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Abstract. Similarity search in database systems is becoming an increasingly im-
portant task in modern application domains such as multimedia, molecular biology,
medical imaging, computer aided engineering, marketing and purchasing assist-
ance aswell as many others. In this paper, we show how visualizing the hierarchi-
ca clustering structure of a database of objects can aid the user in his time
consuming task to find similar objects. We present related work and explain its
shortcomings which led to the development of our new methods. Based on reach-
ability plots, we introduce approaches which automatically extract the significant
clustersin a hierarchical cluster representation along with suitable cluster repre-
sentatives. These techniques can be used as abasis for visual datamining. Weim-
plemented our algorithmsresulting in an industrial prototype which we used for the
experimental evaluation. This evaluation is based on real world test data sets and
points out that our new approaches to automatic cluster recognition and extraction
of cluster representatives create meaningful and useful results in comparatively
short time.

1 Introduction

In the last ten years, an increasing number of database applications has emerged for
which efficient and effective support for similarity search is substantial. The importance
of similarity search grows in application areas such as multi-media, medical imaging,
molecular biology, computer aided engineering, marketing and purchasing assistance,
etc. [10], [1],[8].[9].[2].[5].[6] [11].

Particularly, the task of finding similar shapesin 2-D and 3-D becomes more and more
important. Examples for new applications that require the retrieval of similar 3D objects
include databases for molecular biology, medical imaging and computer aided design.

Hierarchical clustering was shown to be effective for evaluating similarity models
[12],[13]. Especidly, thereachability plot generated by OPTICS[4] issuitablefor assess-
ing the quality of asimilarity model. Furthermore, visually analyzing cluster hierarchies
helpsthe user, e.g. an engineer, to find and group similar objects. Solid cluster extraction
and meaningful cluster representatives form the foundation for providing the user with
significant and quick information.

In this paper, weintroduce algorithmsfor automatically detecting hierarchical clusters
along with their corresponding representatives. In order to evaluate our ideas, we devel-
oped a prototype called BOSS (Browsing OPTICS-Plots for Smilarity Search). BOSSis
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based on techniques related to visual data mining. It helpsto visualy analyze cluster hi-
erarchies by providing meaningful cluster representatives.

The remainder of the paper is organized as follows: After briefly introducing reacha-
bility plots, we present in Section 2 the application areas of hierarchical clustering along
with the corresponding reguirements in the industrial and in the scientific community
which motivated the development of BOSS. In Sections 3 and 4, weintroduce the notions
of cluster recognition and cluster representatives respectively, which form the theoretical
foundations of BOSS. In Section 5, we describe the actual industrial prototype we devel-
oped and evaluate its usefulness in Section 6. The paper concludes in Section 7 with a
short summary and a few remarks on future work.

2 Hierarchical Clustering

In this section, we outline the application ranges which led to the development of our
interactive browsing tool, called BOSS. In order to understand the connection between
BOSS and the application requirements we first introduce the reachability plots comput-
ed by OPTICS, which served as a starting point for BOSS. The technical aspects related
to BOSS are described later in Section 5.

2.1 Reachability Plots

Thekey idea of density-based clustering is that for each object of a cluster the neigh-
borhood of agiven radius € hasto contain at least aminimum number MinPts of objects.
Using the density-based hierarchical clustering algorithm OPTICS yields several advan-
tages due to the following reasons.

e OFTICS is -in contrast to most other algorithms- relatively insensitive to its two
input parameters, € and MinPts. The authors in [4] state that the input parameters
just have to be large enough to produce good results.

e OFTICSisahierarchical clustering method which yields more information about the
cluster structure than a method that computes a flat partitioning of the data (e.g. k-
means [15]).

« Thereexist avery efficient variant of the OPTICS algorithm which is based on data
bubbles[7], where we have to trade only very little quality of the clustering result for
agreat increase in performance.

e Thereexist an efficient incremental version of the OPTICS agorithm [13].

The reachability plots computed by OPTICS help the user to get a meaningful and
quick overview over alarge data set. The output of OPTICS is a linear ordering of the
database objects minimizing a binary relation called reachability which isin most cases
equal to the minimum distance of each database object to one of its predecessors in the
ordering. Instead of a dendrogram, which is the common representation of hierarchical
clusterings, the resulting reachability plot ismuch easier to analyse. The reachability val-
ues can be plotted for each object of the cluster-ordering computed by OPTICS. Valleys
in thisplot indicate clusters: objects having asmall reachability value are closer and thus
more similar to their predecessor objects than objects having a higher reachability value.



