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General Issues

1. Please feel free to ask questions at any time during the 
presentation

2. Aim of the tutorial: get the big picture
– NOT in terms of a long list of methods and algorithms
– BUT in terms of the basic algorithmic approaches
– Sample algorithms for these basic approaches will be sketched

• Due to the large number of existing approaches, the selection of the 
presented algorithms is somewhat arbitrary

• Please don’t mind if your favorite algorithm is missing
• Anyway you should be able to classify any other algorithm not covered 

here by means of which of the basic approaches is implemented

3. The revised version of tutorial notes will soon be available 
on our websites
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline: Introduction

• Sample Applications

• General Problems and Challenges

• A First Taxonomy of Approaches
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Sample Applications

• Gene Expression Analysis
– Data:

• Expression level of genes under
different samples such as

– different individuals (patients)
– different time slots after treatment
– different tissues
– different experimental environments

• Data matrix:

DNA mRNA protein

samples (usually ten to hundreds)

genes
(usually 
several 

thousands)
expression level of 
the ith gene under 

the jth sample
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Sample Applications

– Task 1: Cluster the rows (i.e. genes) to find groups of genes with 
similar expression profiles indicating homogeneous functions

• Challenge:
genes usually have
different functions
under varying
(combinations of) conditions

– Task 2: Cluster the columns (e.g. patients) to find groups with similar 
expression profiles indicating homogeneous phenotypes

• Challenge:
different phenotypes
depend on different
(combinations of)
subsets of genes

Gene1 
Gene2 
Gene3 
Gene4 
Gene5
Gene6 
Gene7 
Gene8 
Gene9

Cluster 1: {G1, G2, G6, G8}

Cluster 2: {G4, G5, G6}

Cluster 3: {G5, G6, G7, G9}
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Sample Applications

• Metabolic Screening
– Data

• Concentration of different metabolites
in the blood of different test persons

• Example:
• Bavarian Newborn Screening
• Data matrix:

metabolites (usually ten to hundreds)

concentration of 
the ith metabolite 
in the blood of the 

jth test person

test persons
(usually several 

thousands)
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Sample Applications

– Task: Cluster test persons to find groups of individuals with similar 
correlation among the concentrations of metabolites indicating 
homogeneous metabolic behavior (e.g. disorder)

• Challenge:
different metabolic disorders appear through different correlations of 
(subsets of) metabolites

healthy

Disorder 2
Diso

rde
r 1

Concentration of Metabolite 1

Concentration 
of Metabolite 2



DATABASE
SYSTEMS
GROUP

Kriegel/Kröger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (ICDM '07) 10

Sample Applications

• Customer Recommendation / Target Marketing
– Data

• Customer ratings for given products
• Data matrix:

– Task: Cluster customers to find groups of persons that share similar 
preferences or disfavor (e.g. to do personalized target marketing)

• Challenge:
customers may be grouped differently according to different 
preferences/disfavors, i.e. different subsets of products

products (hundreds to thousands)

rating of the ith
product by the jth

customer

customers
(millions)
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Sample Applications

• And many more …

• In general, we face a steadily increasing number of 
applications that require the analysis of moderate-to-high 
dimensional data

• Moderate-to-high dimensional means from appr. 10 to 
hundreds or even thousands of dimensions
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General Problems & Challenges

• The curse of dimensionality
– In [BGRS99,HAK00] it is reported that the ratio of (Dmaxd – Dmind) to 

Dmind converges to zero with increasing dimensionality d
• Dmind = distance to the nearest neighbor in d dimensions
• Dmaxd = distance to the farthest neighbor in d dimensions

Formally:

• This holds true for a wide range of data distributions and distance 
functions

1])0,
Dmin

DminDmax([lim:0 =≤
−

Ρ>∀ ∞→ εε
d

dd
dd dist
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General Problems & Challenges

– What does that mean for clustering high dimensional data?
• The relative difference of distances between different points decreases 

with increasing dimensionality
• The distances between points cannot be used in order to differentiate 

between points
• The more the dimensionality is increasing, the more the data distribution 

degenerates to random noise
• All points are almost equidistant from each other ― there are no 

clusters to discover in high dimensional spaces!!!

– Why do distances behave like they do in high dimensional spaces?
• Usually the distance functions used give equal weight to all dimensions
• However, all dimensions are not of equal importance
• Adding irrelevant dimensions ruins any clustering based on a distance 

function that equally weights all dimensions
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General Problems & Challenges

• Beyond the curse of dimensionality
From the above sketched applications we can derive the 
following observations for high dimensional data
– Subspace clusters:

Clusters usually do not exist in the full dimensional space but are often 
hidden in subspaces of the data (e.g. in only a subset of experimental 
conditions a gene may play a certain role)

– Local feature relevance/correlation:
For each cluster, a different subset of features or a different correlation of 
features may be relevant (e.g. different genes are responsible for 
different phenotypes)

– Overlapping clusters:
Clusters may overlap, i.e. an object may be clustered differently in 
varying subspaces (e.g. a gene may play different functional roles 
depending on the environment)
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General Problems & Challenges

• Why not feature selection?
– (Unsupervised) feature selection is global (e.g. PCA)
– We face a local feature relevance/correlation: some features (or

combinations of them) may be relevant for one cluster, but may be 
irrelevant for a second one

Disorder 2

Diso
rde

r 1

Disorder 3
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General Problems & Challenges

– Use feature selection before clustering

Projection on 
first principal 
component

PCA

DBSCAN
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General Problems & Challenges

– Cluster first and then apply PCA

Projection on 
first principal 
component

PCA of the 
cluster points

DBSCAN
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General Problems & Challenges

• Problem summary
– Curse of dimensionality:

• In high dimensional, sparse data spaces, clustering does not make sense
– Local feature relevance and correlation:

• Different features may be relevant for different clusters
• Different combinations/correlations of features may be relevant for 

different clusters
– Overlapping clusters:

• Objects may be assigned to different clusters in different subspaces
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General Problems & Challenges

• Solution: integrate variance / covariance analysis into the 
clustering process
– Variance analysis:

• Find clusters in axis-parallel subspaces
• Cluster members exhibit low variance along the relevant dimensions

– Covariance/correlation analysis:
• Find clusters in arbitrarily oriented subspaces
• Cluster members exhibit a low covariance w.r.t. a given combination of 

the relevant dimensions (i.e. a low variance along the dimensions of the 
arbitrarily oriented subspace corresponding to the given combination of 
relevant attributes)
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A First Taxonomy of Approaches

• So far, we can distinguish between

– Clusters in axis-parallel subspaces
Approaches are usually called

• “subspace clustering algorithms”
• “projected clustering algorithms”
• “bi-clustering or co-clustering algorithms”

– Clusters in arbitrarily oriented subspaces
Approaches are usually called

• “bi-clustering or co-clustering algorithms”
• “pattern-based clustering algorithms”
• “correlation clustering algorithms”
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A First Taxonomy of Approaches

• Note: other important aspects for classifying existing 
approaches are e.g.
– The underlying cluster model that usually involves

