A Storage and Access Architecture for
Efficient Query Processing in Spatial Database Systems

Thomas Brinkhoff, Holger Horn, Hans-Peter Kriegel, Ralf Schneider

Institute for Computer Science, University of Munich
Leopoldstr. 11 B, W-8000 Miinchen 40, Germany

e-mail: {brink,holger,kriegel,ralf}@dbs.informatik.uni-muenchen.de

Abstract: Due to the high complexity of objects and queries and also due to extremely
large data volumes, geographic database systems impose stringent requirements on their
storage and access architecture with respect to efficient query processing. Performance
improving concepts such as spatial storage and access structures, approximations, object
decompositions and multi-phase query processing have been suggested and analyzed as
single building blocks. In this paper, we describe a storage and access architecture which
is composed from the above building blocks in a modular fashion. Additionally, we in-
corporate into our architecture a new ingredient, the scene organization, for efficiently
supporting set-oriented access of large-area region queries. An experimental performance
comparison demonstrates that the concept of scene organization leads to considerable
performance improvements for large-area region queries by a factor of up to 150.

1 Introduction

During the last decade, the management, representation and evaluation of spatial data
ininformation systems gained increasing importance. Geographic information systems
(GIS) areincreasingly used in public administration, science and business. The nucleus
of a GISisthe geographic database system. Contrary to business applications based on
standard database systems, such systems are not suitable for geographic applications
[Wid 91]. Theinsufficient expressive power e.g. of relational systems, leads to unnatu-
ral data models and to poor efficiency in query processing.

Therefore, various research groups have developed a large number of concepts and
techniques for improving single aspects of a geographic database system. Examplesare
the design of spatial datamodels or efficient access methods for managing large sets of
spatial objects.

In this paper, we will present our geo architecture, a new storage and access archi-
tecturefor spatial objects integrating several concepts and techniques. It is not our goal
to present a new spatial database system or a kernel of a system such as DASDBS
[SW 86], EXODUS [CDRS 86], GRAL [Giit 89] and POSTGRES [SR 86]. Instead, we
would like to assemble suitable concepts and techniques to a spatial query processing
mechanism. One of the most important building blocks of our architectureseetiee
organization, a new technique for supporting large range queries. Its performance im-
provement by up to two orders of magnitude is demonstrated.

The paper is organized as follows. First, we take a closer look at the objects and op-
erations commonly used in geographic information systems. This leads to a set of basic
qgueries which should be efficiently supported by our architecture. A model of spatial
guery processing using different phases is described in section three. In section four, we
present different algorithms and methods for supporting these phases. The new scene
organization is described in section 4.4. The integration of the algorithms and methods

leads to our geo architecture. The rest of the paper contains an investigation of the per-
formance of this architecture. In particular, we present a detailed performance evalua-
tion of our new scene organization for real world data. The paper concludes with abrief
statement of our findings and some suggestions for future work.

2 Objectsand operations of a spatial database system

In this paper, we present a conceptional architecture for storing objects and processing
gueriesin ageographic database system. To develop such an architecture, wefirst need
an exact specification of the objects and queries. Thisis presented in the following sub-
sections.

2.1 Objects

The objects stored in a geographic database are used for modeling specific parts of the
surface of the earth with respect to one or several properties. Therefore, the objects are
characterized by a spatial and a thematic component. The spatial component describes
the spatial locality and the shape of the modeled part of reality whereas the thematic
component contains the thematic information.

The spatial component

The spatial component of an object is represented by one of the basic topological ele-

ments of the plane: point, line or area. Points are described by specifying their coordi-

nates with respect to a given coordinate system. For modeling lines, both polylines as

well as free-form curves are used. In this paper, we concentrate on representing areas.

From the literature two main concepts for representing areas are known: the raster and

the vector model. Because of itsfavorable scaling capabilities, itslower demand of stor-

age and its “object orientation”, the vector model has been preferred over the last few
years for application in geographic database systems. The type of spatial objects we
consider in this paper is the classsofiple polygons with holes (SPH for short) (see
figure 1). A polygon is called simple if there is no pair of nonconsecutive edges sharing
a point. A SPH is a simple polygon where simple polygonal holes may be cut out. The
class of SPHs is well suited for geographic applications (see [Bur 86]). It allows repre-
senting areas with arbitrary precision and explicitly takes holes into account.

Fig. 1. Simple polygon with holes
Thethematic component

The thematic component characterizes an object with respect to one or several thematic
properties. We distinguish betwegurlitative properties such as land use agdanti-

tative properties such as amount of precipitation. For representing thematic values, sim-
ple data types such as strings or real numbers are used.

The object model

The geo architecture to be developed should be able tossted objects consisting
of a spatial (SPH) and a thematic component (vector of simple data types). Figure 2
gives a typical example of a map which is represented by a set of SPHs.

.ll..ﬁ‘:.;' 3
Fig. 2. Map of the European counties modeled by a set of SPH

Both components require a completely different handling by the geo architecture. For
managing vectors of simple datatypes, e.g. in arelational database system, alot of well
known data structures and algorithms are available. However, organizing the spatial
component demands for new structures and algorithms. They should organize the ob-
jectsin such away that spatial queries referring to location and shape of the objects are
processed efficiently.

Additional to these fundamental properties of the spatial objects, two more aspects
areimportant for the design of the geo architecture. First, we need a characterization of
the objects from real applications as accurate as possible. Second, we need a specifica-
tion of the queries and operations to be performed on these objects.

2.2 Characteristics of the objects

In this paper, it is not our goal to present a general characterization of the object sets
occurring in geographic applications. From our point of view thisisimpossible because
of the very wide application spectrum geographical information systemsareusedin. In-
stead, we outline some general properties of the data which influence the design of our
geo architecture considerably.
Complexity and variation of the data

« Number of objects and data volume

In real applications, the number of data objects may be as high as 10°. The datavol-
ume may occupy up to 1 TerraByte (see [Fra91] and [Cra 90]).

« Variation of objects and sets of objects

Datafrom real world applications vary extremely with respect to single objects and
whole object sets[Fra91]. This particularly refers to the following aspects:

» Object extensions

It varies in a range of 1 : $QFra 91], where the largest objects may occupy the

whole data space.
* Object shape
« Amount of storage

As an example, in the World Data Bank Il [GC 87] the amount of storage for one

polygonal object varies between 0.5 KB and more than 1.1 GB.

