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Abstract

The issue of data mining in time series databases is of
utmost importance for many practical applications and has
attracted a lot of research in the past years. In this paper, we
focus on the recently proposed concept of threshold similar-
ity which compares the time series based on the time frames
within which they exceed a user-defined amplitude thresh-
old τ . We propose a novel approach for cluster analysis
of time series based on adaptable threshold similarity. The
most important issue in threshold similarity is the choice
of the threshold τ . Thus, the threshold τ is automatically
adapted to the characteristics of a small training dataset
using the concept of support vector machines. Thus, the op-
timal τ is learned from a small training set in order to yield
an accurate clustering of the entire time series database. In
our experimental evaluation we demonstrate that our clus-
ter analysis using adaptable threshold similarity can be suc-
cessfully applied to many scientific real-world data mining
applications.

1. Introduction

The analysis of time series data is of great practical im-
portance in many application areas including stock market-
ing, astronomy, environmental analysis, molecular biology,
and pharmacogenomics. As a consequence, a lot of re-
search work has focused on similarity search in time series
databases in the past years. Here, the similarity between
time series, e.g. similar patterns of time series, plays a
key role for the analysis. Recently, a novel but very im-
portant similarity measure called threshold similarity has
been introduced [6, 5] which enables the analysis of time
series tightly focused on a specific amplitude spectrum, in
particular amplitudes that are important and significant for
the analysis goal. Given two time series X and Y , and
an amplitude threshold τ , X and Y are considered simi-
lar if their amplitudes exceed the threshold τ within similar
time intervals. Using threshold similarity, the exact values
of the time series are not considered. Rather it is only ex-
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Figure 1. Sample application of threshold
similarity.

amined whether the time series objects have similar time
intervals above or below the given threshold τ . Thus, time
series can be considered as similar even if their absolute val-
ues are considerably different as long as they have similar
time frames during which the time series exceeds the query
threshold.

Threshold similarity has been shown to be useful in sev-
eral applications [5]. A sample application from medical
analysis is visualized in Figure 1 where three real electro-
cardiogram (ECG) plots T1, T2 and T3 are shown. Plot T1
indicates a high risk for cardiac infarct due to the abnormal
deflection after the systole (ST-T-phase), whereas T2 and
T3 both show a normal curve indicating a low risk. For the
examination of time series w.r.t. this abnormal characteris-
tic, there is no need to examine the entire curve. A better
way to detect such kind of characteristics is to analyze only
the relevant parts of the time series, for instance observ-
ing those parts of the time series which exceed a specified
threshold as depicted in our example. Let us now consider



the time interval sequences (below the ECG-curves) which
correspond to the time frames within which the time series
exceed the threshold τ . We can observe that the time inter-
val sequences derived from T2 and T3 differs marginally.
In contrast, the time series T1 shows a quite different char-
acteristic, caused by the ECG-aberration which indicates
the heart disease.

The most important issue of threshold similarity is obvi-
ously the choice of the threshold τ . In the medical analysis
example (cf. Figure 1), the suitable threshold τ was selected
by a domain expert (knowing about the characteristics of an
abnormal time curve in case of a cardiac infarct patient), in
order to discriminate between patients with a low/high risk
for cardiac infarct. However, it can be easily seen that if the
threshold would have been chosen lower than depicted in
Figure 1, all three time series would have produced rather
similar time intervals and, thus, the time series T1 could
not have been discriminated from the other two time series
T2 and T3. Since the optimal threshold for discriminating
a predefined class system is not known in advance in many
applications, a method for the automatical determination of
the optimal threshold using a small number of labeled time
series as training set is mandatory. Thus, for cluster anal-
ysis, a semi-supervised approach is envisioned where first,
the best suitable threshold is determined automatically by
means of a small training set and second, a cluster analy-
sis using the concept of threshold similarity (based on the
previously learned, i.e. adapted threshold) is performed in
order to detect novel and important patterns. So far, there
is only one approach to “optimally” adapt the threshold for
a threshold similarity analysis of time series [4]. However,
this approach uses a very simple and — in most cases —
not very accurate method to judge the quality of a given
threshold for the analysis task.