• Input parameters
• Assumptions on number, size, and shape of clusters
• Noise (outlier) robustness

– Determinism
– Independence w.r.t. the order of objects/attributes
– Assumptions on overlap/non-overlap of clusters/subspaces
– Efficiency

… so we should keep these issues in mind …
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline:
Axis-parallel Subspace Clustering

• Challenges and Approaches

• Bottom-up Algorithms

• Top-Down Algorithms

• Hybrid Algorithms

• Summary
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Challenges

• What are we searching for?
– Overlapping clusters: points may be grouped differently in different 

subspaces
=> “subspace clustering”

– Disjoint partitioning: assign points uniquely to clusters (or noise)
=> “projected clustering”

Note: the terms subspace clustering and projected clustering are not 
used in a unified or consistent way in the literature

• The naïve solution:
– Explore each possible subspace of a d-dimensional dataset whether 

it contains a cluster
– Runtime complexity: depends on the search space, i.e. the number of 

all possible subspaces of a d-dimensional data set
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Challenges

• What is the number of all possible subspaces of a d-
dimensional data set?
– How many k-dimensional subspaces (k≤d) do we have?

The number of all k-tupels of a set of d elements is

– Overall:

– So the naïve solution is computationally infeasible: 

We face a runtime complexity of O(2d)
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Challenges

• Search space for d = 4
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Approaches

• Basically, there are two different ways to efficiently navigate 
through the search space

– Bottom-up:
• If the cluster criterion implements the downward closure property, one 

can use any bottom-up frequent itemset mining algorithm 
(e.g. APRIORI [AS94])

• Key: downward-closure property
– Top-down:

• The search starts in the full d-dimensional space and iteratively learns for 
each point or each cluster the correct subspace

• Key: procedure to learn the correct subspace

– Some approaches actually use a hybrid approach in combination with 
other search heuristics
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Bottom-up Algorithms

• Rational:
– The cluster criterion must implement the downward closure property

• If the criterion holds for any k-dimensional subspace S, then it also holds 
for any (k–1)-dimensional projection of S

• Use the reverse implication for pruning:
If the criterion does not hold for a (k–1)-dimensional projection of S, then 
the criterion also does not hold for S

– Apply APRIORI-style breadth-first search
• Start with the 1-dimensional subspaces for which the criterion holds
• Iteration (k–1)-dimensional to k-dimensional

– Merge all (k–1)-dimensional subspaces for which the criterion holds to 
generate k-dimensional candidate subspaces

– Prune all candidates that have at least one projection for which the criterion 
does not hold

– Test the criterion for the remaining candidates
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Bottom-up Algorithms

• The key limitation: global density thresholds
– Usually, the cluster criterion relies on density
– In order to ensure the downward closure property, the density 

threshold must be fixed
– Consequence: the points in a 20-dimensional subspace cluster must 

be as dense as in a 2-dimensional cluster
– This is a rather optimistic assumption since the data space grows 

exponentially with increasing dimensionality
– Consequences:

• A strict threshold will most likely produce only lower dimensional clusters
• A loose threshold will most likely produce higher dimensional clusters but 

also a huge amount of (potentially meaningless) low dimensional clusters
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Bottom-up Algorithms

• Properties:
– Generation of all clusters in all subspaces => overlapping clusters
– Subspace clustering algorithms usually rely on bottom-up subspace 

search
– Worst-case: complete enumeration of all subspaces, i.e. O(2d) time

• See some sample bottom-up algorithms on the following 
slides …
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Bottom-up Algorithms

• CLIQUE [AGGR98]
– Cluster model

• Each dimension is partitioned into ξ equi-sized intervals called units
• A k-dimensional unit is the intersection of k 1-dimensional units (from 

different dimensions)
• A unit u is considered dense if the fraction of all data points in u exceeds 

the threshold τ
• A cluster is a maximal set of connected dense units

2-dimensional
dense unit

2-dimensional cluster

ξ = 8
τ = 0.12
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Bottom-up Algorithms

– Downward-closure property holds for dense units
– Algorithm

• All dense cells are computed using the bottom-up approach
• A heuristics based on the coverage of a subspace is used to further 

prune units that are dense but are in less interesting subspaces
(coverage of subspace S = fraction of data points covered by the dense units of S)

• All connected dense units in a common subspace are merged to 
generate the subspace clusters

• Minimal cluster descriptions are generated
– Discussion

• Input: ξ and τ specifying the density threshold
• Output: all clusters in all subspaces, clusters may overlap
• Uses a fixed density threshold for all subspaces (in order to ensure the 

downward closure property)
• Simple but efficient cluster model
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Bottom-up Algorithms

• ENCLUS [CFZ99]
– Cluster model uses a fixed grid similar to CLIQUE
– Algorithm first searches for subspaces rather than for dense units
– Subspaces are evaluated following three criteria

• Coverage (see CLIQUE)
• Entropy

– Indicates how densely the points are packed in the corresponding subspace 
(the higher the density, the lower the entropy)

– Implements the downward closure property
• Correlation

– Indicates how the attributes of the corresponding subspace are correlated to 
each other

– Implements an upward closure property
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Bottom-up Algorithms

– Subspace search algorithm is bottom-up similar to CLIQUE but 
determines subspaces having

• Entropy below threshold ω
• Correlation above threshold ε

– Discussion
• Input: thresholds ω and ε
• Output: all subspaces that meet the above criteria (far less than CLIQUE)
• Uses fixed thresholds for entropy and correlation for all subspaces
• Simple but efficient cluster model

Low entropy (good clustering)

High entropy (bad clustering) Low correlation (bad clustering)

High correlation (good clustering)



DATABASE
SYSTEMS
GROUP

Kriegel/Kröger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (ICDM '07) 35

Bottom-up Algorithms

• MAFIA [NGC01]
– Variant of CLIQUE, cluster model uses an adaptive grid:

• each 1-dimensional unit covers a fixed number of data points
• Density of higher dimensional units is again defined in terms of a 

threshold τ (see CLIQUE)
• Using an adaptive grid instead of a fixed grid implements a more flexible 

cluster model – however, grid specific problems remain
– Parallelism for speed-up
– Discussion

• Input: ξ and τ (density threshold)
• Output: all clusters in all subspaces
• Uses a fixed density threshold for

all subspaces
• Simple but efficient cluster model
• Large speed-up over CLIQUE due to parallelism



DATABASE
SYSTEMS
GROUP

Kriegel/Kröger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (ICDM '07) 36

Bottom-up Algorithms

• SUBCLU [KKK04]
– Cluster model:

• Density-based cluster model of DBSCAN [EKSX96]
• Clusters are maximal sets of density-connected points
• Density connectivity is defined based on core points
• Core points have at least minPts points in their ε-neighborhood

• Detect clusters of arbitrary size and shape (in the corresponding 
subspaces)

– Downward-closure property holds for sets of density-connected 
points

MinPts=5p

qo
p

MinPts=5

o
p

q

MinPts=5
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Bottom-up Algorithms

