 (3.10)

Inequation (3.8) can be written as:

, 1 , 2 , 1 , 2(| | | |)
0

(|)

j u j u i u i u

j i

d p v v e v v e

d H V V

 − < − < <

 (3.11)

Next, we have

() () ()| |j i i j i
v

H V V p V v H V V v
∈ℵ

= ≡ ≡∑ (3.12)

and

() ()
()

, 1 , 2 , 1 , 2

2

, 1 , 2 , 1 , 2

2

(| | | |)

|

j u j u i u i u

i j u j u i u i u
v

i
v

p v v e v v e

p V v p v v e v v v

p V v
∈ℵ

∈ℵ

− < − <

≡ − < = =
=

≡

∑
∑

 (3.13)

where ℵ is the set of all discrete votes. From eq. (3.12)
and eq. (3.13) we can easily derive ineq. (3.11).
Therefore, ineq.(3.9) holds.

The above theorem clearly shows that large mutual
information between the feature and the target means a
high dependency between them. Therefore, it encourages
us to propose mutual information as a weighting method
in collaborative filtering.

 (;)j j tw I V V= (3.14)

where Vj and Vt are the votes on product j and target
product t respectively. According to eq. (3.8), we use the
following equation to estimate the mutual information
between two products:

(;) () () (,)j t j t j tI V V H V H V H V V= + − (3.15)

where H(Vj,Vt) is the joint entropy between two products.
Since not all the consumers have voted for the two
products, calculation is done over the overlap. If the
average number of overlapping consumers between two
products is n, and there are totally m products in the
training data set, the computational complexity for
calculating the mutual information between all pairs of
products is O(nm2).

4. Selecting Relevant Instances

An interesting question is, since the number of
recorded consumers is explosively increasing, how to
speed up the prediction? To respond to this challenge, we
propose a method to reduce the training data set by
selecting only highly relevant instances. In our application
the instance is the consumers in the preference database.

In collaborative filtering algorithm, the computational
complexity is linear with respect to the number of
consumers who cast a vote to the predicted product (n in
eq. 2.1). Therefore, one way to speed up the process of
recommendation is to reduce the number of consumers for
every target product in the training data set. This can be
done through random sampling or data focussing
techniques[3][4]. However these methods have the
problem that the quality of the prediction is reduced due
to the loss of information.

We propose a data reduction method that can even
improve the quality of the prediction. Intuitively, this data
reduction works as follows: First, we pick up the
consumers who have given votes to many products
because of their low sparsity and clear profile. Secondly,
we wish to select consumers whose votes are mainly over
dependant products, since those products can provide
more accurate information to infer a consumer’s
preference. Based on the above analysis, we use the
following measure to rank the relevance of consumer i to
target product t:

1

);(
log ,

, −
⋅=
∑ ≠∈

i

tjMj tj

iti n

VVI
nR i (3.15)

where ni is the number of the votes cast by i. Mi is the set
of products voted by i. For every product in the training
data set, we rank consumers who cast a vote to the
product according the relevance (eq. 3.15) and only the
top k% of the ranking list will be used in the prediction.
The rest (1-k)% will be removed from the training data
set. In this case, the selection rate is k% and the reduction
rate is (1-k)%.

5. Experimental Evaluation

In this section, we report results of an experimental
evaluation of our proposed techniques. We describe the
data set used, the experimental methodology, as well as

the performance improvement compared with traditional
techniques.

 5.1 The EachMovie Database

We ran experiments using data from the EachMovie
collaborative filtering service, which was part of a
research project at the Systems Research Center of Digital
Equipment Corporation. The database contains votes from
72,916 users on 1,628 movies. User votes were recorded
on a numeric six-point scale (We transfer it to 0, 1, 2, 3, 4,
and 5).

Although data from 72,916 users is available, we
restrict our analysis to 35,527 users who gave at least 20
votes over the totally 1623 movies. For those users whose
vote number is less than 20, since their profiles are
unclear, it is hard to be used in evaluation. Moreover, to
speed up our experiments, we randomly selected 10,000
users from the 35,527 users and divided them into a
training set (8000 users) and a test set (2000 users).

5.2 Metrics and Methodology

Since we are interested in a system that can accurately
predict a consumer’s vote on a specific product, we use
the mean absolute error (MAE), where the error is the
value of the differences between the actual vote and the
predicted vote, to evaluate the quality of prediction. This
metric has been widely used in previous work[1], [5], [6]
and [10].

As in [1], we also employ two protocols, All but One,
and Given K. In the first class, we randomly hide an
existing vote for each test consumer, and try to predict its
value given all the other votes the consumer has voted on.
The All but One experiments investigate the algorithms’
performance when given as much data as possible from
each test consumer, and are indicative of what might be
expected of the algorithms under steady state usage where
the database has accumulated a fair amount of data about
a particular consumer. The second protocol, Given K,
randomly select K votes from each test consumer as the
observed votes, and then attempts to predict the remaining
votes. It looks at consumers with less data available, and
examines the performance of the algorithms when there is
relatively little known about an active consumer. Its
results show the performance of algorithms during the
startup period, when a consumer is new to a particular
collaborative filtering recommender.