In this paper, we present a novel semi-supervised frame-
work for the cluster analysis of time series using adapt-
able threshold similarity. This frame work consists of two
phases, a training phase and a clustering phase (cf. Figure
2). In the first phase, the most suitable parameter setting, i.e.
the choice of the threshold value, is determined by applying
training datasets for the complete clustering process. Our
proposed method uses the observation that the classification
of some labeled objects leads to different results depending
on the chosen threshold τ , i.e. τ influences the separabil-
ity of the classes which we quantify by a so-called sepa-
ration score. Therefore, we compute the separation score
for each threshold of a given training set in a training step
first. This results in a quality curve depending on τ . The
optima of this curve can give useful hints on how to adapt
the threshold for the second phase where the entire dataset
is clustered. One might argue that performing a number of
clusterings for different thresholds followed by a clustering
quality computation can lead to the same results and even
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Figure 2. General approach.

eliminates the training phase. However, this ignores the fact
that many clustering algorithms have a runtime of O(n2) or
require several iterations until they terminate. Besides, we
use only a small training set for calculating the separability
score whereas the clusterings would have to be computed
on the entire dataset. Furthermore, additional time would be
required to analyze whether the clustering results are mean-
ingful or not.

The remainder is organized as follows. Section 2 gives
an overview of related work and points out our contri-
butions. Section 3 presents our framework for semi-
supervised cluster analysis using threshold similarity. Sec-
tion 4 provides an experimental evaluation and Section 5
concludes the paper.

2. Related Work and Contributions

2.1. Time Series Analysis

In general, a time series of length d can be viewed as
a feature vector in a d-dimensional space, where the simi-
larity between two time series corresponds to their distance
in the feature space, e.g. the Euclidean distance. Since d
is usually large, the efficiency and the effectiveness of data
analysis methods is rather limited due to the curse of di-
mensionality. Thus, several more suitable representations
of time series data, e.g. by reducing the dimensionality,
have been proposed. Most of them are based on the GEM-
INI indexing approach [15]: extract a few key features for
each time series and map each time sequence X to a point
f(X) in a lower dimensional feature space, such that the
distance between X and any other time series Y is always
lower-bounded by the Euclidean distance between the two



points f(X) and f(Y ). For an efficient access any well
known spatial access method can be used to index the fea-
ture space. The proposed methods mainly differ in the rep-
resentation of the time series, including among others, DFT
[1] and extensions [26], DWT [12], PAA [27], SVD [21, 2],
APCA [19], Chebyshev Polynomials [11], and cubic splines
[7]. However, all techniques which are based on dimension-
ality reduction cannot be directly applied to threshold simi-
larity, because usually, in a reduced feature space, the orig-
inal intervals indicating that a time series is above a given
threshold is not available anymore. In addition, the approx-
imation generated by dimensionality reduction techniques
cannot be used for our purposes directly because they still
represent the exact course of the time series rather than in-
tervals of values above a threshold.

Beside the Euclidean distance, several other common
distance functions have been successfully used for time
series analysis including Dynamic Time Warping (DTW)
which is conceptually similar to sequence alignment, Pear-
son’s correlation coefficient which measures the global cor-
relation between two time series, or angular separation,
also known as cosine distance which defines the distance
in terms of the angle between two feature vectors. In con-
trast to our approach, all these distance measures consider
the absolute values of the time series rather than the inter-
vals of values above a given threshold.

Having defined a distance measure on time series data,
one can apply any analysis task. For clustering time series
data, most of the various clustering methods proposed in
the past decades have been successfully applied. A general
overview over clustering methods is given in [18].

2.2. Semi-Supervised Cluster Analysis

In addition to the similarity information used by unsu-
pervised clustering, in many cases a small amount of know-
ledge is available concerning either pairwise (must-link or
cannot-link) constraints between data items or class labels
for some items. In contrast to clustering which does not use
any knowledge except for the similarity information of the
data, semi-supervised analysis can profit from this knowl-
edge to guide or adjust the clustering. Obviously, semi-
supervised analysis methods achieve better results than their
unsupervised counterparts. In recent years, several methods
in the area of semi-supervised cluster analysis have been
proposed. The main idea of semi-supervised clustering is
to determine clusters that are ’immaculate’ w.r.t. class la-
bels of objects to be analyzed. It can also be considered
as using labeled data as feedback in order to help to cluster
unlabeled data. Most of the proposed methods for semi-
supervised clustering assume that class labels for all objects
to be processed are given.