– Algorithm
• All subspaces that contain any density-connected set are computed 

using the bottom-up approach
• Density-connected clusters are computed using a specialized DBSCAN 

run in the resulting subspace to generate the subspace clusters

– Discussion
• Input: ε and minPts specifying the density threshold
• Output: all clusters in all subspaces, clusters may overlap
• Uses a fixed density threshold for all subspaces
• Advanced but costly cluster model
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Bottom-up Algorithms

• P3C [MSE06]
– Cluster model

• Cluster cores (hyper-rectangular approximations of subspace clusters) 
are computed in a bottom-up fashion from 1-dimensional intervals

• Cluster cores initialize an EM fuzzy clustering of all data points

– Algorithm proceeds in 3 steps
• Computing 1-dimensional cluster projections (intervals)

– Each dimension is partitioned into 1+log2(n) equi-sized bins
– A Chi-square test is employed to discard bins containing too less points
– Adjacent bins are merged; the remaining intervals are reported
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Bottom-up Algorithms

• Aggregating the cluster projections to higher dimensional cluster cores
– A p-signature (set of 1-dimensional intervals) approximates a p-dimensional 

subspace cluster by a minimum bounding p-dimensional box
Example:
2-signature S4∩S1 approximates cluster 1
2-signature S3∩S6 approximates cluster 1
2-signature S3∩S5 approximates cluster 2

…

– A p-signature S is a cluster core, if
1. the exchange of any interval in S with any interval not in S does not 

increase the quality of the approximation
2. The addition of any interval to S does not increase the quality of the 

approximation
(quality is measured by means of the real and the expected number of 
points contained in an approximation)

– Condition 1. implements downward closure property
=> search bottom-up for cluster cores

S1
S2

S3

S4

S5

S6 Cluster 1

Cluster 2
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Bottom-up Algorithms

• Computing true clusters from cluster cores 
– Let k be the number of cluster cores generated
– Cluster all points with EM using k cluster core centers as initial clusters

– Discussion
• Input: Poisson threshold for the Chi-square test to compute 1-

dimensional cluster projections 
• Output: a fuzzy clustering of points to k clusters (NOTE: number of 

clusters k is determined automatically), i.e. for each point p the 
probabilities that p belongs to each of the k clusters is computed
From these probabilities

– a disjoint partition can be derived (projected clustering)
– also overlapping clusters can be discovered (subspace clustering)

• First subspace algorithm that does not use a global density threshold
NOTE: the method DUSC (see Session Clustering tomorrow in Big Blue 

from 13:30 to 15:30) solves the problem of global density thresholds 
in an elegant way!
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Top-down Algorithms

• DiSH [ABK+07a]
– Idea:

• So far: integration of variance analysis into “flat” clustering
• Not considered: lower dimensional clusters embedded in higher 

dimensional ones

• Now: find hierarchies of subspace clusters
• Integrate a proper distance function into hierarchical clustering
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Top-down Algorithms

– Distance measure that captures subspace hierarchies assigns
• 1 if both points share a common 1D subspace cluster
• 2 if both points share a common 2D subspace cluster
• …

– Sharing a common k-dimensional subspace cluster means
• Both points are associated to the same k-dimensional subspace cluster
• Both points are associated to different (k-1)-dimensional subspace 

clusters that intersect or are parallel (but not skew)
– This distance is based on the subspace dimensionality of each point 

p representing the (highest dimensional) subspace in which p fits best
• Analyze the local ε-neighborhood of p along each attribute a

=> if it contains more than µ points: a is interesting for p
• Combine all interesting attributes such that the ε-neighborhood of p in the 

subspace spanned by this combination still contains at least µ points (e.g. 
use APRIORI algorithm or best-first search)
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Top-down Algorithms

– Discussion
• Input: ε and µ specify the density threshold for computing the relevant 

subspaces of a point
• Output: a hierarchy of subspace clusters displayed as a graph
• Relies on a global density threshold
• Complex but costly cluster model
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Top-down Algorithms

• Rational:
– Cluster-based approach:

• Learn the subspace of a cluster in the entire d-dimensional feature space
• Start with full-dimensional clusters
• Iteratively refine the cluster memberships of points and the subspaces of 

the cluster
– Instance-based approach:

• Learn for each point its subspace preference in the entire d-dimensional 
feature space

• The subspace preference specifies the subspace in which each point 
“clusters best”

• Merge points having similar subspace preferences to generate the
clusters
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Top-down Algorithms

• The key limitation: the locality assumption
– How should we learn the subspace preference of a cluster or a point?
– The subspace is usually learned from the local neighborhood of 

cluster representatives/cluster members in the entire feature space:
• Cluster-based approach: the local neighborhood of each cluster 

representative is evaluated in the d-dimensional space to learn the 
“correct” subspace of the cluster

• Instance-based approach: the local neighborhood of each point is 
evaluated in the d-dimensional space to learn the “correct” subspace 
preference of each point

– The locality assumption: the subspace preference can be learned 
from the local neighborhood in the d-dimensional space

– This is a rather optimistic assumption (recall the effects of the curse 
of dimensionality on concepts like “local neighborhood”); the learning 
procedure is often misled by noise points
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Top-down Algorithms

• Properties:
– Simultaneous search for the “best” partitioning of the data points and 

the “best” subspace for each partition => disjoint partitioning
– Projected clustering algorithms usually rely on top-down subspace 

search
– Worst-case:

• usually complete enumeration of all subspaces is avoided
• Worst-case costs are typically in O(d2)

• See some sample top-down algorithms on the following 
slides …
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Top-down Algorithms

• PROCLUS [APW+99]
– K-medoid cluster model

• Cluster is represented by its medoid
• To each cluster a subspace (of relevant attributes) is assigned
• Each point is assigned to the nearest medoid (where the distance to each 

medoid is based on the corresponding subspaces of the medoids)
• Points that have a large distance

to its nearest medoid are
classified as noise
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Top-down Algorithms

– 3-Phase Algorithm
• Initialization of cluster medoids

– A superset M of b.k medoids is computed from a sample of a.k data points 
such that these medoids are well separated

– k randomly chosen medoids from M are the initial cluster representatives
– Input parameters a and b are introduced for performance reasons

• Iterative phase works similar to any k-medoid clustering
– Approximate subspaces for each cluster C

» The locality of C includes all points that have a distance to the medoid of 
C less than the distance between the medoid of C and the medoid of the 
neighboring cluster

» Compute standard deviation of distances from the medoid of C to the 
points in the locality of C along each dimension

» Add the dimensions with the smallest standard deviation to the relevant 
dimensions of cluster C such that
- in summary k.l dimensions are assigned to all clusters
- each cluster has at least 2 dimensions assigned

mC1

locality of C1

mC2

locality of C2

mC3
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Top-down Algorithms

– Reassign points to clusters
» Compute for each point the distance to each medoid taking only the 

relevant dimensions into account
» Assign points to a medoid minimizing these distances