« Distribution of the objects in the data space
The number of objects per unit (density) varies in a range of4lin téal world
applications [Fra 91].

In particular, we have to consider that there are no upper bounds neither for the exten-
sion of objects, the complexity of object structure, the amount of storage, nor for the
density of the objects.

Persistent storage of the objectsin a weak dynamic environment

Recording the data of a geographic information system is an expensive task. Very often,
data from paper maps as well as satellite pictures have to be integrated into a seamless
database. This work is often a source of inaccuracy and inconsistency, which has to be
revealed and removed by using time consuming consistency check mechanisms. Alto-
gether recording the data and preserving consistency of the data account for approxi-
mately 80% of the operating costs of a geographic database system [Aro 91].

After recording the database, it is persistently stored and used on a long term basis.
However, the database is not static because correcting mistakes, removing inconsisten-
cies and adapting to changes in the real world leads to updates of the data. All in all, the
database is weakly dynamic.

The properties of spatial objects mentioned above and the queries and operations de-
scribed in the following section form a requirement definition for the geo architecture
which is described in detail in section 4.

2.3 Queriesand operations

Geographic database systems are used in very different application environments.
Therefore, it is not possible to find a compact set of spatial queries and operations ful-
filling all requirements of geographic applications [SV 89]. Instead, we present four ba-
sic classes of operations each with a number of typical representatives which should be
supported by our architecture.

1) Modifications

Analogously to standard database systems, there are operations for insertion, deletion
and update of records in a geographic database system.

2) Selections

We can distinguish between two types of selections: those referring to the spatial and
those referring to the thematic component of an object.
a) Spatial selections:
* Poaint Query
Given a query poir and a set of objectd. The point query yields all the ob-
jects ofM geometrically containing P (see figure 3(a)).
* Region Query
Given a polygonal query regid® (of type SPH) and a set of objedds the re-
gion query yields all the objects Mfsharing points witlR. A special case of the
region query is theindow query. The query region of a window query is given
by a rectilinear rectangle (see figure 3(b)). Both, the window query and the re-
gion query are often calle@nge queries.

@

le' T

Fig. 3. Examples for apoint and awindow query
b) Thematic Selections:

When performing a thematic (relational) selection the objects are selected with re-
spect to properties of their thematic component. Within this section, we pay atten-
tion only to the spatial component of the objects. In section 4.5 wewill describe how
to support thematic selections.
3) Combinations
e Spatial Join
For two given object sets A and B the spatial join operationyieldsall pairs of objects
(a,b),adA, b0OB whose spatial components intersect. More precisely, for each
object a O A we have to look for all objectsin B intersecting with a. Note, that for
efficient processing of the spatial join a selective spatial accessto the objectsis nec-
essary.
* Map Overlay
The map overlay is one of the most important operations in a geographic informa-
tion system [Bur 86]. It combines two or more sets of spatial objects. This combi-
nation is controlled by the overlay function determining in which way intersecting
objects have to be handled. The map overlay is completely based on variants of the
spatial join operation. In addition to the spatial join, the intersection of a pair of
overlapping objects has to be computed. Neighboring objects with identical values
of their thematic component should be merged [KBS 91].
4) Analyzing sets of objects
Selections or combinations of existing sets of objects are often followed by further
processing steps in practical applications. The operations and algorithms used for these
steps are very specific for a particular application and, therefore, are not supported by a
general storage and access architecture. Without considering the details, we can distin-
guish two classes of these operations and algorithms.

e Automatic analysis
Analyzing functions applied to the spatial and/or the thematic component of the ob-
jects are part of this class. Typical representatives are: calculating the average of the
area or perimeter of a set of objects, calculating the minimum and maximum of the-
matic attributes etc.

» Visualization
In many cases the automatic analysis of a database is not possible and manual inter-

mediate steps performed by a user are necessary to complete the analysis. For this
purpose, avisualization of the data on a graphic device is necessary.

The above mentioned facts clearly demonstrate that spatial selections are of great im-
portance within the set of spatial queries and operations. They do not only represent an
own query class, but also serve asavery important basis for the operations of the classes
2 - 4. Therefore, an efficient implementation of spatial selections is an important re-
quirement for good performance of the complete geographic information system.

3 A phase model for geometric query processing

After the description and specification of objects and queries, we will design an archi-
tecture for storing spatial objects and efficiently processing queries. The main task of
the architecture is the efficient processing of spatial queries and operations. Therefore,
in this section, we take a closer look at thistype of queries, distinguish different phases
in their processing and specify algorithms and data structures for their processing.

Asmentioned in the last section, spatial selections are the most important basic op-
eration in spatial query processing. Their execution can be described abstractly asa se-
guence of steps:

Step 1: Scaling down the data space

Considering spatial selections in more detail, it turns out that only a loca part of the
complete data space has to be investigated. Only this area contains candidate objects
that may fulfill a selective query.

For an efficient scaling down of the data space, it is essential to use data structures
organizing the objects with respect to their spatial locality and shape. Obviously, ob-
jectsjointly fulfilling a query condition lie close together in the data space. Therefore,
aphysical clustering of the objects with respect to their spatial locality and shapeises-
sential for providing efficient spatial query processing.

Dueto the arbitrary complexity of real geographic objects, it is not possible to build
up an index considering the complete information on the extension of the objects. Thus,
the access method is not able to yield the exact result of a query. Instead, it excludes a
large subset of objects from the result. A set of candidate objects that may fulfill the
guery condition remains and hasto be passed on to step 2 of the query processing mech-
anism. Orenstein established in [Ore 89] the termsfiltering and refinement for thistype
of query processing.

Step 2: Exact investigation of the objects

Step 2 of the query processing tests whether a candidate object actually fulfillsthe query
condition or not. For that purpose, a spatial predicate, e.g. “polygon contains point” or
“rectangle intersects polygon”, has to be checked. Similar to step 1, this test consists of
different phases. First, the test has to be restricted to only that part of the object that is
really relevant for the test. Figure 4 gives an example: To evaluate whether the query
window R overlaps Lake Volta, only its northern west peak has to be examined.