[22] proposes a method based on a mixture of hidden

Markov models that makes use of prior knowledge in order
to improve the robustness and the quality of the local op-
tima found. The author of [28] introduces a semi-supervised
classification for time sequences based on hidden Markov
models. Two different semi-supervised learning paradigms
are discussed. The author observed that using unlabeled
data can increase the classification accuracy.

Several extensions of existing standard clustering algo-
rithms have been proposed in the literature. A brief survey
is given in [14] describing SPAM a supervised variant of
PAM, SRIDHCR, a greedy algorithm with random restart,
SCEC, an evolutionary algorithm, TDS, a medoid-based top
down partitioning algorithm. In [25], a variant of a k-means
based clustering algorithm is proposed. The authors derive
constraints from the labeled objects which are used dur-
ing the clustering. They distinguish between explicit and
cannot-link constraints. In [8], a k-means based method
is introduced which is based on both types of constraints
and which exploits the data distribution. The authors of
[13] describe an evolutionary method for semi-supervised
clustering. This approach has to be initialized with k arbi-
trary centroids and optimizes a quality measure considering
cluster dispersion and impurity. In order to detect a clus-
ter structure that reflects the class distribution of the labeled
training data, further methods have been developed which
use a standard clustering algorithm by applying an adap-
tive similarity measure. The authors of [20] propose to ap-
ply a complete-link clustering algorithm after replacing the
Euclidean distance with the shortest path algorithm. The
approach described in [10] weights the edit distance using
an expectation maximization algorithm to detect approxi-
mately duplicate objects in a database. [9] describes a prob-
abilistic framework for semi-supervised clustering to addi-
tionally support several non Euclidian distance measures,
e.g. the cosine distance.

All mentioned methods for semi-supervised clustering
do not take the threshold-based similarity of time series data
into account. In our approach, we use the density-based hi-
erarchical clustering algorithm OPTICS [3]. However, any
clustering algorithm is applicable in our framework.

2.3. Adaptable Threshold Similarity

The concept of threshold similarity in time series
databases has been proposed in [6, 5]. We will review
and extend the basic definitions in Section 3. The only
method to adopt an “optimal” threshold for threshold simi-
larity from a small training set so far has been proposed in
[4]. If the training set contains instances of m ≥ 2 classes
Ci, 1 ≤ i ≤ m, the best threshold of a query for a specific
class Ci is evaluated by computing the pairwise silhouette
width of Ci to all other classes Cj , i 6= j. The minimal sil-
houette width of all these pairs is used as so-called separa-



tion score which estimates the separability of the class Ci in
the training set for a given threshold τ . The threshold with
the best separation score is chosen as the optimal threshold
for the given query. However, the quality of a given thresh-
old for a query is only evaluated using the silhouette width
in the training set. This is a rather simple heuristics and
usually far from the optimal solution.

2.4. Our Contribution

In this paper, we propose a novel method for time series
cluster analysis using adaptable threshold similarity. Our
approach is different to that proposed in [4] in the following
aspect. We propose a novel approach to compute the sep-
aration score for a given threshold τ using the concept of
support vector machines that provides an optimal solution
for the task of learning the best suitable threshold for the
succeeding clustering step rather than using simple heuris-
tics. For that purpose, we further extend the basic definition
of threshold similarity in [6, 5] by defining a kernel func-
tion for threshold similarity. In addition, we show how our
new concepts can be integrated into a complete framework
for semi-supervised cluster analysis of time series databases
using the concept of threshold similarity. Last but not least,
we present an experimental evaluation where we show the
superiority of our approach in comparison to [4] by eval-
uating the quality of the learned threshold using the entire
database objects rather than some sample queries (as in [4]).
We further demonstrate in our experiments that the concept
of threshold similarity is better suitable in some applica-
tions than using the Euclidean distance measure and that our
method is able to gain new insights from a database even
in the case that the training set is incomplete, i.e. not all
classes that should be discovered, are present in the training
set.