– Termination (criterion not really clearly specified in [APW+99])
» Terminate if the clustering quality does not increase after a given 

number of current medoids have been exchanged with medoids from M
(it is not clear, if there is another hidden parameter in that criterion)

• Refinement
– Reassign subspaces to medoids as above (but use only the points assigned 

to each cluster rather than the locality of each cluster)
– Reassign points to medoids; points that are not in the locality of their 

corresponding medoids are classified as noise
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Top-down Algorithms

– Discussion
• Input:

– Number of cluster k
– Average dimensionality of clusters l
– Factor a to determine the size of the sample in the initialization step
– Factor b to determine the size of the candidate set for the medoids

• Output: partitioning of points into k disjoint clusters and noise, each 
cluster has a set of relevant attributes specifying its subspace

• Relies on cluster-based locality assumption: subspace of each cluster is 
learned from local neighborhood of its medoid

• Biased to find l-dimensional subspace clusters
• Simple but efficient cluster model
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Top-down Algorithms

• DOC [PJAM02]
– Cluster model

• A cluster is a pair (C,D) of cluster members C and relevant dimensions D 
such that all points in C are contained in a |D|-dimensional hyper-cube 
with side length w and |C| ≥ α.|DB|

• The quality of a cluster (C,D) is defined as

where β∈[0,1) specifies the trade-off 
between the number of points and the
number of dimensions in a cluster

• An optimal cluster maximizes µ
• Note:

– there may be several optimal clusters
– µ is monotonically increasing in each argument

||)1(||),( DCDC βµ ⋅=
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Top-down Algorithms

– Algorithm
• Idea: Generate an approximation of an optimal cluster (C,D) in one run

– Guess (via random sampling) a seed p∈C and determine D (see next slide)
– Let B(p,D) be the |D|-dimensional hyper-cube centered at p with width 2.w

and let C* = DB ∩ B(p,D)
– Then µ(C*,D) ≥ µ(C,D) because (C*,D) may contain additional points
– However, (C*,D) has side length 2.w instead of w
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Top-down Algorithms

– Determine D from a randomly sampled seed point p and a set of sampled 
discriminating points X
If |pi – qi| ≤ w for all q∈X, then dimension i∈D

• Algorithm overview
– Compute a set of 2/α clusters (C,D) as follows

» Choose a seed p randomly
» Iterate m times (m depends non-trivially on parameters α and β):

- Choose a discriminating set X of size r
(r depends non-trivially on parameters α and β)

- Determine D as described above
- Determine C* as described on the previous slide
- Report (C*,D) if |C*| ≥ α.|DB|

– Report the cluster with the highest quality µ
• It can be shown that if  1/(4d) ≤ β ≤ ½ , then the probability that DOC 

returns a cluster is above 50%
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Top-down Algorithms

– Discussion
• Input:

– w and α specifying the density threshold
– β specifies the trade-off between the number of points and the number of 

dimensions in a cluster
• Output: a 2.w-approximation of an projected cluster that maximizes µ
• NOTE: DOC does not rely on the locality assumption
• But

– it uses a global density threshold
– the quality of the resulting cluster depends on

» the randomly sampled seed
» the randomly sampled discriminating set
» the position of the hyper-box

• Needs multiple runs to improve the probability to succeed in finding a 
cluster; one run only finds one cluster

w

w

w

w
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Top-down Algorithms

• PreDeCon [BKKK04]
– Cluster model:

• Density-based cluster model of DBSCAN [EKSX96] adapted to projected 
clustering

– For each point p a subspace preference indicating the subspace in which p
clusters best is computed

– ε-neighborhood of a point p is constrained by the subspace preference of p
– Core points have at least minPts other points in their ε-neighborhood
– Density connectivity is defined based on core points
– Clusters are maximal sets of density connected points

• Subspace preference of a point p is d-dimensional vector w=(w1,…,wd), 
entry wi represents dimension i with

VARi is the variance of the ε-neighborhood of p in the entire d-
dimensional space, δ and κ are input parameters


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
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Top-down Algorithms

– Algorithm
• PreDeCon applies DBSCAN with a weighted Euclidean distance function

w.r.t. p

• Instead of shifting spheres (full-dimensional Euclidean ε-neighborhoods), 
clusters are expanded by shifting axis-parallel ellipsoids (weighted 
Euclidean ε-neighborhoods)

• Note: In the subspace of the cluster (defined by the preference of its 
members), we shift spheres (but this intuition may be misleading)

∑ −⋅=
i

iiip qpwqpdist )(),(
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Top-down Algorithms

– Discussion
• Input:

– δ and κ to determine the subspace preference
– λ specifies the maximal dimensionality of a subspace cluster
– ε and minPts specify the density threshold

• Output: a disjoint partition of data into clusters and noise
• Relies on instance-based locality assumption: subspace preference of 

each point is learned from its local neighborhood
• Advanced but costly cluster model
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Top-down Algorithms

• COSA [FM04]
– Idea:

• Similar to PreDeCon, a weight vector wp for each point p is computed 
that represents the subspace in which each points clusters best

• The weight vector can contain arbitrary values rather than only 1 or a 
fixed constant κ

• The result of COSA is not a clustering but an n×n matrix D containing the 
weighted distances dpq

• A subspace clustering can be derived by applying any clustering 
algorithm (e.g. a hierarchical algorithm) using the distance matrix D
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Top-down Algorithms

– Determination of the distance matrix D
• For each point p, initialize the weight vector wp with equal weights
• Iterate until all weight vectors stabilize:

– Compute the distance matrix D using the corresponding weight vectors
– Compute for each point p the k-nearest neighbors w.r.t. D
– Re-compute weight vector wp for each point p based on the distance 

distribution of the kNN of p in each dimension

where λ is a user-defined input parameter that affects the dimensionality of 
the subspaces reflected by the weight vectors/distance matrix
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Top-down Algorithms

– Discussion
• Input:

– Parameters λ and α that affect the dimensionality of the subspaces reflected 
by the weight vectors/distance matrix

– The number k of nearest neighbors from which the weights of each point are 
learned

• Output: an n×n matrix reflecting the weighted pair-wise distance between 
points

• Relies on instance-based locality assumption: weight vectors of each 
point is learned from its kNN; at the beginning of the loop, the kNNs are 
computed in the entire d-dimensional space

• Can be used by any distance-based clustering algorithm to compute a 
flat or hierarchical partitioning of the data
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Hybrid Algorithms

• FIRES[KKRW05]
– Proposes a bottom-up approach that uses different heuristics for 

subspace search
– 3-Step algorithm

• Starts with 1-dimensional clusters called base clusters (generated by 
applying any traditional clustering algorithm to each 1-dimensional 
subspace)

• Merges these clusters to generate subspace cluster approximations by 
applying a clustering of the base clusters using a variant of DBSCAN 
(similarity between two clusters C1 and C2 is defined by |C1 ∩ C2|)

• Refines the resulting subspace cluster
approximations

– Apply any traditional clustering
algorithm on the points within the
approximations

– Prune lower dimensional projections

subspace
cluster

cC

cB

cA

basecluster cAB

cAC
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Hybrid Algorithms

– Discussion
• Input:

– Three parameters for the merging procedure of base clusters
– Parameters for the clustering algorithm to create base clusters and for 

refinement
• Output: clusters in maximal dimensional subspaces, clusters may overlap
• Allows overlapping clusters (subspace clustering) but avoids complete 

enumeration; runtime of the merge step is O(d)!!!
• Output heavily depends on the accuracy of the merge step which is a 

rather simple heuristic and relies on three sensitive parameters
• Cluster model can be chosen by the user
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Summary

• The big picture
– Subspace clustering algorithms compute all clusters in all subspaces

• They usually implement a bottom-up search strategy
• They usually rely on global density thresholds to ensure the downward 

closure property
• They usually do not rely on the locality assumption
• They usually have a worst case complexity of O(2d)

– Projected clustering algorithms compute a disjoint partition of the data
• The usually implement a top-down search strategy
• They usually rely on the locality assumption
• They usually do not rely on global density thresholds
• They usually scale at most quadratic in the number of dimensions

– Hybrid approaches allow both subspace and projected clustering
• They usually invent further assumptions and heuristics to navigate the 

search space
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline:
Pattern-based Clustering

• Challenges and Approaches, Basic Models
• Algorithms for

– Constant Biclusters
– Biclusters with Constant Values in Rows or Columns
– Pattern-based Clustering: Biclusters with Coherent 

Values
– Biclusters with Coherent Evolutions

• Summary
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Challenges and Approaches,
Basic Models

Pattern-based clustering relies on patterns in the data matrix.
• Simultaneous clustering of rows and columns of the data 

matrix (hence biclustering).
– Data matrix A = (X,Y) with set of rows X and set of columns Y
– axy is the element in row x and column y.
– submatrix AIJ = (I,J) with subset of rows I ⊆ X and subset of columns 

J ⊆ Y contains those elements aij with i ∈ I und j ∈ J

X

Y

x

y

axy

j
i

AXY

AIJ

J = {y,j}

I = {i,x}
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Challenges and Approaches,
Basic Models

General aim of biclustering approaches:
Find a set of submatrices {(I1,J1),(I2,J2),...,(Ik,Jk)} of the matrix 
A=(X,Y) (with Ii ⊆ X and Ji ⊆ Y for i = 1,...,k) where each 
submatrix (= bicluster) meets a given homogeneity criterion.
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Challenges and Approaches,
Basic Models

• Some values often used by 
bicluster models:
– mean of row i: 

– mean of column j:

∑
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Challenges and Approaches,
Basic Models

Different types of biclusters (cf. [MO04]):
• constant biclusters
• biclusters with

– constant values on columns
– constant values on rows

• biclusters with coherent values (aka. pattern-based 
clustering)

• biclusters with coherent evolutions
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Challenges and Approaches,
Basic Models

Constant biclusters
• all points share identical value in selected attributes.

• The constant value µ is a typical value for the cluster.

• Cluster model:

• Obviously a special case of an axis-parallel subspace cluster.

µ=ija
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Challenges and Approaches,
Basic Models

• example – embedding 3-dimensional space:
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Challenges and Approaches,
Basic Models

• example – 2-dimensional subspace:

• points located on the bisecting line of participating attributes
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Challenges and Approaches,
Basic Models

• example – transposed view of attributes:

• pattern: identical constant lines
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Challenges and Approaches,
Basic Models

• real-world constant biclusters will not be perfect
• cluster model relaxes to:

• Optimization on matrix A = (X,Y) may lead to |X|·|Y| singularity-biclusters
each containing one entry.

• Challenge: Avoid this kind of overfitting.

µ≈ija



DATABASE
SYSTEMS
GROUP

Kriegel/Kröger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (ICDM '07) 75

Challenges and Approaches,
Basic Models

Biclusters with constant values on columns
• Cluster model for AIJ = (I,J):

• adjustment value cj for column j ∈ J

• results in axis-parallel subspace clusters

JjIi
ca jij

∈∈∀

+=

,

µ
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Challenges and Approaches,
Basic Models

• example – 3-dimensional embedding space:
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Challenges and Approaches,
Basic Models

• example – 2-dimensional subspace:
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Challenges and Approaches,
Basic Models

• example – transposed view of attributes:

• pattern: identical lines



DATABASE
SYSTEMS
GROUP

Kriegel/Kröger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (ICDM '07) 79

Challenges and Approaches,
Basic Models

Biclusters with constant values on rows
• Cluster model for AIJ = (I,J):

• adjustment value ri for row i ∈ I

JjIi
ra iij

∈∈∀

+=

,

µ
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Challenges and Approaches,
Basic Models

• example – 3-dimensional embedding space:

• in the embedding space, points build a sparse hyperplane
parallel to irrelevant axes
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Challenges and Approaches,
Basic Models

• example – 2-dimensional subspace:

• points are accommodated on the bisecting line of 
participating attributes
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Challenges and Approaches,
Basic Models

• example – transposed view of attributes:

• pattern: parallel constant lines
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Challenges and Approaches,
Basic Models

Biclusters with coherent values
• based on a particular form of covariance between rows 

and columns

• special cases:
– cj = 0 for all jÆ constant values on rows
– ri = 0 for all iÆ constant values on columns

JjIi
cra jiij
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Challenges and Approaches,
Basic Models

• embedding space: hyperplane parallel to axes of irrelevant 
attributes
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Challenges and Approaches,
Basic Models

• subspace: increasing one-dimensional line
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Challenges and Approaches,
Basic Models

• transposed view of attributes:

• pattern: parallel lines
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Challenges and Approaches,
Basic Models

Biclusters with coherent evolutions
• for all rows, all pairs of attributes change simultaneously

– discretized attribute space: coherent state-transitions
– change in same direction irrespective of the quantity
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Challenges and Approaches,
Basic Models

• Approaches with coherent state-transitions: [TSS02,MK03]
• reduces the problem to grid-based axis-parallel approach:
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Challenges and Approaches,
Basic Models

pattern: all lines cross border between 
states (in the same direction)
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Challenges and Approaches,
Basic Models

• change in same direction – general idea: find a subset of 
rows and columns, where a permutation of the set of 
columns exists such that the values in every row are 
increasing

• clusters do not form a subspace but rather half-spaces
• related approaches:

– quantitative association rule mining [Web01,RRK04,GRRK05]
– adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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Challenges and Approaches,
Basic Models

• example – 3-dimensional embedding space
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Challenges and Approaches,
Basic Models

• example – 2-dimensional subspace
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Challenges and Approaches,
Basic Models

• example – transposed view of attributes

• pattern: all lines increasing
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Challenges and Approaches,
Basic Models

Constant Bicluster

Constant Columns Constant Rows

Coherent Values

Coherent Evolutions
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Algorithms for Constant Biclusters

• classical problem statement by Hartigan [Har72]
• quality measure for a bicluster: variance of the submatrix AIJ:

• avoids partitioning into |X|·|Y| singularity-biclusters (optimizing the sum 
of squares) by assumption of a fixed number k of clusters