Due to the complexity of the objects on the one hand and the selectivity of spatial
gueries on the other hand, it is usefuttocture the objectslocally. The resulting struc-
ture elements have to be organized in a data structure referring to their spatial locality
and extension. Using this data structure, we can efficiently decide which parts of the ob-
ject are actually relevant to the query. Only this small number of local parts is further

examined using computational geometry algorithms, which finally decide whether an
object fulfills the query or not.

R

Fig. 4. Test of aquery window against Lake Volta

Step 3: Output of objectsfor further processing

After identifying an object as part of theresult, it isusually passed on to further process-
ing e.g. analyzing steps, output operations etc. Therefore, a physically connected stor-
age of all parts of the objectsisnecessary to support afast accessto the complete object.

4 An architecturefor query processing in spatial database systems

After the abstract description of the phase model for spatial query processing, we
present algorithmic techniques for supporting the individual phases. Later on in this
section, these techniques are used as building blocks within our geo architecture.

4.1 Spatial access methods

Access methods as an essential part of the internal level of a database system are used
to organize a dynamic set of objects on secondary storage. One-dimensional access
methods like B-trees or linear hashing are not suitable for spatial database systems. For
these systems, we have to |ook for data structures which organize the polygonal objects
with respect to their location and extension in the data space. The arbitrary complexity
of the spatial objects (simple polygon with holes) makes it very difficult to develop a
structure considering the whole object description. Instead, we consider access methods
for simpler two-dimensional objects. Surveys of spatial access methods can be found
e.g.in [Sam 90] and [Wid 91].

directory level 1 '(2

directory level 2
n &
A
data pages @ o @j

Fig. 5. Schematic presentation of an R*-tree

The ssimplest class of two-dimensional objects are rectilinear rectangles. For this class
of objects, a number of index structures already exists. A popular representative is the
R-tree [Gut 84]. The R-tree stores as many spatially close objects (rectangles) on one
data page as it accommodates and surrounds them by their minimum bounding box. A

set of such bounding boxes is stored on a (directory) page. Again, their minimum
bounding box is computed and stored in adirectory page one level above and so on. In
thisway, the whole object set is stepwise spatialy clustered and atree-like directory is
created (seefigure 5).

A very efficient version of the R-tree is the R*-tree [BKSS 90]. Within this data
structure sophisticated algorithms for page splitting and local reorganizations are used.
The overlap of page regions and the length of their margin are minimized aswell asthe
dead space, i.e. the space occupied unnecessarily by page regions.

This idea of organizing rectangles leads to an efficient processing of point queries
and small window queries [BKSS 90]. Unfortunately, thisis restricted to rectangles or
other simple spatial objects, not larger than adata page. In real applications, it is abso-
lutely necessary to store more complex objects and to process large window queries ef-
ficiently. Later on in this section, we will present an access architecture for managing
arbitrary simple polygons with holes and processing large window queries efficiently.

4.2 Approximations

The set of resultsto aspatial query consists of all the objectsfulfilling ageometric pred-
icate e.g. containing aquery point. As mentioned in the last section, spatial access meth-
ods are used for excluding alarge subset of the objects from the result as early as pos-
sible. The remaining candidate objects have to be investigated by computational geom-
etry algorithms. Considering complex objects (polygons with large numbers of
vertices), this is a time consuming task. This leads to the idea of a geometric pretest.
Such atest should be easy to process and should decide for alarge number of objects
whether they fulfill the query condition or not.

For implementing the idea of a geometric pretest, the concept of object approxima-
tionsis an adequate approach. In [Kri 91a] adetailed classification of different approx-
imation techniquesis given. The description of an approximation should be simple and
its quality should be high, two obviously competing criteria. To make object approxi-
mations useful for a geometric pretest, the object has to be contained completely in its
approximation (conservative approximation) [Sch 92]. Examples for conservative ap-
proximations are minimal bounding boxes, convex polygons, elipses etc. (figure 6).

L= e

minimal bounding box convex hull 5-corner dlipse
Fig. 6. Various conservative approximations

Let ushave acloser look at the processing of apoint query using object approximations.
First, for all candidate objects it is tested, whether their approximation contains the
query point or not. In case of a negative result, the object does not contain the query
point either. The object is discarded and a time consuming point-in-polygon test could
be saved. Only in case of a positive pretest, the object itself has to be tested.

[BKS 934] contains adetail ed examination of object approximations used for spatial
query processing in areal dataenvironment. It turned out that the convex 5-corner isthe
best compromise between the approximation quality and storage amount. Using the

R*-tree, it is shown that other approximations than the minimal bounding box can effi-
ciently be organized in aspatial access method originally designed for bounding boxes.

4.3 Object decompositions

Object approximations are applied to avoid complex geometric tests. Object decompo-
sition techniques, however, are used to simplify and speed up their processing.
Consider again a point-in-polygon test. For processing this test an algorithm with
linear runtime complexity is necessary [PS 88]. This examination of complex polygons
i.e. polygons with thousands of vertices consumes a considerable amount of CPU time.
On the other hand, only asmall local part of the object is actually relevant for the deci-
sion whether an object contains a point or not. This leads to the idea of object decom-
position. Applying this idea, the objects are divided into a number of simple and local
components, e.g. triangles, convex polygons etc.. During spatial query processing, only
one or a small number of these components has to be checked. In [KHS91] and
[Kri 91a] the decomposition approach for simple polygons with holes is presented and
discussed in detail.

convex polygons triangles trapezoids
Fig. 7. Three decomposition techniques for simple polygons

Using object decompositions geometric tests are applied only to components, e.g. trap-
ezoids, which is much more efficient than testing the whole polygon. To decide which
components are relevant for a particular test, we use again an R*-tree to organize the
components of one object with respect to their location and shape. The resulting tree is
caled a TR*-tree. In [SK 91] we demonstrated that the TR*-tree efficiently supports
various types of spatial queries and operations.

4.4 Sceneorganization

One important requirement for geographic database systems is the set orientation
[Wid 91]. A spatial query processor has to perform small queries as well as large que-
ries efficiently. When processing a large query, a large amount of data is transferred
from secondary storage into main memory. The concepts presented up to now in this
paper, merely support an efficient processing of small queries but do not speed up large
queries considerably. Therefore, there is an obvious demand for a concept supporting
Set orientation.