3. Semi-supervised Threshold Similarity Anal-
ysis

3.1. Preliminaries

We define a time series X as a sequence of pairs
(xi, ti) ∈ R×T : (i = 1..N), where T denotes the domain
of time and xi denotes the measurement at time ti. Further-
more, we assume that the time series entities are given in
such a way that ∀i ∈ 1, .., N − 1 : ti < ti+1. Let us note,
that in most applications the time series are derived from
discrete measurements of continuously varying attributes.
However, time series are commonly depicted as continuous
curves, where the missing curve values (i.e. values between
two measurements) are estimated by means of interpolation.
From the large range of appropriate solutions for time series
interpolation, in this paper we assume that the time series

curves are supplemented by linear interpolation which is the
most prevalent interpolation method.

In the following, τ ∈ R denotes a given threshold of
interest. Intuitively, using threshold similarity (w.r.t. τ ),
two time series are considered similar, if they have simi-
lar time intervals during which they exceed the threshold
τ . The set of intervals during which a given time series
X = 〈(xi, ti) ∈ R × T : i = 1..N〉 is above τ is called
threshold-crossing time interval sequence of X with respect
to τ , denoted by TCτ (X) [6, 5]. Formally,
TCτ (X) = 〈(lj , uj) ∈ T × T : j ∈ {1, ..,M},M ≤ N〉
is a sequence of time intervals, such that

∀t ∈ T : (∃j ∈ {1, ..,M} : lj < t < uj) ⇔ x(t) > τ.

An interval tXτ,j = (lXj , uX
j ) ∈ TCτ (X) is called

threshold-crossing time interval. We omit the index τ if
it is clear from context.

Given two arbitrary time intervals t = (lt, ut) ∈ T × T
and s = (ls, us) ∈ T × T , the distance function dint :
(T × T ) × (T × T ) → R between two time intervals is
defined as [6, 5] dint(t, t) =

√
(lt − ls)2 + (ut − us)2.

3.2. General Idea

As stated above, our main goal is to yield an accurate
clustering of the database D of time series using threshold
similarity. In order to choose the optimal threshold value τ ,
we want to apply a semi-supervised clustering procedure,
where we learn the optimal threshold from a small train-
ing set T of already labeled time series before clustering
(cf. Figure 2). This learning phase preceding the clustering
phase is the key step in our framework.

Let T be the training set containing time series ob-
jects that are labeled according to a predefined class system
C = {C1, . . . Ck} of k ≥ 2 classes. We need to learn the
threshold values from the objects in T that are able to sepa-
rate time series data of one training class Ci from the other
training classes Cj (i 6= j), i.e. threshold values that yield
low similarity values for time series belonging to different
classes and high similarity values for time series belonging
to the same class.

The class system C defined for the training data T need
not be complete. There may be some further classes Ĉ 6∈ C
for which no training data is at hand, i.e. none of the objects
in T is labeled with one of these classes Ĉ. Furthermore, it
is also possible that the user is not aware of the existence of
all classes. The dataset may contain unknown classes which
could also be interesting for the user.

Obviously, these classes are excluded from the learning
phase, i.e. the learned threshold need not be optimal for
these classes. However, as we show in the experimental sec-
tion (cf. Section 4), threshold values that exhibit a high sep-
arability for only a few classes in the training data are quite



often also a good choice for the detection of unknown or
missing classes during the clustering phase. Thus, by pro-
viding only partial information during the training phase,
our approach is able to retrieve novel information in the
clustering phase. This is contrary to a fully supervised ap-
proach, where novel classes cannot be detected.