• recursive split of data matrix into two partitions until k partitions exist 
overall

• each split chooses the maximal reduction in the overall sum of squares 
for all biclusters

( ) ( )2
,
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Algorithms for Biclusters with Constant 
Values in Rows or Columns

• simple approach: normalization to transform the biclusters
into constant biclusters and follow the first approach (e.g. 
[GLD00])

• some application-driven approaches with special 
assumptions in the bioinformatics community (e.g. 
[CST00,SMD03,STG+01])

• constant values on columns: general axis-parallel 
subspace/projected clustering

• constant values on rows: special case of general correlation 
clustering

• both cases special case of approaches to biclusters with 
coherent values
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Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

classical approach: Cheng&Church [CC00] 
• introduced the term biclustering to analysis of gene expression data
• quality of a bicluster: mean squared residue value H

• submatrix (I,J) is considered a bicluster, if H(I,J) < δ

( ) ( )∑
∈∈

+−−=
JjIi

IJIjiJij aaaa
JI

JIH
,

21,



DATABASE
SYSTEMS
GROUP

Kriegel/Kröger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (ICDM '07) 98

Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

• δ =0 Æ perfect bicluster:
– each row and column exhibits absolutely consistent bias
– bias of row i w.r.t. other rows: 

• the model for a perfect bicluster predicts value aij by a row-constant, a 
column-constant, and an overall cluster-constant:
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Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

• for a non-perfect bicluster, the prediction of the model deviates from 
the true value by a residue:

• This residue is the optimization criterion:
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Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

• The optimization is also possible for the row-residue of row i
or the column-residue of column j.

• Algorithm:
1. find a δ -bicluster: greedy search by removing the row or column (or 

the set of rows/columns) with maximal mean squared residue until
the remaining submatrix (I,J) satisfies H(I,J)< δ.

2. find a maximal δ -bicluster by adding rows and columns to (I,J) 
unless this would increase H.

3. replace the values of the found bicluster by random numbers and 
repeat the procedure until k δ -biclusters are found.
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Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

Weak points in the approach of Cheng&Church:
1. One cluster at a time is found, the cluster needs to be 

masked in order to find a second cluster.
2. This procedure bears an inefficient performance.
3. The masking may lead to less accurate results.
4. The masking inhibits simultaneous overlapping of rows and 

columns.
5. Missing values cannot be dealt with.
6. The user must specify the number of clusters beforehand.
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Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

FLOC [YWWY02]
• randomized, move-based algorithm
• approximates k δ -biclusters based on minimization of the 

average residue
• initial seed clusters are optimized by random moves 

(removing or adding rows or columns)
• addressed issues:

1. multiple clusters simultaneously
4. allows overlapping rows and columns
5. adapted model takes only specified values into account, allows for 

missing values
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Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

p-cluster model [WWYY02]
• FLOC pays improvements by introduction of random events.
• p-cluster model: deterministic approach
• specializes δ -bicluster-property to a pairwise property of 

two objects in two attributes:

• submatrix (I,J) is a δ -p-cluster if this property is fulfilled for 
any 2x2 submatrix ({i1, i2}, {j1, j2}) where {i1, i2} ∈ I  and {j1, j2} 
∈J.

( ) ( ) δ≤−−−   
22122111 jijijiji aaaa
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Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

Algorithm:
1. create maximal set of attributes for each pair of objects 

forming a δ -p-cluster
2. create maximal set of objects for each pair of attributes 

forming a δ -p-cluster
3. pruning-step
4. search in the set of submatrices

Problem: altogether, this is a complete enumeration approach
Addressed issues:

1. multiple clusters simultaneously
4. allows for overlapping rows and columns
6. allows for arbitrary number of clusters
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Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

related approach: MaPle [PZC+03]
• improves pruning based on the downward-closure property 

coming along with the δ -p-cluster model:
• for a δ -p-cluster (I,J), every submatrix (I’,J’) with I’ ⊆ I and 

J’⊆ J is a δ -p-cluster Æ allows for superset pruning
• addresses the same issues:

1. multiple clusters simultaneously
4. allows for overlapping rows and columns
6. allows for arbitrary number of clusters

• Problem again: altogether, this is a complete enumeration 
approach
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Pattern-based Clustering: Algorithms for 
Biclusters with Coherent Values

CoClus [CDGS04]
• marriage of a k-means-like approach with cluster models of 

Hartigan or Cheng&Church

• typical flaws of k-means-like approaches:
– being caught in local minima
– requires number of clusters beforehand
– complete partition approach assumes data to contain no noise
– every attribute is assumed to be relevant for exactly one cluster 

(contradiction to the prerequisites of high-dimensional data)
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Biclusters with Coherent Evolution

OPSM (order preserving submatrix) [BDCKY02]
• submatrix (I,J) of data matrix A where a permutation π of J exists with

• given linear order of the columns: values in selected columns are strictly 
increasing

• cluster model: (J, π)
• support of the model: set I of rows fitting to the model
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Biclusters with Coherent Evolution

Algorithm:
• greedy bottom-up approach to find the “best” cluster
• start with small models and iteratively extend the “best” l of these 

models
• “best” model: largest statistical significance (smallest prior probability)
• favors clusters with large support

larger support Æ “better” cluster
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Biclusters with Coherent Evolution

OP-cluster (order preserving cluster) [LW03]
• same general idea
• weaker conditions by introducing groups of similar attributes
• discard assessment of statistical significance, report all 

(maximal) submatrices (OP-clusters) covering at least a 
minimum number of rows and columns

• Algorithm:
– create non-decreasing order of attributes (columns) for each row
– group similar columns
– mining for frequent patterns in resulting set of column-sequences
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Biclusters with Coherent Evolution

general remarks concerning OPSM-model/OP-cluster
• no spatial intuition, points form half-spaces Æ related to 

quantitative association rules
• whether corresponding attributes are correlated remains 

unclear
• the model is not suitable to predict exact values but merely 

to exceed a given threshold (value of the attribute in the 
preceding column)

• BUT: interesting results in gene expression data reported
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Summary

• Biclustering models do not fit exactly into the spatial intuition 
behind subspace, projected, or correlation clustering.