Fig.1: Reachability plots computed by optics (right) for a2D dataset (1eft)

The reachability plot generated by OPTICS can be cut at any level €., parallel to the
abscissa. It represents the density-based clusters according to the density threshold g
A consecutive subsequence of objects having a smaller reachability value than € be-
longs to the same cluster. An example is presented in Figure 1: For acut at the level g,
we find two clusters denoted as A and B. Compared to this clustering, a cut at level €,
would yield three clusters. The cluster A is split into two smaller clusters denoted by A
and A, and cluster B decreased its size. Usually, for evaluation purposes, a good value
for €. would yield as many clusters as possible.

Application Ranges . BOSS was designed for three different purposes: visual datamin-
ing, similarity search and evaluation of similarity models. For thefirst two applications,
the choice of the representative objects of acluster isthe key step. It helps the user to get
ameaningful and quick overview over alarge existing data set. Furthermore, BOSS helps
scientists to evaluate new similarity models.

Visual Data Mining. As defined in [3], visual data mining is a step in the KDD process
that utilizesvisualization as acommunication channel between the computer and the user
to produce novel and interpretable patterns. Based on the balance and sequence of the au-
tomatic and the interactive (visual) part of the KDD process, three classes of visual data
mining can be identified.
» Visuaization of the data mining result:
An agorithm extracts patterns from the data. These patterns are visualized to make
them interpretable. Based on the visualization, the user may want to return to the data
mining algorithm and run it again with different input parameters (cf. Figure 2a).
» Visuaization of an intermediate result:
An agorithm performs an analysis of the data not producing the final patterns but an
intermediate result which can be visualized. Then the user retrieves the interesting
patternsin the visualization of the intermediate result (cf. Figure 2b).
» Visuaization of the data:
Dataisvisualized immediately without running a sophisticated algorithm before. Pat-
terns are obtained by the user by exploring the visualized data (cf. Figure 2c).

The approach presented in this paper bel ongs to the second class. A hierarchical clus-
tering algorithm is applied to the data, which extracts the clustering structure as an inter-
mediate result. Thereis no meaning associated with the generated clusters. However, our
approach allows the user to visually analyze the contents of the clusters. The clustering
algorithm used in the algorithmic part isindependent from an application. It performsthe
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core part of the data mining process and its result serves as a multi-purpose basis for fur-
ther analysis directed by the user. Thisway the user may obtain novel information which
was not even known to exist in the data set. Thisisin contrast to similarity search where
the user isrestricted to find similar parts respective to aquery object and a predetermined
similarity measure.

Similarity Search. The development, design, manufacturing and maintenance of mod-
ern engineering productsisavery expensive and complex task. Effective similarity mod-
els are required for two- and three-dimensional CAD applications to cope with rapidly
growing amounts of data. Shorter product cycles and agreater diversity of modelsare be-
coming decisive competitive factors in the hard-fought automobile and aircraft market.
These demands can only be met if the engineers have an overview of aready existing
CAD parts. It would be desirable to have an interactive data browsing tool which depicts
the reachability plot computed by OPTICSin auser friendly way together with appropri-
ate representatives of the clusters. This clear illustration would support the user in his
time-consuming task to find similar parts. From the industrial user's point of view, this
browsing tool should meet the following two requirements:

e Thehierarchical clustering structure of the dataset is revealed at aglance. The reach-
ability plot is an intuitive visualization of the clustering hierarchy which helps to
assign each object to its corresponding cluster or to noise. Furthermore, the hierar-
chical representation of the clusters using the reachability plot helps the user to get a
quick overview over al clusters and their relation to each other. As each entry in the
reachability plot is assigned to one object, we can easily illustrate some representa-
tives of the clusters belonging to the current density threshold e (cf. Figure 3) .

» Theuser isnot only interested in the shape and the number of the clusters, but also in
the specific parts building up a cluster. As for large clusters it is rather difficult to
depict al objects, representatives of each cluster should be displayed. To follow up a
first idea, these representatives could be simply constructed by superimposing all
parts belonging to the regarded cluster (cf. Figure 4). We can browse through the
hierarchy of the representatives in the same way as through the OPTICS plots.