Considering the existing storage organization and the type of objects to be stored,
we can observe the following points:

e The objects are very large in comparison to the size of the pages they are stored in.
Even in the case of large pages (e.g. 4 KByte), the number of objects per page is usu-
ally small and often we need several pages for storing just one single object.

e The pages used for storing objects are distributed on the secondary storage device

independently from spatial aspects, i.e. pages lying adjacent in space lose their
neighborhood on the storage device. Large region queries transfer a large amount of

spatially adjacent pages into main memory. Therefore, an arbitrary distribution of
these pages on the disk leads to very high access costs during query processing.

The concepts presented in the sections before preserve only a local ordering within the
pages [Wid 91]. To support the set orientation in an appropriate way, a global order
preservation i.e. aphysical clustering of larger storage units, is required.

Different approaches are conceivable to handle larger storage units. In [Wei 89] us-
ing larger pages, pages of variable length, various buffering strategies and physical
clustering of pages combined with a set-oriented interface are discussed in detail to han-
dielarge complex abjects. In this paper, physical clustering of pagesisfavored and nat-
urally offersitself as an adequate approach to store scenes within our geo architecture.
To trandlate this approach into action, we need a set-oriented interface between the da-
tabase system and the secondary storage device [Wei 89]. Such an interface allows an
efficient transfer of physically adjacent pages from secondary storage to main memory.
The implementation of such an interface is not the subject of this paper.

In [HSW 88] an idea based on dynamic z-hashing for implementing physical clus-
tering of pagesis presented. Thisideais applied to rectanglesin [HWZ 91]. However,
the global order is preserved only for approximations of objects. Furthermore, this hash
approach is not applicable to access methods with an arbitrary space partitioning
scheme. Therefore, we have developed a concept based on the partitioning scheme of
the R*-tree.

Building up the scene organization

As mentioned before, we use the R*-tree as a major component of our geo architecture,
duetoitsgood performance and its robustness. The R*-tree uses avery efficient scheme
for space partitioning neither clipping nor transforming the spatial objects. These facts
lead to theideaof using the partitionsi.e. subtrees of the R*-tree as basic unitsfor phys-
ical clustering. In thefollowing, asceneisdefined as a subtree of the R*-tree physically
clustered on secondary storage. One scene consists of alarge set of physically adjacent
pages containing all corresponding objects. Using this approach, no additional data
structure for handling scenesis necessary.

An object larger than one page is stored on several pages such that al of them are
physically clustered within one scene. Thus, also the transfer of such alarge object into
main memory is supported by the scene organization (see step 3 of the phase model).
Note that no order has to be preserved within each scene.

R*-tree 1
Level of :-":"i 4 | -
scene
description 7
il
AL 4 4
subtrees for the scenes () approximations (b) scenes

physically clustered
Fig. 8. Scene organization

In addition to a schematic structure of the scene organization, figure 8 presents the par-
ticular scene organization for the counties of the European Community (see figure 1

aso). The R*-tree contains the polygons representing the counties, their decomposition
components and their approximations (figure 8 (a)). Figure 8 (b) depicts the partition-
ing of the R*-tree on a higher directory level. The rectangles describe the scenes, the
corresponding subtrees are physically clustered.

Query processing

Using our scene architecture, small queries as well as large queries are processed effi-
ciently. Small queries are processed by single page accesses as described before. If a
range query specifies alarger query region, all scenesintersecting the query region, i.e.
subtrees of the R*-tree, are transferred into the main memory. For each scene just one
search operation on secondary storage is necessary. Without a scene organization, we
need one search operation for each page which is much more expensive. Unfortunately,
a scene may contain a number of objects not fulfilling the query condition (false hits).
Nevertheless, the false hits are also transferred into main memory. A relatively small
number of false hits does not affect performance considerably, since the time needed
for searching a page drastically exceeds the time for transferring apage [PH 90]. In ad-
dition, the degree of intersection between the scene and the query region may be used
as ameasure to decide whether the sceneistransferred completely or whether the query
isanswered without using the scene organization. A detailed performance evaluation of
the scene organization is presented in section 5.1.

After transferring the scene into main memory, aquery isprocessed asusual, i.e. us-
ing approximations and decomposition techniques (see section 4.2 and section 4.3). A
detailed algorithmic description of the dynamic organization of the scene architecture
ispresented in [Sch 92] and [BK S 93b]. Supplementing the presented query processing
techniques by a scene organization allows an efficient query processing for queries of
arbitrary size.

45 Integration of thematic attributes

The techniques presented up to now are completely dedicated to spatial queries. Que-
riesreferring to thematic attributes of the stored objectsare a so important in geographic
information systems (see section 2.1).

For an efficient support of thematic queries, an additional index, i.e. asecondary in-
dex (e.g. a B-tree) is necessary for the relevant thematic attributes. The R*-tree in co-
operation with the scene organi zation determines the location of physical storage of the
objects. For connecting both, we need a link table. Thistable assignsto each spatial ob-
ject, which isrepresented by a unique surrogate one data page of the R*-tree. If the data
page of the spatial object changes, only the entry of thelink table hasto be updated. An
update of the secondary index is not necessary. To allow an access from the spatial in-
dex to the link table, all entries of the spatial objects in the data pages have to be ex-
tended by a surrogate.

In figure 9, the integration of a secondary index and a link table into our complete
geo architectureis presented (for more details see also [Kri 91b] and [Sch 92]).
4.6 Thegeo architecture

Up to now, we have presented basic concepts and techniques for an efficient query
processing in geographic databases. The goa of this section is the integration of these
concepts into our geo architecture. This architectureis presented in figure 9.

The basic building block of our architecture is the R*-tree. It organizes the objects
on secondary storage pagewise and allows an efficient spatial indexing. Starting with

the root, a spatial query passes through the R*-tree, thereby locating one or several
scene descriptions. If the intersection of the query region and the scene exceeds agiven
threshold, the sceneis completely transferred into main memory where query process-
ing proceeds. Otherwise, the required data regions are transferred page by page.