• Models make sense in view of a data matrix.
• Strong point: the models generally do not rely on the locality 

assumption.
• Models differ substantially Æ fair comparison is a non-trivial 

task.
• Comparison of five methods: [PBZ+06]
• Rather specialized task – comparison in a broad context 

(subspace/projected/correlation clustering) is desirable.
• Biclustering performs generally well on microarray data – for 

a wealth of approaches see [MO04].
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Outline:
Arbitrarily-oriented Subspace Clustering

• Challenges and Approaches
• Correlation Clustering Algorithms
• Summary and Perspectives
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Challenges and Approaches

• Pattern-based approaches find simple positive correlations
• More general approach: oriented clustering aka. generalized 

subspace/projected clustering aka. correlation clustering
– Note: different notion of “Correlation Clustering” in machine learning 

community, e.g. cf. [BBC04]

• Assumption: any cluster is located in an arbitrarily oriented 
affine subspace S+a of Rd

S+a

project
ion

S+a

a a
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Challenges and Approaches

• Affine subspace S+a, S ⊂ Rd, affinity a∈Rd is interesting if a 
set of points clusters within this subspace

• Points may exhibit high variance in perpendicular subspace 
(Rd \ S)+a

S+a

project
ion

S+a

a a

(R
d \ S)+a
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Challenges and Approaches

• high variance in perpendicular subspace (Rd \ S)+a Æ
points form a hyperplane within Rd located in this subspace
(Rd \ S)+a

• Points on a hyperplane appear to follow linear dependencies 
among the attributes participating in the description of the 
hyperplane

S+
a

projection

a

(R d\ S)+a

a

(R d\ S)+a
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Challenges and Approaches

• Directions of high/low variance: PCA (local application)
• locality assumption: local selection of points sufficiently 

reflects the hyperplane accommodating the points
• general approach: build covariance matrix ΣD for a selection 

D of points (e.g. k nearest neighbors of a point)

( ) ( )T 1
D

Dx
DD xxxx

D
−−=Σ ∑

∈

xD: centroid of D properties of ΣD:
• d x d
• symmetric
• positive semidefinite
• (value at row i, column j) = covariance
between dimensions i and j

• = variance in ith dimension

ijDσ

iiDσ
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Challenges and Approaches

• decomposition of ΣD to eigenvalue matrix ED and eigenvector 
matrix VD:

• ED : diagonal matrix, holding eigenvalues of ΣD in decreasing 
order in its diagonal elements

• VD : orthonormal matrix with eigenvectors of ΣD ordered 
correspondingly to the eigenvalues in ED

T
DDDD VEV=Σ

• VD : new basis, first eigenvector = 
direction of highest variance

• ED : covariance matrix of D when 
represented in new axis system VD
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Challenges and Approaches

• points forming λ-dimensional hyperplaneÆ hyperplane is 
spanned by the first λ eigenvectors (called “strong”
eigenvectors – notation:     )

• subspace where the points cluster densely is spanned by the 
remaining d-λ eigenvectors (called “weak” eigenvectors –
notation:     )

for the eigensystem, the sum of the 
smallest d-λ eigenvalues
is minimal under all possible 
transformations Æ points cluster 
optimally dense in this subspace
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Challenges and Approaches

model for correlation clusters [ABK+06]:
• λ-dimensional hyperplane accommodating the points of a 

correlation cluster C⊂ Rd is defined by an equation system of 
d-λ equations for d variables and the affinity (e.g. the mean 
point xC of all cluster members):

• equation system approximately fulfilled for all points x∈C
• quantitative model for the cluster allowing for probabilistic 

prediction (classification)
• Note: correlations are observable, linear dependencies are 

merely an assumption to explain the observations –
predictive model allows for evaluation of assumptions and 
experimental refinements

CCC xVxV TT ˆˆ =
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Correlation Clustering Algorithms

ORCLUS [AY00]:
first approach to generalized projected clustering
• similar ideas to PROCLUS [APW+99]
• k-means like approach
• start with kc > k seeds
• assign cluster members according to distance function 

based on the eigensystem of the current cluster (starting with 
axes of data space, i.e. Euclidean distance)

• reduce kc in each iteration by merging best-fitting cluster 
pairs
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Correlation Clustering Algorithms

• best fitting pair of clusters: least average distance in the 
projected space spanned by weak eigenvectors of the 
merged clusters

• assess average distance in all merged pairs of clusters and 
finally merge the best fitting pair

average distance

eigensystem cluster 1
eigensystem cluster 2

eigensystem cluster 1 ∪ cluster 2
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Correlation Clustering Algorithms

• adapt eigensystem to the updated cluster
• new iteration: assign points according to updated 

eigensystems (distance along weak eigenvectors)
• dimensionality gradually reduced to a user-specified value l
• initially exclude only eigenvectors with very high variance
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Correlation Clustering Algorithms

properties:
• finds k correlation clusters (user-specified)
• higher initial kc Æ higher runtime, probably better results
• biased to average dimensionality l of correlation clusters 

(user specified)
• cluster-based locality assumption: subspace of each cluster 

is learned from its current members (starting in the full 
dimensional space)
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Correlation Clustering Algorithms

4C [BKKZ04]
• density-based cluster-paradigma (cf. DBSCAN [EKSX96])
• extend a cluster from a seed as long as a density-criterion is 

fulfilled – otherwise pick another seed unless all data base 
objects are assigned to a cluster or noise

• density criterion: minimal required number of points in the 
neighborhood of a point

• neighborhood: distance between two points ascertained 
based on the eigensystems of both compared points



DATABASE
SYSTEMS
GROUP

Kriegel/Kröger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (ICDM '07) 126

Correlation Clustering Algorithms

• eigensystem of a point p based on its ε-neighborhood in 
Euclidean space

• threshold δ discerns large from small eigenvalues
• in eigenvalue matrix Ep replace large eigenvalues by 1, small 

eigenvalues by κ>>1
• adapted eigenvalue matrix yields a correlation similarity 

matrix for point p:
T
ppp VEV ′
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Correlation Clustering Algorithms

• effect on distance measure:

• distance of p and q w.r.t. p:

• distance of p and q w.r.t. q:

( ) ( )TT qpVEVqp ppp −⋅⋅′⋅⋅−

( ) ( )TT pqVEVpq qqq −⋅⋅′⋅⋅−

p

distance p

ε

κ
ε
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• symmetry of distance measure by choosing the maximum:

• p and q are correlation-neighbors if

Correlation Clustering Algorithms

p
q

distance p
distance q
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properties:
• finds arbitrary number of clusters
• requires specification of density-thresholds

– µ (minimum number of points): rather intuitive
– ε (radius of neighborhood): hard to guess

• biased to maximal dimensionality λ of correlation clusters 
(user specified)

• instance-based locality assumption: correlation distance 
measure specifying the subspace is learned from local 
neighborhood of each point in the d-dimensional space

Correlation Clustering Algorithms
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Correlation Clustering Algorithms

COPAC [ABK+07c] – similar ideas as 4C but:
• use k nearest neighbors instead of ε-neighborhood

– k > λ ensures meaningful definition of a λ-dimensional hyperplane

• in eigenvalue matrix Ep replace large eigenvalues by 0, small 
eigenvalues by 1 – effect on distance measure:

p

distance p

ε

distance in this direction always = 0
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Correlation Clustering Algorithms

• main point: considerable speed up by partitioning the 
database according to the local correlation dimensionality
(= number of strong eigenvectors in eigensystem based on
k nearest neighbors)

• only points with common local correlation dimensionality can 
build a correlation cluster

• no need to check distances between points of different local 
correlation dimensionality

• average speed up compared to 4C: getting rid of a squared 
factor d2 in a d-dimensional dataset
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Correlation Clustering Algorithms

properties:
• finds arbitrary number of clusters
• requires specification of density-thresholds