Thisway, the cost of developing and producing new parts could be reduced by maxi-
mizing the reuse of existing parts, because the user can browse through the hierarchical
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Fig.3: Browsing through reachability plots with different density thresholds €

structure of the clustersin atop-down way. Thusthe engineersget an overview of aready
existing parts and are able to navigate their way through the diversity of existing variants
of products, such as cars.

Evaluation of Similarity Models. In general, similarity models can be evaluated by
computing k-nearest neighbor queries (k-nn queries). As shown in [14], this evaluation
approach is subjective and error-prone because the quality measure of the similarity mod-
el depends on the results of afew similarity queries and, therefore, on the choice of the
query objects. A model may perfectly reflect the intuitive similarity according to the cho-
sen query objects and would be evaluated as “good” athough it produces disastrous re-
sults for other query objects.

A better way to evaluate and compare several similarity modelsisto apply aclustering
algorithm. Clustering groups a set of objects into classes where objects within one class
are similar and objects of different classes are dissimilar to each other. The result can be
used to evaluate which model isbest suited for which kind of objects. It ismore objective
since each object of the data set is taken into account to evaluate the data models.

3 Cluster Recognition
In this section, we address the first task of automatically extracting clusters from the

reachability plots. After abrief discussion of recent work in that area, we propose a new
approach for hierarchical cluster recognition based on reachability plots.
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Fig.4: Hierarchically ordered representatives




Fig.5: Sample narrowing clusters
a) data space, b) reachability plot and c) cluster hierarchy

3.1 Recent Work

To the best of our knowledge, there are only two methods for automatic cluster extrac-
tion from hierarchical representations such as reachability plots or dendrograms which
are both based on reachability plots. Since clusters are represented as valleys (or dents)
in the reachability plot, the task of automatic cluster extraction isto identify significant
valleys.

Thefirst approach proposed in [4] called §—clustering is based on the steepness of the
valleys in the reachability plot. The steepness is defined by means of an input parameter
&. Themethod suffersfrom the fact that thisinput parameter is difficult to understand and
hard to determine. Rather small variations of the value & often lead to drastic changes of
the resulting clustering hierarchy. As a consegquence, this method is unsuitable for our
purpose of automatic cluster extraction.

The second approach was proposed recently by Sander et a. [16]. The authors de-
scribe an algorithm called cluster_tree that automatically extracts a hierarchical cluster-
ing from a reachability plot and computes a cluster tree. It is based on the idea that
significant local maximain the reachability plot separate clusters. Two parametersarein-
troduced to decide whether alocal maximum is significant: The first parameter specifies
the minimum cluster size, i.e. how many objects must belocated between two significant
local maxima. The second parameter specifiesthe ratio between the reachability of asig-
nificant local maximum m and the average reachabilities of the regions to the left and to
theright of m. The authorsin [16] propose to set the minimum cluster size to 0.5% of the
data set size and the second parameter to 0.75. They empirically show, that this default
setting approximately represents the requirements of atypical user.

Although the second method is rather suitable for automatic cluster extraction from
reachability plots, it has one major drawback. Many real-world data sets consist of nar-
rowing clusters, i.e. clusters consisting of exactly one smaller sub-cluster (cf. Figure 5).
Since the algorithm cluster_tree runs through a list of all local maxima (sorted in de-
scending order of reachability) and decides at each local maximum m, whether mis sig-
nificant to split the objects to the left of m and to the right of m into two clusters, the
algorithm cannot detect such narrowing clusters. These clusters cannot be split by asig-
nificant maximum. Figure 5 illustrates this fact. The narrowing cluster A consists of one
cluster Bwhichisitself narrowing consisting of one cluster C. The algorithm cluster_tree
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Fig.6: Drop-Down-Clustering
a) detection of root clusters, b) detection of subclusters

will only find cluster A since there are no local maximato split clustersB and C. The §—
clustering will detect only one of the clusters A, B or C dependent on the {—parameter but
aso failsto detect the cluster hierarchy.

3.2 Drop-Down Clustering

This new cluster recognition algorithm is based on the novel concept of inflexion
points which allow the detection of narrowing subclusters. A point o isan inflexion point
iff the gradient of the reachability values changes considerably (cf. Figure 6b).

Since our method worksin atop-down fashion, we call it Drop-Down Clustering. The
idea behind is the successive use of the visual interpretation of the cluster ordering -as
described in Figure 1- which is based on the fact that the reachability plot can be cut by
any level € to the abscissa to extract a clustering. Starting from an initial clustering we
simply drop the g -value in order to find substructures. Since it is not practical to test
each possible €. -value, we have to extract interesting values for a cut from the reacha-
bility values of the objects.