As mentioned above, the optimal threshold τopt sepa-
rates the classes Ci ∈ C, 1 ≤ i ≤ k, in our training set
T in a best possible way. We formalize the separability of
a threshold τ by means of a separation score. In fact, we
measure the separation score of a broad range of possible
thresholds. One key difference of our approach to [4] is the
computation of this separation score. In [4], the separabil-
ity is measured using the minimum of all pairwise silhouette
widths of each pair of classes Ci and Cj in T . Obviously,
this is a quite simple heuristics which leaves much space
for improvement. In this paper, we compute an optimal
score by applying the concept of support vector machines
(SVMs). In general, SVMs provide an optimal separation of
two classes [24] and can easily be extended to multi-class
problems. However, in order to apply SVMs to threshold
similarity of time series we have to extend the basic con-
cepts of threshold similarity. In the following, we first ex-
plain these extensions of threshold similarity (cf. Section
3.3). We then introduce a new separation score in order
to measure how good a given threshold separates the class
system C in T (cf. Section 3.4). Last, we explain how the
optimal threshold is determined (cf. Section 3.5) in order to
yield a good clustering of the entire database D.

3.3. Similarity Model

As discussed above, we use SVMs to separate the classes
in T since they provide an optimal separation. However,
basic SVMs can only be applied to feature vectors rather
than interval sequences. Thus, in order to apply SVMs to
time series using threshold similarity, we need the concept
of kernel methods which have been successfully applied to
learning from objects having a complex structure. Since,
we represent the time series by sets of intervals we need a
kernel method that can cope with set-based instances. Let
χ denote the complete set of intervals of all objects in T
generated by a given threshold τ . For our approach, in or-
der to compare two time series X, Y ∈ T , we use the set
kernel k(TCτ (X), TCτ (Y )) which has been introduced in
[16] and is defined by

k(TCτ (X), TCτ (Y )) :=
∑

tX∈TCτ (X),tY ∈TCτ (Y )

κχ(tX , tY ),

where κχ denotes a kernel on χ, i.e. on single intervals. In
order to keep the similarity function invariant to the size of
the sets TCτ (X) and TCτ (Y ), the kernel function has to

be normalized by the cardinality of these sets:

k(TCτ (X), TCτ (Y )) :=
k(TCτ (X), TCτ (Y ))

N(TCτ (X)) ·N(TCτ (Y ))
.

Here, the normalization function

N(S) :=
∑
s∈S

S(s)

is used to compute the cardinality of the set S, i.e. S(s)
returns 1, if s is in the set S and 0 otherwise. Note, that this
kind of normalization preserves the kernel property, i.e. the
resulting function kset is also a kernel [16].

The kernel function κχ is applied to a pair of threshold
crossing time intervals tX ∈ TCτ (X) and corresponds to
the similarity of two intervals. Since the distance function
dint proposed in [6, 5] is not a kernel, we cannot apply it
directly to κχ. Rather, we need a similarity function κχ

which fulfills the kernel property. In addition, this similarity
function should fulfill the following condition: the smaller
the distance between two intervals, the higher the similarity
between them. With this condition, the similarity between
two time intervals depends on their temporal offsets of their
starting and ending times. Intuitively, the closer two time
intervals start and the closer their interval length, the more
similar they are. In our approach we apply the Gaussian
kernel, which is defined as follows:

κχ(tXi , tYj ) := e
−dint(tX

i ,tY
j )2

σ ,

where σ is a parameter which can be used to adjust the sen-
sitivity of the similarity to the distance between tXi and tYi .
For low σ values, large interval distances have only little
influence to the similarity.

Thus, the resulting kernel function to compare time se-
ries X and Y using the concept of threshold similarity w.r.t.
threshold τ is defined as:

Kτ (X, Y ) =

∑
tX∈TCτ (X),tY ∈TCτ (Y ) e

−dint(tX ,tY )2

σ

N(TCτ (X)) ·N(TCτ (Y ))
.

Let us note, that the similarity between two time series
according to threshold τ expressed by the kernel function
Kτ is also called τ -similarity.

3.4. Computing the Separation Score

As we have defined the similarity functionKτ as a kernel
function, we can now apply the concept of SVMs in order
to measure the separability of given training data w.r.t. a
specified threshold τ . The use of SVMs provides an opti-
mal solution for the separation of our classes C in the train-
ing set T . In addition, SVMs already contain information
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about the separability of the training data w.r.t. the desired
classes and, thus, provide an elegant method to measure the
separability of a given class system.