The next ingredient of the architecture are approximations. They support a first
preselection to determine whether an object fulfills the query or not. For that purpose,
the approximations, e.g. minimal bounding 5-corners, of the objectsare stored inthe en-
tries of the data pages. If the approximation of a spatial object fulfillsthe query, the ob-
ject itself has to be further investigated. Therefore, each object entry contains a pointer
to its exact geometric representation managed by a TR*-tree. The TR*-tree organizes
all decomposition components and hel ps exploiting spatial selectivity in query process-
ing. Instead of applying time consuming computational geometry algorithms to com-
plete spatial objects, the query condition is evaluated just considering simple compo-
nents.

The architecture is completed by secondary indices for thematic attributes. A the-
matic query traverses the B-tree yielding one or more surrogates. These surrogates are
used for accessing to the link table providing the number of the data page storing the
object entry.

spatial secondary index
primary index for thematic attributes
scene
description B-tree

sceny iene T link teble
|

** ** ¥ /Surrogate
IE*\EI D

data pages
with entries 1

\ number of
the data page

TR*-tree

entry

'decompositior

pointer toa

TRI*—!ree point coordinates exact Object I’epl’es.

Fig. 9. Integration of efficient building blocks into our geo architecture

5 Evaluation

The techniques integrated in our architecture for spatial databases have been investi-
gated and tested extensively. The basic component of the architecture isthe R*-tree. In
[BKSS90] a detailed performance evaluation is presented and it turns out that the
R*-tree outperforms the other R-tree variants. A performance comparison of the
R*-tree, the R*-tree and the PMR-Quadtree is presented in [HS 92]. Various approxi-
mations are compared in [BKS 93a]. The minimum bounding 5-corner turns out to be
best suited for spatial query processing.

The decomposition approach is examined in [Kri 91a] and [KHS 91]. Especially
small queries are processed much faster using the convex and the trapezoid decompo-

sition instead of the undecomposed representation. The integrated representation of a
polygon decomposed into trapezoids using a TR*-treeis considered in [SK 91].

The combination of spatial objects to scenesisintroduced in this paper for the first
time. As mentioned before, we expect a considerable performance improvement by us-
ing this approach. This expectation is confirmed by a detailed performance evaluation
of the scene architecture presented in the following subsection.

5.1 Evaluation of the scene organization

Basically, there are three different models for storing spatial objects:
1) Soring the exact object representations outside of the data pages (model 1)

In the data pages of the index structure, we store the approximations and the
pointers to the exact representations of the objects. The exact representation is
stored outside the index structure, e.g. in asequentia file. This approach is used
in quadtrees for instance [HS 92]. In other words, the spatial index structureisa
primary index for the approximations and a secondary index for the spatial ob-
jects. This model is shown schematically in figure 10. The main advantage of
this scheme is the large number of approximations stored together in one data
page, i.e. a maximum degree of local ordering of the approximations is pre-
served. Furthermore, there is no limit to the size of the exact object representa-
tion. A fundamental drawback is the fact that the order preservation just refers
to the object approximations and not to the objects themselves. Consequently,
when processing range queries for each access to an exact object representation
an additional page accessis hecessary.

2) Soring the exact object representation inside the data pages (model 2)

The exact representation of the objects is stored, in addition to the approxima:
tions, inside the data pages. Therefore, spatial neighborhood is physically pre-
served and objects are transferred into main memory just using one disk access
[Wid 91]. In contrast to the first model, theindex structureisaprimary index for
the spatial objects and determines their storage location. An essential drawback
of this approach isthe low number of objects fitting into one page. As a conse-
guence, neighboring objects are often stored in different pages. In section 2.2 we
have emphasi zed that objectslarger than one data page often occur in geographic
databases. Handling these objects with the second model is a difficult task be-
cause a special page overflow mechanism has to be implemented.

3.) Soring objectsin a scene organization (model 3)

Thismodel has already been presented in section 4.4. Larger parts of the dataare
physically clustered within so called scenes and organized in an R*-tree.

In figure 10 the three models are depicted.

The scene organization has been designed for supporting large region queries. Con-
sidering such set-oriented queries, we have to take a closer look to two important prob-
lems:

« Which performance is gained by the three models ? Is the performance of the scene
organization superior to the other two models ?

* Which size of the scenes leads to the best query performance ? Does this size sig-
nificantly depend on the size of the range queries ?

scenes directory

directory /
[T [TIT] dete pages % data pages
1 1 1
exten 1] | — [1[-% OOCHOm s | QA 0=
modedl 1 model 2 model 3

Fig. 10. Models for storing spatial objects
Test environment

To find an answer to these questions, we have carried out adetailed empirical perform-
ance comparison of the three models. We used real test data from the US Bureau of the
Census [Bur 89] containing county borders, highways, railway connections and rivers
of four Californian counties. This database consists of 119.151 lines, each consisting of
2t0 349 points. Each co-ordinate is represented by areal number of 8 Bytes. Altogether
the database has a size of 15.9 MByte. The lines were approximated by using minimal
bounding boxes. For the representation of these boxes 16 Bytes are available. These
boxes are depicted in figure 11 (a).

(a) Test data (b) Query regions (1% area)
Fig. 11. Data and queries used for the tests

Using thisdata set we built up three R* -treesreferring to the three different models. The
page capacity was 4 KByte.

Toinvestigate the performance of the modelsfor large query regions, we carried out
four test series with different sizes of the query regions. Each series consists of 464
quadratic window queries uniformly distributed over the data space covered by the ob-
jects. The area of the query regions varies between 0.25% and 16% of the data space.
In figure 11 (b) the 1% queries are shown. Table 1 presents the query specification of
the four test series.

size of per test series average per query
test seri the queries
series (per cent of number data volume number data volume
the data space) of records (KByte) of records (KByte)

| 0.25% 189,229 29,392 408 63
I 1% 714,937 105,521 1,541 227
11 4% 2,687,648 382,483 5,792 824
v 16 % 9,462,455 1,315,236 20,393 2,835

Tab. 1. Characteristics of the test series

To evaluate the performance of the three model s, we need ameasure for the access cost.
The time necessary for reading one page into main memory consists of the search time,
i.e. the time needed for locating the page on secondary storage, and the transfer time,
i.e. the time needed to transfer the data from secondary into main memory. Normalize
the cost for a transfer operation to 1. Then in real magnetic disk drives the cost for a
search operation is approximately 10 [PH 90]. If Ng denotes the number of search op-
erations and N+ denotes the number of transfer operations then the compl ete access cost
A isgiven by:
A = 10Ng+ Ny

Considering range queries, the access cost within the R*-tree is negligible in compari-
son to the access cost of the exact object representation. Thus, in the following, we take
into account only the access cost for reading the exact object representation.

