
y
heir
ce
ject
d as
ich

y
ce
ble

 we
essing

 im-

d op-
 basic
atial
ur, we
 scene
thods
A Storage and Access Architecture for
Efficient Query Processing in Spatial Database Systems

Thomas Brinkhoff, Holger Horn, Hans-Peter Kriegel, Ralf Schneider

Institute for Computer Science, University of Munich
Leopoldstr. 11 B, W-8000 München 40, Germany

e-mail: {brink,holger,kriegel,ralf}@dbs.informatik.uni-muenchen.de

Abstract: Due to the high complexity of objects and queries and also due to extremel
large data volumes, geographic database systems impose stringent requirements on t
storage and access architecture with respect to efficient query processing. Performan
improving concepts such as spatial storage and access structures, approximations, ob
decompositions and multi-phase query processing have been suggested and analyze
single building blocks. In this paper, we describe a storage and access architecture wh
is composed from the above building blocks in a modular fashion. Additionally, we in-
corporate into our architecture a new ingredient, the scene organization, for efficientl
supporting set-oriented access of large-area region queries. An experimental performan
comparison demonstrates that the concept of scene organization leads to considera
performance improvements for large-area region queries by a factor of up to 150.

1 Introduction
During the last decade, the management, representation and evaluation of spatial data
in information systems gained increasing importance. Geographic information systems
(GIS) are increasingly used in public administration, science and business. The nucleus
of a GIS is the geographic database system. Contrary to business applications based on
standard database systems, such systems are not suitable for geographic applications
[Wid 91]. The insufficient expressive power e.g. of relational systems, leads to unnatu-
ral data models and to poor efficiency in query processing.

Therefore, various research groups have developed a large number of concepts and
techniques for improving single aspects of a geographic database system. Examples are
the design of spatial data models or efficient access methods for managing large sets of
spatial objects.

In this paper, we will present our geo architecture, a new storage and access archi-
tecture for spatial objects integrating several concepts and techniques. It is not our goal
to present a new spatial database system or a kernel of a system such as DASDBS
[SW 86], EXODUS [CDRS 86], GRAL [Güt 89] and POSTGRES [SR 86]. Instead,
would like to assemble suitable concepts and techniques to a spatial query proc
mechanism. One of the most important building blocks of our architecture is the scene
organization, a new technique for supporting large range queries. Its performance
provement by up to two orders of magnitude is demonstrated.

The paper is organized as follows. First, we take a closer look at the objects an
erations commonly used in geographic information systems. This leads to a set of
queries which should be efficiently supported by our architecture. A model of sp
query processing using different phases is described in section three. In section fo
present different algorithms and methods for supporting these phases. The new
organization is described in section 4.4. The integration of the algorithms and me

t few
ts we

aring
. The
pre-

ematic

sim-

ure 2
leads to our geo architecture. The rest of the paper contains an investigation of the per-
formance of this architecture. In particular, we present a detailed performance evalua-
tion of our new scene organization for real world data. The paper concludes with a brief
statement of our findings and some suggestions for future work.

2 Objects and operations of a spatial database system
In this paper, we present a conceptional architecture for storing objects and processing
queries in a geographic database system. To develop such an architecture, we first need
an exact specification of the objects and queries. This is presented in the following sub-
sections.

2.1 Objects

The objects stored in a geographic database are used for modeling specific parts of the
surface of the earth with respect to one or several properties. Therefore, the objects are
characterized by a spatial and a thematic component. The spatial component describes
the spatial locality and the shape of the modeled part of reality whereas the thematic
component contains the thematic information.

The spatial component
The spatial component of an object is represented by one of the basic topological ele-
ments of the plane: point, line or area. Points are described by specifying their coordi-
nates with respect to a given coordinate system. For modeling lines, both polylines as
well as free-form curves are used. In this paper, we concentrate on representing areas.
From the literature two main concepts for representing areas are known: the raster and
the vector model. Because of its favorable scaling capabilities, its lower demand of stor-
age and its “object orientation”, the vector model has been preferred over the las
years for application in geographic database systems. The type of spatial objec
consider in this paper is the class of simple polygons with holes (SPH for short) (see
figure 1). A polygon is called simple if there is no pair of nonconsecutive edges sh
a point. A SPH is a simple polygon where simple polygonal holes may be cut out
class of SPHs is well suited for geographic applications (see [Bur 86]). It allows re
senting areas with arbitrary precision and explicitly takes holes into account.

Fig. 1. Simple polygon with holes

The thematic component
The thematic component characterizes an object with respect to one or several th
properties. We distinguish between qualitative properties such as land use and quanti-
tative properties such as amount of precipitation. For representing thematic values,
ple data types such as strings or real numbers are used.