At first, we have to determine those threshold values
which could be of interest and which we want to examine.
Therefore, we select a range of amplitudes which could be
meaningful for our analysis. In our experiments, we have
chosen the complete amplitude spectrum covered by the
time series objects contained in the training dataset. How-
ever, if any domain knowledge can be incorporated, this
range of meaningful thresholds can be narrowed for per-
formance reasons. In addition, we can apply the data struc-
tures proposed in [5] to access the threshold-crossing time
intervals of a given time series X for any threshold τ very
efficiently. Afterwards, we have to choose the resolution
of our examination, i.e. how many thresholds we want to
examine within the selected range.

After we have selected the increments of the threshold
values, we evaluate each threshold value τ as follows: We
determine the threshold-crossing time interval sequences of
all training objects w.r.t. τ and train an SVM on this data.
Standard SVMs are able to make only binary decisions.
An SVM Sτ

A,B computes a maximum-margin hyperplane
which separates instances of two classes A and B using the
kernel function Kτ . The width of the margin µτ

A,B of this
separating hyperplane is a valid indication on the separabil-
ity of the two classes. Obviously, the larger this width is,
the more confident is the SVM to separate objects from A
and B correctly. Since usually, we may have more than two
classes in C, and standard SVMs can only handle the binary
case, we apply the so-called one-versus-one approach, i.e.
we for each pair of classes Ci, Cj ∈ C we train an SVM
Sτ

i,j . Thus, we obtain for each pair of classes Ci, Cj ∈ C
the margin-width µτ

i,j = µτ
j,i which is a measurement for

the separability of Ci and Cj . An example is depicted in
Figure 3. Four classes A, B, C, and D are separated using

threshold

promising threshold values
bad threshold

values

class separability
(= avg. margin width of 

the SVM)

Figure 4. Determination of the Most Promis-
ing Threshold Values.

an SVM for each pair. Only the SVMs for which A partici-
pates are shown. The width of the margin of SA,B , µA,B is
visualized (parameter τ is omitted).

Given the margin-width of all SVMs trained on each pair
Ci, Cj ∈ C, all these values have to be combined suitably in
order to get one value which represents the global class sep-
arability. It is possible to represent the global separability
by the smallest of all margin-widths. This approach guar-
antees that all desired classes are well separated. However,
this solution seems to be a too optimistic approach, since
the training dataset may contain classes which cannot be
separated at all, regardless of the selected threshold value.
Another approach is to pick the largest margin-width. How-
ever, this pessimistic solution is also not suitable, since two
classes which are separable well for each threshold value
do not reflect the global separability. For our approach we
argue to take the average margin-width, because the separa-
bilities of all observed classes are considered. This decision
is confirmed by the results in our experiments (cf. Section
4). The resulting separation score is thus defined as

score(τ) =
1

2 ·N(C)

∑
Ci,Cj∈C,i 6=j

µτ
j,i.

Obviously, the higher this value is, the better the classes
in C can be separated w.r.t. threshold τ .

3.5. Determining the Optimal Threshold
for Clustering

Having determined the separation score for a range of
interesting values, we can consider a quality curve over
all these threshold values (cf. Figure 4). In such a sep-
arability diagram, we plot the examined threshold values
along the x-axis and the the corresponding separation scores
along the y-axis. From this diagram we can easily deter-
mine those threshold values which yield high curve values
as most promising for the clustering step.



4. Evaluation

In this section, we present the results of a large num-
ber of experiments performed on a selection of time series
datasets. In particular, we will present the results of our
experiments with respect to efficiency and effectiveness.

4.1. Datasets and System Environment

For our evaluation, we used several real-world and syn-
thetic datasets which are described in the following. A sum-
marized description is depicted in Table 1.

Audio Dataset. The audio dataset (cf. DS3 in Table 1)
contains time sequences expressing the temporal behavior
of the energy, dynamics and peaks in music sequences. It
consists of 36 classes and contains 756 time series objects
with a length of up to 30000 values per sequence.