Test results:

In table 2, we present the access cost when storing the lines outside the data pages
(model 1). The number of search operations (Ng), the number of transfers (N1) and the
access cost A are presented (in the following table, A isnot directly calculated from Ng
and N1 due to rounding).

test series| (0,25 %) test series |1 (1 %) test series |1 (4 %) test series |V (16 %)

Ns | Nt | A [Ns | Nt | A || Ng | Np A Ns | N A

189| 189 2,082|| 715| 715| 7,864|| 2,688| 2,689 | 29,585|| 9,462| 9,463| 104,088

Tab. 2. Access cost for model 1 (in thousand, rounded)

Storing the exact object representation outside the data page, requires at least one (ex-
pensive) search operation for each answer, because of the missing spatial organization
of the exact object representations.

Table 3 contains the results for model 2, i.e. for storing the lines inside the data
pages.

test series| (0,25 %) test series |1 (1 %) test series |1 (4 %) test series 1V (16 %)

Ns | Nr | A Ns | N | A Ns | Np A Ng | Np A

16 16 175 52 52 573 180 180 | 1,985 610 610 | 6,710

Tab. 3. Access cost for model 2 (in thousand, rounded)

Compared to model 1, model 2 needs considerably less search operations. The reason
for this behavior is the fact that many neighboring objects are stored in just one data
page and read into main memory by one access. The improvement only marginally de-
pends on the size of the query ranges. Nt has basically the same size as Ng, becausein
the test data only afew records are larger than one page.

In the scene organization (model 3), the results considerably depend on the average
size of the scenes. Using model 1, the exact object representation is only accessed if it
is necessary for query processing. Contrarily, in the second model exact object repre-
sentations are read into the main memory if they are close to the margin of the query
region, but do not intersect the query region (false hits). Large scenes need only asmall
number of search operations but a high number of transfers from the secondary to the
main memory due to the large number of false hits. On the other hand, the smaller the
scenes, the higher the effort for searching and the lower the number of transfers. To ex-
amine this effect in more detail and to determine the optimal scene size, we varied the
scene sizein our comparisons. Theresults are presented in table 4 where the best results
are shaded.

average ||test series| (0.25%)|| test seriesll (1%) || test serieslll (4 %) || test series|V (16 %)
scene size
(Byte) NS NT A NS NT A NS NT A NS NT A

1,852,750|| 1.1| 698| 709|| 12| 781| 794|| 16| 943| 959|| 21| 1,666| 1,188

757,943|| 12| 275| 287|| 16| 343| 345|| 24| 505 529|| 41 837 877

273,357|| 15| 128| 144|| 23| 185| 208|| 42| 324| 365|| 86 638 725

140,124|| 1.8 78 96(| 3.0| 123| 153|| 6.0 238| 298| 14.1 528 669

91,619|| 2.2 62 84| 39| 103| 142|| 85| 214| 299|| 20.8 503 711

79,027 21 51 72| 3.9 90| 130(| 88| 191| 280| 22.7 474 701

63,402| 2.3 46 70| 45 85| 130(| 10.4| 187| 291|| 275 467 742

33,283|| 3.2 36 68|| 6.7 70| 137|| 17.3| 167| 340|| 48.8 447 936

18,610(| 4.2 26 68|| 10.0 57| 158 27.8| 151| 429|| 828 432 1,260

10,716|| 6.1 23 84|| 154 54| 209|| 45.6| 153| 609|| 140 452 | 1,853

8,367|| 6.8 21 87|| 18.2 52| 235|| 55.6| 152| 708|| 175 460 | 2,210

Tab. 4. Access cost for the scene organization (model 3) (in thousand, rounded)

As expected, with increasing scene size Ng decreases and Nt increases. Scene sizes be-
tween 25 and 100 K Byte lead to minimum access cost, depending on the size of the que-
ries. Thelarger the queries, the larger the optimal scene size. However, this dependency
is not as strong as expected. There is a factor of 64 in the size of the queries between
test series| and IV, but only afactor of 4 in theresulting optimal scene sizes. Addition-
ally, the graphs for the cost functions are very flat close to their minimum. Thus, we
chose 77 KByte as a nearly optimal scene size for all test series.

Conclusion

Intable 5, the access cost for all three modelsis presented. The cost for model 1isstand-
ardized to “1". For the other two models the numbers describe the speed up factor for

query processing using these models. The average scene size for model 3 is 79,027
Bytes.

speed up factors for query processing
model
1 (0.25 %) 11 (1 %) 11 (4 %) IV (16 %)
1: Geometry outside of the data pages 1.0 1.0 1.0 1.0
2: Geometry inside the data pages 11.9 13.7 149 155
3: Scene organization 28.9 60.5 105.7 1485

Tab. 5. Speed up factorsfor query processing using model 2 and 3 in comparison to model 1
In conclusion, we would like to point out the following statements:

« Storing the exact object representation inside the data pages (model 2) speeds up
query processing by a factor of 12 to 15 in comparison to model 1 (using separate
pages). The size of the query regions has only a small influence on this factor. For
the interpretation of the results one remark is important: The objects used for the
tests are relatively small in comparison to the size of the data pages. Using larger
objects, i.e. objects larger than one data page, requires storing the exact representa-
tion outside of the data pages. As a consequence, query performance of model 2
comes closer to the performance of model 1.

« The new scene organization is the clear winner of the performance comparison.
Even the processing of small queries is performed considerably faster by this stor-
age model. For small queries, we have a speed up factor of about 30 (in comparison
to model 1) which is increasing to the impressive value of 148 for large queries.

Another important result is the fact that the optimal scene size is almost independent
of the query sizes. Therefore, using the scene architecture with a fixed scene size is
beneficial to queries of very different size.

Furthermore, the flat form of the cost function guarantees a considerable speed up
of the query processing, even if the average size of the scene is varying caused by
insertions and deletions of objects.