The Drop-Down Clustering algorithm starts by generating an initial root clustering
(cf. Figure 6a). This does not contain all elements of the plot, as clusters separated by
noise are assumed to be not related. Basically, a set of clusters forms the basis for a set
of hierarchical clusters. Thisinitial clustering is generated as follows: The objectsin the
reachability plot are sorted by descending reachability distance while retaining relative
order among equa elements. The sorted list is now scanned until two objects are found
whoseindices are more than MinPts apart, i ndicating that every element in-between these



two issmaller than either, thus constituting adip in the graph. A top level cluster hasbeen
found, and all elementsincluded in this cluster are removed from the sorted list. The scan
can now continue until al el ements have been removed or viewed.

The second part of the algorithm now separately analyzes each cluster found during
theinitial clustering (cf. Figure 6b). The extraction of further (sub-)clustersisarecursive
procedure. The procedure starts with a set of elements from the reachability graph which
is sorted by descending reachability values where elements having the same reachability
value are arranged according to the cluster ordering. Thislist is sequentially tested for an
object which is an inflexion point. An inflexion point can either indicate the start or end
of anarrowing subcluster, or be responsible for two new subclusters.

Should a subcluster be found, it may be added to the resulting cluster hierarchy, after
which it isthen recursively processed to discover potential substructures. All discovered
subclusters must conform to the following constraints:

¢ The minimum cluster size constraint of MinPts objects must be satisfied, i.e. there
are at least MinPts objects located between the start point and the end point of the
cluster (e.g. Cluster B in Figure 5 must contain at least MinPts objects).

e Thecurrent cluster has at least MinPts objects less than the cluster of its parent node
in the hierarchy (e.g. Cluster B in Figure 5 must have at least MinPts objects less
than cluster A).

L et us note, that we could also claim aminimum ratio of reachabilities at the boundary
of acluster and inside a cluster as postulated in [ 16] or increment/decrement the required
minimum cluster size.

Obvioudy, the Drop-Down algorithm is able to extract narrowing clusters. Experi-
mental comparisons with the methods in [16] and [4] are presented in Section 6.

4 Cluster Representatives

In this section, we present different approaches to determine representatives for clus-
ters computed by OPTICS. A simple approach could be to superimpose all objects of a
cluster to build the representative as it is depicted in Figure 4. However, this approach
has the huge drawback that the representatives on a higher level of the cluster hierarchy
become rather unclear. Therefore, we choose real objects of the data set as cluster repre-
sentatives.

In the following, we assume that DB is a database of multimedia objects, dist: DB x
DB - IRisametric distance function on objectsin DB and N¢(0) := {q O DB | dist(0,q)
<e} whereo O DBande IR A cluster C L DB is represented by a set of k objects of
the cluster, denoted as REP(C). The number of representatives k can be a user defined
number or a number which depends on the size and data distribution of the cluster C.

4.1 The Extended Medoid Approach

Many partitioning clustering algorithms are known to use medoids as cluster repre-
sentatives. The medoid of acluster Cisthe closest object to the mean of al objectsin C.



The mean of Cisalso called centroid. For k >1 we could choose the k closest objects to
the centroid of C as representatives.

The choice of medoids as cluster representative is somehow questionable. Obvioudly,
if Cisnot of convex shape, the medoid is not really meaningful.

An extension of this approach coping with the problems of clusters with non-convex
shapeisthe computation of k medoids by applying ak-medoid clustering algorithm to the
objectsin C. The clustering using a k-medoid algorithm is rather efficient due to the ex-
pectation that the clusters are much smaller than the whole data set. This approach can
also be easily extended to cluster hierarchies. At any level we can apply the k-medoid
clustering algorithm to the merged set of objects from the child clusters or -due to per-
formance reasons- merge the medoids of child clusters and apply k-medoid clustering on
this merged set of medoids.

4.2 The Minimum Core-Distance Approach

The second approach to choose representative objects of hierarchical clusters usesthe
density-based clustering notion of OPTICS. To compute the reachability, OPTICS deter-
mines for each object the so called core-distance:

Definition 1 (Core-distance).

Let o be an object from a database DB, let € be a distance value, let N¢(0) be the &-
neighborhood of o, let MinPts be a natural number and let MinPts-distance(o) be the dis-
tance from o to its MinPts-nearest neighbor. Then, the core-distance of o is defined as:
core-distance(0) = oo if Ns.(o)‘ <MinPts .