– µ (minimum number of points)
– ε (acceptable deviation from correlation-hyperplane)
– k (number of nearest neighbors to define local eigensystem)

• instance-based locality assumption: correlation distance 
measure specifying the subspace is learned from local 
neighborhood of each point in the d-dimensional space



DATABASE
SYSTEMS
GROUP

Kriegel/Kröger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (ICDM '07) 133

Correlation Clustering Algorithms

ERiC [ABK+07b]
• hierarchical approach: correlation clusters of lower 

correlation dimensionality may be embedded in correlation 
clusters of higher correlation dimensionality
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Correlation Clustering Algorithms

• derive eigensystem for each point based on k nearest 
neighbors

• distance between points:
– 0 if strong eigenvectors of both eigensystems define identical affine 

subspace (concept of approximate linear dependency)
– 1 otherwise

• cluster points with DBSCAN based on this distance measure 
with ε = 0

• partitioning as by COPAC
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Correlation Clustering Algorithms

properties:
• provides containment hierarchy (multiple inheritance) of 

correlation clusters
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Correlation Clustering Algorithms

properties:
• finds arbitrary number of clusters
• requires specification of density-threshold µ (minimum 

number of points)
• acceptable deviation δ of approximately linear dependent 

subspaces
• instance-based locality assumption: correlation distance 

measure specifying the subspace is learned from local 
neighborhood of each point in the d-dimensional space

• COPAC and ERiC improve over ORCLUS and 4C especially 
w.r.t. complex patterns of intersecting correlation clusters 
and w.r.t. clusters of different correlation dimensionalities
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Correlation Clustering Algorithms

glance at non-linear correlation clustering: CURLER [TXO05]
• finds non-linear correlation clusters by merging micro-

clusters
• not restricted to correlations of attributes but finds any 

narrow trajectory
• no model describing the results
• relies on the locality assumption
• first and only approach to non-linear correlation clustering
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Summary and Perspectives

• PCA: mature technique, allows construction of a broad range 
of similarity measures for local correlation of attributes

• drawback: all approaches suffer from locality assumption
• successfully employing PCA in correlation clustering in 

“really” high-dimensional data requires more effort 
henceforth
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Summary and Perspectives

• some preliminary approaches base on concept of self-
similarity (intrinsic dimensionality, fractal dimension): 
[BC00,PTTF02,GHPT05]

• interesting idea, provides quite a different basis to grasp 
correlations in addition to PCA

• drawback: self-similarity assumes locality of patterns even 
by definition
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Summary and Perspectives

comparison: correlation clustering – biclustering:
• model for correlation clusters more general and meaningful
• models for biclusters rather specialized
• in general, biclustering approaches do not rely on locality 

assumption
• non-local approach and specialization of models may make 

biclustering successful in many applications
• correlation clustering is the more general approach but the 

approaches proposed so far are rather a first draft to tackle 
the complex problem
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Outline

1. Introduction

2. Axis-parallel Subspace Clustering

3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary
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Summary

• Let’s take a global view:
– Traditional clustering in high dimensional spaces is most likely

meaningless with increasing dimensionality (curse of dimensionality)
– Clusters may be found in (generally arbitrarily oriented) subspaces of 

the data space
– So the general problem of clustering high dimensional data is:

“find a partitioning of the data where each cluster may exist in its own 
subspace”

• The partitioning need not be unique (clusters may overlap)
• The subspaces may be axis-parallel or arbitrarily oriented

– Analysis of this general problem:
• A naïve solution would examine all possible subspaces to look for 

clusters
• The search space of all possible arbitrarily oriented subspaces is infinite
• We need assumptions and heuristics to develop a feasible solution
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Summary

– What assumptions did we get to know here?
• The search space is restricted to certain subspaces
• A clustering criterion that implements the downward closure property 

enables efficient search heuristics
• The locality assumption enables efficient search heuristics
• Assuming simple additive models (“patterns”) enables efficient search 

heuristics
• …

– Remember: also the clustering model may rely on further 
assumptions that have nothing to do with the infinite search space

• Number of clusters need to be specified
• Results are not deterministic e.g. due to randomized procedures
• …

– We can classify the existing approaches according to the 
assumptions they made to conquer the infinite search space
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Summary

– The global view
• Subspace clustering/projected clustering:

– The search space is restricted to axis-parallel subspaces
– A clustering criterion that implements the downward closure property is  

defined (usually based a global density threshold)
– The locality assumption enables efficient search heuristics

• Bi-clustering/pattern-based clustering:
– The search space is restricted to special forms and locations of subspaces or 

half-spaces
– Over-optimization (e.g. singularity clusters) is avoided by assuming a 

predefined number of clusters
• Correlation clustering:

– The locality assumption enables efficient search heuristics

– Any of the proposed methods is based on at least one assumption 
because otherwise, it would not be applicable
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Summary
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Summary
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Summary
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Evaluation

• How can we evaluate which assumption is better under 
which conditions?
– Basically there is no comprehensive comparison on the accuracy or 

efficiency of the discussed methods
– A fair comparison on the efficiency is only possible in sight of the 

assumptions and heuristics used by the single methods
– An algorithm performs bad if it has more restrictions AND needs more 

time
– Being less efficient but more general should be acceptable
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Evaluation

– What we find in the papers is
• Head-to-head comparison with at most one or two competitors that do 

have similar assumptions
• But that can be really misleading!!!
• Sometimes there is even no comparison at all to other approaches
• Sometimes the experimental evaluations are rather poor

– So how can we decide which algorithm to use for a given problem?
• Actually, we cannot /
• However, we can sketch what makes a sound evaluation



DATABASE
SYSTEMS
GROUP

Kriegel/Kröger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (ICDM '07) 150

Evaluation

• How should a sound experimental evaluation of the accuracy 
look like – an example using gene expression data
[Thanks to the anonymous reviewers for their suggestions even though we would have 
preferred an ACCEPT ;-)]

– Good:
• Apply your method to cluster the genes of a publicly available gene 

expression data set => you should get clusters of genes with similar 
functions

• Do not only report that your method has found some clusters (because 
even e.g. the full-dimensional k-means would have done so)

• Analyze your clusters: do the genes have similar functions?
– Sure, we are computer scientists, not biologists, but …
– In publicly available databases you can find annotations for (even most of) 

the genes
– These annotations can be used as class labels, so consistency measures 

can be computed
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Evaluation

– Even better
• Identify competing methods (that have similar assumptions like your 

approach)
• Run the same experiments (see above) with the competing approaches
• Your method is very valuable if

– your clusters have a higher consistency score
[OK, you are the winner]

OR
– your clusters have a lower (but still reasonably high) score and represent 

functional groups of genes that clearly differ from that found by the 
competitors

[you can obviously find other biologically relevant facts that could not be 
found by your competitors]

• Open question: what is a suitable consistency score for subspace
clusters?
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Evaluation

– Premium
• You have a domain expert as partner who can analyze your clustering 

results in order to
– Prove and/or refine his/her existing hypothesis
– Derive new hypotheses

Lucky you – that’s why we should make data mining ☺
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