6 Conclusion

We proposed atorage and access architecture for geographic database systems. This
architecture integrates a number of various concepts and techniques for efficient query
processing.

TheR*-tree is the basic component of our geo architecture. It organizes the data on
secondary storage with respect to their spatial location and shape. In this way, the search
region of spatial queries can be quickly narrowed down. The next ingredient of our ar-
chitecture ar@bject approximations. They support an efficient preselection to decide
whether an object fulfills the query or not. In comparison to the usually used minimum
bounding box, the minimum 5-corner is a good compromise between the quality of the
approximation and the amount of required storage. The exact geometric representation
of an object is managed byB*-tree. The polygonal objects are decomposed into sim-
pler components and organized with respect to their spatial location and shape. This al-
lows a selective access to the components needed to process a spatial query. Due to the
simplicity of the components, the application of time consuming computational
geometry algorithms to complex objects is avoided. Thematic queries are supported by

secondary indices for thematic attributes. These secondary indices are connected to the
primary index, i.e. the R*-tree, using alink table.

The parts of our architecture mentioned above support efficient processing of que-
rieswith high spatial selectivity, i.e. point queries and small window queries. To speed
up the set-oriented object access of large range queries, we added a new ingredient to
our architecture: the scene organization. Using this new approach, large parts of the
data are combined in scenes and spatially clustered on secondary storage. These scenes
are organized within the primary R*-tree. We investigated the performance of this ap-
proach in adetailed performance comparison. For large range queries, the scene organ-
ization is superior in performance to ordinary storage models with a speed up factor up
to two orders of magnitude.

Theuse of our architectureis not restricted to geographic information systems. With
only slight modifications it can also be used in systems for computer aided design
(CAD) or computer integrated manufacturing (CIM).

In our future work, we plan to incorporate our geo architecture into an existing ex-
tensible database system for spatial applications. Promising candidates for thisidea are
DASDBS, GRAL and POSTGRES. Performance eval uations of our geo architecture af -
ter incorporating it into such a system will be very interesting.

Furthermore the design of a parallel geo architectureisan interesting challenge for
future research activities. Parallelism should be exploited in two ways. First, we want
to use amulti processor system to process queries in main memory in amassively par-
allel way. Using object decomposition techniquesin aparallel environment promises a
considerable performance improvement. Second, we want to use multi disk systemsto
organi ze the large data volume of geographic applications more efficiently. The main
problem to solveis, to determine an appropriate distribution of the data over the differ-
ent disk drives.

The application of the presented techniquesto 3D-objectsisancther interesting field
of research activitiesfor the future. For example, bio-computing isan important field of
application for 3D-spatial objects. Thefirst step in thisdirection isthe development and
implementation of 3D-approximation and decomposition techniques.

References

[Aro91] Aronoff S.: ‘Geographic Information System$yDL Publications, 1991.

[Bar 88] Bartelme N.: ‘GIS Technology: Geographic information systems, land information
systems and their fundamentgisi German), Springer, 1988.

[BKS93a] Brinkhoff T., Kriegel H.-P., Schneider R.: ‘Comparison of Approximations of Com-
plex Objects used for Approximation-based Query Processing in Spatial Database
Systems’Proc. 9th Int. Conf. on Data Engineering, Vienna, Austria, 1993.

[BKS93b] Brinkhoff T., Kriegel H.-P., Schneider R.: ‘Scene Organization: A Technique for
Global Clustering in Spatial Database Systei§93, submitted for publication.

[BKSS90] BeckmannN., Kriegel H.-P., Schneider R., Seeger B.: ‘The R*-tree: An Efficient and
Robust Access Method for Points and Rectanghest, ACM SIGMOD Int. Conf.
on Management of Data, Atlantic City, NJ., 1990, pp. 322-331.

[Bur86] Burrough P.A.: ‘Principles of Geographical Information Systems for Land Re-
sources AssessmenDxford University Press, 1986.

[Bur89] Bureau of the Census: ‘TIGER/Line Percensus Files, 1990 Technical Documenta-
tion’, Washington, DC., 1989.

[CDRS 86] Carey M. J,, DeWitt D. J., Richardson J. E., ShekitaE. J.: ‘Object and File Manage-

[Cra90]

[Fra 91]

[GC 87]
[Gut 84]

[Git 89]

[HS 92]

[HSW 8g]

[HWZ 91]

[KBS 91]

[KHS 91]

[Kri91a]

[Kri 91b]

[Cre 89
[PH 90]

[PS 8]
[Sam 90]

[Sch 92]

ment in the EXODUS Extensible Database Systero¢. 12th Int. Conf. on Very
Large Data Bases, Kyoto, Japan, 1986, pp. 91-100.

Crain|.K.: ‘Extremely Large Spatial Information Systems - A Quantitative Perspec-
tive’, Proc. 4th Int. Symp. on Spatial Data Handling, Zirich, Switzerland, 1990,
pp- 632-641.

Frank, A.U.!Properties of Geographic DataProc. 2nd Symp. on Large Spatial
Databases, Zirich, Switzerland, 1991, in: Lecture Notes in Computer Science, Vol.
525, Springer, 1991, pp. 225-234.

Gorny A.J., Carter RWorld Data Bank Il: General users guiddechnical report,

U.S. Central Intelligence Agency, Washington, 1987.

Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial Searchifgac.
ACM SIGMOD Int. Conf. on Management of Data, Boston, MA., 1984, pp. 47-57.
Guting R. H.!Gral: an extensible relational database system for geografic applica-
tions’, Proc. 15th Int. Conf. on Very Large Data Bases, Amsterdam, Netherland,
1989, pp. 33-44.

Hoel E.G., Samet H.: ‘A Qualitative Comparison Study of Data Structures for Large
Line Segment DatabasesRroc. SSIGMOD Conf., San Diego, CA., 1992,

pp 205-214.

Hutflesz A., Six H.-W., Widmayer P.: ‘Globally Order Preserving Multidimensional
Linear Hashing, Proc. 4th Int. Conf. on Data Engineering, Los Angeles, CA., 1988,

pp. 572-579.

Hutflesz A., Widmayer P., Zimmermann C.: ‘Global Order Makes Spatial Access
Faster’, Int. Workshop on Database Management Systems for Geographical Appli-
cations, Capri, Italy, 1991, in: Geographic Database Management Systems,
Springer, 1992, pp. 161-176.