MinPts-distance(o), otherwise

The core-distance of an object indicates the density of the surrounding region. The
smaller the core-distance of an object o, the denser the region surrounding o. This obser-
vation led us to the choice of the object having the minimum core-distance as represent-
ative of the respective cluster. Formally, REP(C) can be computed as:

REP(C) :={o 0 C| OxOC : core-distance(0) < core-distance(xX)} .

We choose the k objects with the minimum core-distances of the cluster as represent-
atives.

The straightforward extension for cluster hierarchies is to choose the k objects from
the merged child clusters having the minimum core-distances.

4.3 The Maximum Successor Approach

Based on the core-distance, the reachability-distance (or short: reachability) is defined
as.

Definition 2 (Reachability-Distance).
Let o O DB, let N¢(0) be the e-neighborhood of o, let MinPts be a natural number. Then,
the reachability-distance of p [0 DB with respect to o is defined as:
reachability-distance (p,0)= max (core-distance(0), distance(p,0))
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Fig.7: Sample successor graph for a cluster of seven objects

Theresult of OPTICS is an ordering of the database minimizing the reachability rela-
tion. At each step of the ordering, the object p having the minimum reachability wrt. the
already processed objects occurring before p in the ordering is chosen. Thus, if the reach-
ability of object pisnot o, it is determined by reachability-distance(p,0) where o is an
object located before p in the cluster ordering. We call o the predecessor of p.

Definition 3 (Successors).
Let o O DB. Then, the set of successorsisdefined as 0) :={s DB | ois predecessor of
sh.

L et us note, that objects may have no predecessor, e.g. each object having areachabil-
ity of oo does not have apredecessor, including the first object in the ordering. On the oth-
er hand, some objects may have more than one successor. In that case, some other objects
have no successors.

We can model this successor-rel ationship within each cluster as a directed successor
graph where the nodes are the objects of one cluster and a directed edge from object o to
srepresents the relationship sC1S(0). Each edge (x,y) can further be labeled by reachabil-
ity-distance (x,y). A sample successor graph isillustrated in Figure 7.

For the purpose of computing representatives of a cluster, the objects having many
successors are interesting. Roughly speaking, these objects are responsible for the most
density-connections within a cluster. The reachability values of these “connections’ fur-
ther indicate the distance between the objects.

Our third strategy selects the representatives of clusters by maximizing the number of
successors and minimizing the according reachabilities. For this purpose, we compute for
each object o of acluster C, the Sum of the Inverse Reachability distances of the succes-
sors of o within C, denoted by SIR-(0):

0, if o)=0
SIR:(0) = 1 .
z 1+ reachability —distance(s, 0)’ otherwise
s 5(0)
sOC

We add 1 to reachability-distance (s,0) in the denominator to weight the impact of the
number of successors over the significance of the reachability values. Based on SR(0),
the representatives can be computed as follows:

REP(C) :={o 0 C|OxOC : SIR:(0) 2 SIR:(X)} .
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If wewant to select k representativesfor C we simply have to choose the k objectswith
the maximum S R¢ values.

5 System Architecture

The development of the industrial prototype BOSS is a first step towards developing
acomprehensive, scalable and distributed computing solution designed to make the effi-
ciency of OPTICS and the analytical capabilities of BOSS available to a broader audi-
ence. BOSS is a client/server system allowing users to provide their own data localy,
aong with an appropriate similarity model (cf. Figure 8).

The data provided by the user will be comprised of the objectsto be clustered, aswell
as a data set to visualize these objects, e.g. VRML files for CAD data (cf. Figure 9) or
JPEG images for multi-media data. Since this data resides on the user's local computer
and is not transmitted to the server heavy network traffic can be avoided. In order for

Fig.9: BOSS screenshot
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BOSSto be ableto interpret this data, the user must supply hisown similarity model with
which the reachability data can be calculated.

The independence of the data processing and the data specification enables maximum
flexibility. Further flexibility is introduced through the support of external visual repre-
sentation. Aslong asthe user is capable of displaying the visualization datain abrowser,
e.g. by means of a suitable plug-in, the browser will then load web pages generated by
BOSS displaying the appropriate data. Thus, multimedia data such as images or VRML
files can easily be displayed (cf. Figure 9). By externalizing the visualization procedure
we can resort to approved software components, which have been specifically devel oped
for displaying objects which are of the same type as the objects within our clusters.