Scientific Datasets. The scientific datasets are derived
from two different applications: the analysis of environ-
mental air pollution and gene expression data analysis. The
data on environmental air pollution is derived from the
Bavarian State Office for Environmental Protection, Augs-
burg, Germany 1 and contains the daily measurements of 8
sensor stations distributed in and around the city of Munich
from the year 2000 to 2004. One time series represents the
measurements of one station at a given day containing 48
values for one of 10 different parameters such as temper-
ature, ozone concentration, etc. The gene expression data
from [23] contains the expression level of approximately
6,000 genes measured at only 24 different time slots. The
expression level of a gene indicates how active it is. This
dataset was derived from the Gene Expression Omnibus
(GO)2.

Other Datasets. The other datasets are derived from di-
verse fields and cover the complete spectrum of stationary/
non-stationary, noisy/ smooth, cyclical/ non-cyclical, sym-
metric/ asymmetric etc. data characteristics.

As mentioned above, we applied the density-based clus-
tering method OPTICS [3] for the cluster analysis step. We
used OPTICS due to its robustness w.r.t. data distribution
and parameter setting. Again, let us note that any other clus-
tering method is also applicable.

4.2. Effectiveness

In this section, we show that our proposed semi-
supervised analysis yields promising results and can be suc-

1www.bayern.de/lfu
2http://www.ncbi.nlm.nih.gov/geo/

Label Dataset Description
DS1 GDS 38 Gene expression dataset with 2562

instances, number of classes de-
pends on GO-level

DS2 GDS 30 Gene expression dataset with 2628
instances, number of classes de-
pends on GO-level

DS3 Audio Audio dataset with 36 classes, 21
instances in each class

DS4 Trace synthetic dataset with 16 classes, 50
instances in each class

DS5 Gunx real world dataset with 2 classes,
100 instances in each class

DS6 CBF 100 synthetic dataset with 3 classes, 100
instances in each class

Table 1. Used datasets.

cessfully applied to several datasets with different charac-
teristics.

Validation of the Separation Score. We investigate the
effectiveness of semi-supervised threshold queries which
are used to find the optimal threshold value by means of
a training dataset. We will show that choosing a supervised
threshold leads to better clustering results than choosing an
arbitrary threshold where no information about the dataset
characteristics was used to select the threshold value. The
curves depicted in Figure 5 show the separability (cf. Sec-
tion 3) of the classes for varying threshold values. Figure
5(a) shows the results of the DS3 dataset and Figure 5(b)
shows the results of the DS5 dataset. Obviously, different
threshold values lead to different values for the separability
of the classes. As mentioned in Section 3 high curve val-
ues should indicate threshold values which are promising
for the cluster analysis.

The shown curves give raise to the question whether the
threshold values with high separation score do indeed yield
good results on the whole data set. To evaluate this, we
clustered the time series for two different threshold values
τ+ and τ− and determined the rand index and the average
entropy [17]. For example, the threshold value τ+ = 710
which corresponds to a high separation score on the DS3
dataset resulted in a rand index equal to 0.97. Contrary,
when using a threshold value of τ− = 3064 the rand index
decreased to 0.61. Similar results were observed for other
levels, for other threshold values, and on other datasets. Fig-
ure 6 shows the results for several datasets where τ+ corre-
sponds to a high separation value and τ− corresponds to a
low separation value. Figure 6(a) depicts the rand index and
Figure 6(b) depicts the average entropy. The higher the rand
index, the higher the clustering quality, whereas high aver-
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(b) Separability Plot on DS6.

Figure 5. Separability Plots for Different Datasets.
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(b) Average Entropy.

Figure 6. Analysis Quality for Suitable and Non-Suitable Threshold Values.

age entropy values indicate low clustering qualities. The
results show that the clustering analysis based on thresh-
old τ+ always outperforms the analysis based on τ−. This
underlines the validity of our semi-supervised analysis ap-
proach.

Adjustability to Different Training Classes. In this ex-
periment, we are interested in how the optimal threshold
values change when the expected results change, i.e. when
the focus of the query changes. The following experiments
were performed on the dataset DS1. For the first experi-
ment, depicted in Figure 7(a) we used the GO functional
classes on level 3. Afterwards we changed the focus of our
analysis to the GO level 6. The results are depicted in Figure
7(b). As expected, we obtained different optimal threshold
values for different purposes of the analysis.