Kriegel H.-P., Brinkhoff T., Schneider R.: ‘An Efficient Map Overlay Algorithm
based on Spatial Access Methods and Computational GeonietryWorkshop on
Database Management Systems for Geographical Applications, Capri, Italy, 1991,

in: Geographic Database Management Systems, Springer, 1992, pp. 194-211.

Kriegel H.-P., Horn H., Schiwietz M.: ‘The Performance of Object Decomposition
Techniques for Spatial Query Processirroc. 2nd Symp. on Large Spatial Data-
bases, Zirich, Switzerland, 1991, in: Lecture Notes in Computer Science, Vol. 525,
Springer, 1991, pp. 257-276.

Kriegel H.-P., Heep P., Heep S., Schiwietz M., SchneidefAR. Access Method
Based Query Processor for Spatial Database Systénnsi)/orkshop on Database
Management Systems for Geographical Applications, Capri, Italy, 1991, in: Geo-
graphic Database Management Systems, Springer, 1992, pp. 273-292.

Kriegel H.-P., Heep P., Heep S, Schiwietz M., Schneider R.: ‘A Flexible and Exten-
sible Index Manager for Spatial Database SysteRrsic. 2nd Int. Conf. on Data-

base and Expert Systems Applications, Berlin, Germany, 1991, pp. 179-184.

Orenstein J. A.: ‘Redundancy in Spatial Database®oc. ACM SIGMOD Int.
Conf. on Management of Data, Portland, USA, 1989, pp. 294-305.

Paterson D., Hennessy J.: ‘Computer Architecture: A Quantitative Approacior-

gan Kaufman, 1990.

Preparata F.P., Shamos M.I.: ‘Computational GeometrySpringer, 1988.

Samet H.: ‘The Design and Analysis of Spatial Data Structur@sigison Wesley,

1990.

Schneider R.: ‘A Storage and Access Structure for Spatial Database Systems’,
Ph.D.-thesis (in German), Institute for Computer Science, University of Munich,

1992.

[SK 91]

[SR 86]

[SV 89]

[SW 86]

[Wei 89]

[Wid 91]

Schneider R., Kriegel H.-P.: ‘The TR*-tree: A New Representation of Polygonal Ob-
jects Supporting Spatial Queries and Operatiofsac. 7th Workshop on Compu-
tational Geometry, Bern, Switzerland, 1991, in: Lecture Notesin Computer Science,
Vol. 553, Springer, 1991, pp. 249-264.

Stonebraker M., RoweL.: ‘The Design of POSTGRE®*0oc. ACM SIGMOD Conf.

on Management of Data, Washinton D.C., 1986.

Scholl M., Voisard A.: ‘Thematic Map Modelling’Proc. 1st Symp. on the Design

and Implementation of Large Spatial Databases, Santa Barbara, CA., 1989, in: Lec-
ture Notesin Computer Science, Vol. 409, Springer, 1990, pp. 167-190.

Schek H.-J., Waterfeld W.: ‘A Database Kernel System for Geoscientific Applica-
tions’, Proc. 2nd Int. Symp. on Spatial Data Handling, Seattle, Washington, 1986,

pp. 273-288.

Weikum G.: ‘Set-Oriented Disk Access to Large Complex Obje&xsic. 5th Int.
Conf. on Data Engineering, Los Angeles, CA., 1989, pp. 426-433.

Widmayer P.: ‘Data Structures for Spatial Databasgsh German) in: Vossen G.,
Witt K.-U. (eds.): ‘Entwicklungstendenzen bei Datenbank-Systemen’ (Future
Trends in Database Systems), Oldenbourg, 1991, pp. 317-361.

	A Storage and Access Architecture for Efficient Query Processing in Spatial Database Systems
	Thomas Brinkhoff, Holger Horn, Hans-Peter Kriegel, Ralf Schneider
	Institute for Computer Science, University of Munich Leopoldstr. 11 B, W-8000 München 40, Germany
	e-mail: {brink,holger,kriegel,ralf}@dbs.informatik.uni-muenchen.de
	1 Introduction
	2 Objects and operations of a spatial database system
	2.1 Objects
	The spatial component
	Fig. 1. Simple polygon with holes

	The thematic component
	The object model
	Fig. 2. Map of the European counties modeled by a set of SPH

	2.2 Characteristics of the objects
	Complexity and variation of the data
	Persistent storage of the objects in a weak dynamic environment

	2.3 Queries and operations
	1) Modifications
	2) Selections
	a) Spatial selections:
	Fig. 3. Examples for a point and a window query

	b) Thematic Selections:
	3) Combinations
	4) Analyzing sets of objects

	3 A phase model for geometric query processing
	Step 1: Scaling down the data space
	Step 2: Exact investigation of the objects
	Fig. 4. Test of a query window against Lake Volta

	Step 3: Output of objects for further processing

	4 An architecture for query processing in spatial database systems
	4.1 Spatial access methods
	Fig. 5. Schematic presentation of an R*-tree

	4.2 Approximations
	Fig. 6. Various conservative approximations

	4.3 Object decompositions
	Fig. 7. Three decomposition techniques for simple polygons

	4.4 Scene organization
	Building up the scene organization
	Fig. 8. Scene organization

	Query processing

	4.5 Integration of thematic attributes
	4.6 The geo architecture
	Fig. 9. Integration of efficient building blocks into our geo architecture

	5 Evaluation
	5.1 Evaluation of the scene organization
	1.) Storing the exact object representations outside of the data pages (model 1)
	2.) Storing the exact object representation inside the data pages (model 2)
	3.) Storing objects in a scene organization (model 3)
	Fig. 10. Models for storing spatial objects

	Test environment
	Fig. 11. Data and queries used for the tests
	Tab. 1. Characteristics of the test series

	Test results:
	Tab. 2. Access cost for model 1 (in thousand, rounded)
	Tab. 3. Access cost for model 2 (in thousand, rounded)
	Tab. 4. Access cost for the scene organization (model 3) (in thousand, rounded)

	Conclusion
	Tab. 5. Speed up factors for query processing using model 2 and 3 in comparison to model 1

	6 Conclusion
	References