6 Evaluation

We evaluated both the effectiveness and efficiency of our approaches using two real-
world test data sets. The first one contains approximately 200 CAD objects from a Ger-
man car manufacturer, the second one 5000 CAD objects from an American aircraft pro-
ducer. We tested on aworkstation with a 1.7 GHz CPU and 2 GB RAM.

In thefollowing, three cluster recognition algorithms will vie among themselves, after
which the three approaches for generating representatives will be evaluated.

Cluster Recognition. Automatic cluster recognition is clearly very desirable when ana-
lyzing large sets of data. In this case, we will be looking at asubset of adatabase of CAD
objects representing car parts. The results are depicted in Figure 10.

This data exhibits the commonly seen quality of unpronounced but neverthelessto the
observer clearly visible clusters. The Tree-Clustering agorithm does not find any clus-
tersat all, whereas the &-clustering approach successfully recognizes some clusterswhile
missing out on significant subclusters. On the other hand, our new Drop-Down-Algo-
rithm detects many clusters. Furthermore, it detects a lot of meaningful cluster hierar-
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(200 parts) (5000 parts)
x-clustering 0.348s 9.714 s
cluster_tree 0.130s 3.019s
Drop-Down clustering 0.104 s 0.707 s

Fig.11: CPU time for cluster recognition

chies, consisting of narrowing subclusters. To sum up, in al our tests the Drop-Down-
algorithm detected much more clustersthan the other two approaches, without producing
any redundant and unnecessary cluster information.

The overall runtime for the three different cluster recognition algorithms is depicted
in Figure 11. Our new Drop-Down clustering algorithm does not only produce the most
meaningful results, but also in the shortest time. It seems to be the only algorithm which
is suitable for interactive use, if the data sets contain several thousand elements.

Cluster Representation . After acluster recognition algorithm has analyzed the data, al-
gorithms for cluster representation can help to get a quick visual overview of the data.
With the help of representatives, large sets of objects may be characterized through asin-
gleobject of the data set. We extract asample cluster from the plot depicted in Figure 10a
in order to evaluate the different approaches for cluster representatives. In our first tests,
we set the number of representativesk to 1.

The objects of one cluster are displayed in Figure 12. The three annotated objects are
the representatives computed by the respective a gorithms. Both the Maximum Successor
and the Minimum Core Distance approaches give good results. Despite the slight inho-
mogeneity of the cluster, both representatives sum up the majority of elementswithin this
cluster. This cannot be said of the representative computed by the commonly used me-
doid method, which selects an object from the trailing end of the cluster.

Summary. The results of our experiments show, that our new approaches for the auto-
matic cluster extraction and for the determination of representative objects outperform

Maximum Successor Minimum Core Distance

-
I Bl

& Ferty

Fig.12: Representatives displayed by the BOSS object viewer
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existing methods. It theoretically and empirically turned out, that our Drop-Down-Clus-
tering algorithm seemsto be more practical than recent work for automatic cluster extrac-
tion from hierarchical cluster representations. We also empiricaly showed that our
approaches for the determination of cluster representatives is most likely more suitable
than the simple (extended) medoid approach.

7 Conclusions

In this paper, we proposed hierarchical clustering combined with automatic cluster
recognition and sel ection of representatives as apromising visualization technique. Itsar-
eas of application include visual datamining, similarity search and evaluation of similar-
ity models. We surveyed three approaches for automatic extraction of clusters. The first
method, &-clustering, failsto detect some clusters present in the clustering structure and
suffers from the sensitivity concerning the choice of its input parameter. The algorithm
cluster_treeisobviously unsuitable in the presence of narrowing clusters. To overcome
these shortcomings, we proposed a new method, called Drop-Down-Clustering. The ex-
perimental evaluation showed that this algorithm is able to extract narrowing clusters.
The cluster hierarchies produced by the Drop-Down-Algorithm are similar to the cluster-
ing structures which an experienced user would manually extract.

Furthermore, we presented three different approaches to determine representative ob-
jectsfor clusters. The commonly known medoid approach is shown to be unsuitable for
real-world data, while the approaches minimizing the core-distance and maximizing the
successors both deliver good results.

Finally, we described our industrial prototype, called BOSS, that implements the al-
gorithms presented in this paper.

In our future work we will concentrate on efficient algorithms for incremental hierar-
chical clustering. These new cluster algorithms should allow an easy determination of the
cluster hierarchy together with an easy extraction of meaningful representatives.
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