 5.3 Results

As shown in Fig.2, we investigate the accuracy of
collaborative filtering using different feature weighting
methods. The experiments were conducted for training set
with 200, 500, 1000, 2000, 5000 and finally 8000

consumers. Our result show that mutual information
based weighting achieves the best accuracy, yielding an
improvement of about 5% compared to the standard
method without feature weighting. Entropy based
method, on the other hand obtain only a slight
improvement. This can be explained by the fact that the
variance of entropy across movies is not very large. We
also find that weighting by the inverse user frequency
even reduces the accuracy of prediction.

Fig.3 shows results under the protocols of Given 5, 10, 15,
20, 25, 30. In the six cases, mutual information weighting
results in an improved accuracy. The improvement of
MAE varies from 1.5% to 4.5%. The results indicate the
more we know about the active consumer, the more
improvement can be achieved by our weighting scheme.

We also evaluated the performance of our method of
selecting relevant instances. The outcomes are given in
Fig. 4 and Fig. 5. As described in section 4, we sort
consumers in descending order of their relevance to each
movie, and select highly relevant consumers for the
prediction in different selection rates of 3.13%, 6.25%,
12.5%, 25%, 62.5% and 100%. The results are compared
with the outcomes of random sampling. The proposed
method outperforms random sampling in accuracy, and

Figure 2. All but One results of feature
weighting in different training sizes

5 10 15 20 25 30
0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

Given K

 None Weighting
 Mutual Information

Figure 3. Given K results of mutual
information weighting method

0 2000 4000 6000 8000
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04

 None Weighting
 Mutual Information
 Entropy
 Inverse User Freq.

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

Size of Training Set (# of Users)

the combination with mutual information based feature
weighting results in further 4~5% improvement of mean
absolute error. As shown in Figure 5, the computational
complexity is linear with respect to the number of
consumers in the training data set. For example, if we
select 6.25% of the training size, the average prediction
time for each vote is reduced from 399 ms to 27.5 ms.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.92

0.94

0.96

0.98

1.00

1.02

1.04 Random Sampling
 Proposed Sampling
 Proposed Sampling + Weighting

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

Selection Rate of Training Size

Figure 4. All But One performance for different
selection rates

Moreover, Figure 4 shows that there is an optimal
selection rate with respect to the accuracy, which is
6.25%. To conclude, we can achieve over 6%
improvement in accuracy by using only 6.25% of the
whole training data set while at the same time reducing
the runtime by a factor of 15. We think it is due to the
existence of irrelevant consumers in the whole training set
and those irrelevant consumers are the noise for the target
product.

6. Conclusion

In this paper, we present different feature weighting
methods to improve the accuracy of the memory-based
collaborative filtering algorithm. Furthermore, we
introduce a relevance measure of an instance to the target
and propose to reduce the size of training data set by
selecting only highly relevant instances. We give an
empirical evaluation of different feature weighting
methods. Our results show that mutual information
achieves the best accuracy. Our data reduction method
can significantly reduce the size of the training data set
and speed up the collaborative filtering algorithm. The
most interesting fact is that our method even achieves an
improvement on the accuracy of about 6% at a reduction
rate of 94%, while random sampling decreases the
accuracy by 4%.

Our result shows that feature weighting and
selecting relevant instances are very promising methods
for data mining. In the future, we will apply our methods

to model-based collaborative filtering algorithms. We will
also investigate the performance of our methods to other
applications such as web page usage mining and text
mining.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0

50

100

150

200

250

300

350

400

450

A
ve

ra
g

e
P

re
d

ic
ti

o
n

 T
im

e
fo

r
O

n
e

vo
te

 (
m

s)

Selection Rate of Training Size

Figure 5. Prediction time for different
selection rates

7. References

[1] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering”, In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, 1998.

[2] G. Deco, and D. Obradovic, An Information-Theoretic
Approach to Neural Computing, Spinger-Verlag Inc., New
York, 1996.

[3] M. Ester, H.-P. Kriegel, and X. Xu, “Knowledge Discovery
in Large Spatial Databases: Focusing Techniques for
Efficient Class Identification”, In Proc. of 4th Int. Symp. on
Large Spatial Databases, Portland, ME, 1995, also in
Lecture Notes in Computer Science, Vol. 951, Springer,
1995, pp.67-82.

[4] M. Ester, H.-P. Kriegel, and X. Xu, “A Database Interface
for Clustering in Large Spatial Databases”, In Proc. 1st Int.
Conf. on Knowledge Discovery and Data Mining (KDD95),
Montreal, Canada, 1995, pp. 94-99.

[5] W. Hill, L. Stead, M. Rosenstein, and G. Furnas,
“Recommending and evaluating choices in a Virtual
Community of Use”, In Proceedings of CHI’95.

[6] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and J.
Riedl, “GroupLens: An Open Architecture for
Collaborative Filtering of Netnews”, In Proceedings of the
1994 Computer Supported Collaborative Work Conference.

[7] G. Saloton, and M. McGill, Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[8] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl,
“Analysis of Recommender Algorithms for E-Commerce”,
In Proceedings of ACM E-Commerce 2000 Conference.

[9] C. E. Shannon, “A Mathematical Theory of
Communication”, Bell Sys. Tech. Journal, vol. 27, 1948

[10] U. Shardanand, and P. Maes, “Social Information filtering
Algorithms for Automating 'Word of Mouth'”, In
Proceedings of CHI’95.