Sensitivity to Incomplete Training Data. In our next ex-
periment, we examined the sensitivity of our approach to
missing classes in the training data. A low sensitivity cor-
responds to the ability to detect unknown knowledge. It is
interesting, whether our analysis finds those classes which
are existent in the training dataset, but which are not used
in the training phase. The results for different datasets are

Quality classes present in T
Measure Dataset 25% 50% 75% 100%
Rand DS1 0.929 0.93 0.93 0.93
Index DS2 0.947 0.956 0.956 0.957

DS3 0.8 0.969 0.969 0.97
Entropy DS1 0.027 0.026 0.02 0.02

DS2 0.021 0.017 0.017 0.017
DS3 0.042 0.042 0.05 0.042

Table 2. Sensitivity to incomplete training
data.

depicted in Table 2.

We performed several semi-supervised analysis tasks us-
ing different portions of the complete class information for
the training phase. For each analysis we measured the rand
index and the average entropy w.r.t. the complete class
information. Obviously, the completeness of the detected
classes increases with an increasing number of classes used
for the training phase. However, a small amount of training
classes suffices to find nearly the complete set of classes
within our dataset.
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(b) Separability Curve for GO level 6.

Figure 7. Separability Curves for Different Training Classes.

Analysis Results on Scientific Datasets. The results on
the air pollution dataset were very useful. We examined
time sequences representing particulate matter parameters
(M10) derived from rural and urban sensor stations. The
threshold-based analysis shows that the pollution by par-
ticle components in the city differs considerably from the
pollution in rural regions.

The results on the gene expression dataset were also very
interesting. Indeed, we retrieved functionally related genes
in most of the reported clusters. For example, gene CDC25
and gene CIK3 were located in the same cluster. Both genes
play an important role during the mitotic cell cycle. Fur-
thermore, genes DOM34 and MRPL17 were in the same
cluster as two genes that are not yet labeled (ORF-names:
YOR182C and YGR220C, respectively). However all four
genes are participating in the protein biosynthesis. In par-
ticular, our proposed analysis tool can be used to predict the
function of genes whose biological role is not resolved yet.

Comparison with Related Work. Last but not least, we
compared our method to existing approaches. Here, we
compared our approach denoted by “Kernel” to the work
in [4], denoted by “SilCoef”, and to another similarity mea-
sure, in particular the Euclidean distance, denoted as “Eu-
clid”. The results of the comparison are depicted in Table 3.
As it can be seen our method “Kernel” achieves the better
Rand Index and entropy values on all data sets and, thus,
outperforms both competitive methods, “SilCoef” and “Eu-
clid” in terms of effectiveness.

5. Conclusions

In this paper, we proposed a framework for semi-
supervised cluster analysis using adaptable threshold sim-
ilarity. In particular, we proposed a method to adapt the
threshold by learning the optimal threshold from a small
training set in order to yield an accurate clustering of the en-

Quality
Measure Dataset Euclid SilCoef Kernel
Rand DS1 0.46 0.927 0.9367
Index DS2 0.252 0.94 0.957

DS3 0.27 0.95 0.97
DS4 0.5 0.75 0.8
DS5 0.33 0.5228 0.619
DS6 0.183 0.67 0.737

Entropy DS1 0.0067 0.047 0.026
DS2 0.018 0.0277 0.017
DS3 0.9 0.01 0.0042
DS4 0.89 0.018 0.001
DS5 0.8 0.02 0.3
DS6 0.96 0.025 0.06

Table 3. Comparison of clustering results
w.r.t. different similarity measures.

tire time series. In our experimental evaluation, we showed
that our proposed approach yields valuable clustering re-
sults, even if only partial information is available for adapt-
ing the threshold to an optimal value. Beside the analysis
of a dataset according to specific class labels, our approach
can help to find unknown but potentially useful knowledge.
For future work, we plan to investigate threshold similarity
analysis with multiple thresholds at the same time.
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