The object model
The geo architecture to be developed should be able to store sets of objects consisting
of a spatial (SPH) and a thematic component (vector of simple data types). Fig
gives a typical example of a map which is represented by a set of SPHs.

he

 one
Fig. 2. Map of the European counties modeled by a set of SPH

Both components require a completely different handling by the geo architecture. For
managing vectors of simple data types, e.g. in a relational database system, a lot of well
known data structures and algorithms are available. However, organizing the spatial
component demands for new structures and algorithms. They should organize the ob-
jects in such a way that spatial queries referring to location and shape of the objects are
processed efficiently.

Additional to these fundamental properties of the spatial objects, two more aspects
are important for the design of the geo architecture. First, we need a characterization of
the objects from real applications as accurate as possible. Second, we need a specifica-
tion of the queries and operations to be performed on these objects.

2.2 Characteristics of the objects

In this paper, it is not our goal to present a general characterization of the object sets
occurring in geographic applications. From our point of view this is impossible because
of the very wide application spectrum geographical information systems are used in. In-
stead, we outline some general properties of the data which influence the design of our
geo architecture considerably.

Complexity and variation of the data
 • Number of objects and data volume

In real applications, the number of data objects may be as high as 109. The data vol-
ume may occupy up to 1 TerraByte (see [Fra 91] and [Cra 90]).

 • Variation of objects and sets of objects

Data from real world applications vary extremely with respect to single objects and
whole object sets [Fra 91]. This particularly refers to the following aspects:

 • Object extensions
It varies in a range of 1 : 106 [Fra 91], where the largest objects may occupy t
whole data space.

 • Object shape

 • Amount of storage
As an example, in the World Data Bank II [GC 87] the amount of storage for
polygonal object varies between 0.5 KB and more than 1.1 GB.

exten-
r the

often,
amless
 to be

. Alto-
proxi-

basis.
sisten-
ll, the

ns de-
ture

ents.
s ful-

r ba-
uld be

eletion

l and

n
 re-
 • Distribution of the objects in the data space
The number of objects per unit (density) varies in a range of 1 : 104 in real world
applications [Fra 91].

In particular, we have to consider that there are no upper bounds neither for the
sion of objects, the complexity of object structure, the amount of storage, nor fo
density of the objects.

Persistent storage of the objects in a weak dynamic environment
Recording the data of a geographic information system is an expensive task. Very
data from paper maps as well as satellite pictures have to be integrated into a se
database. This work is often a source of inaccuracy and inconsistency, which has
revealed and removed by using time consuming consistency check mechanisms
gether recording the data and preserving consistency of the data account for ap
mately 80% of the operating costs of a geographic database system [Aro 91].

After recording the database, it is persistently stored and used on a long term
However, the database is not static because correcting mistakes, removing incon
cies and adapting to changes in the real world leads to updates of the data. All in a
database is weakly dynamic.

The properties of spatial objects mentioned above and the queries and operatio
scribed in the following section form a requirement definition for the geo architec
which is described in detail in section 4.

2.3 Queries and operations

Geographic database systems are used in very different application environm
Therefore, it is not possible to find a compact set of spatial queries and operation
filling all requirements of geographic applications [SV 89]. Instead, we present fou
sic classes of operations each with a number of typical representatives which sho
supported by our architecture.

1) Modifications
Analogously to standard database systems, there are operations for insertion, d
and update of records in a geographic database system.

2) Selections
We can distinguish between two types of selections: those referring to the spatia
those referring to the thematic component of an object.

a) Spatial selections:
 • Point Query

Given a query point P and a set of objects M. The point query yields all the ob-
jects of M geometrically containing P (see figure 3(a)).

 • Region Query
Given a polygonal query region R (of type SPH) and a set of objects M, the re-
gion query yields all the objects of M sharing points with R. A special case of the
region query is the window query. The query region of a window query is give
by a rectilinear rectangle (see figure 3(b)). Both, the window query and the
gion query are often called range queries.

rma-
bi-

ting
of the
r of
lues

rther
 these
d by a
 distin-

 ob-
 of the
 the-

l inter-
Fig. 3. Examples for a point and a window query

b) Thematic Selections:
When performing a thematic (relational) selection the objects are selected with re-
spect to properties of their thematic component. Within this section, we pay atten-
tion only to the spatial component of the objects. In section 4.5 we will describe how
to support thematic selections.

3) Combinations
 • Spatial Join

For two given object sets A and B the spatial join operation yields all pairs of objects
 whose spatial components intersect. More precisely, for each

object we have to look for all objects in B intersecting with a. Note, that for
efficient processing of the spatial join a selective spatial access to the objects is nec-
essary.

 • Map Overlay
The map overlay is one of the most important operations in a geographic info
tion system [Bur 86]. It combines two or more sets of spatial objects. This com
nation is controlled by the overlay function determining in which way intersec
objects have to be handled. The map overlay is completely based on variants
spatial join operation. In addition to the spatial join, the intersection of a pai
overlapping objects has to be computed. Neighboring objects with identical va
of their thematic component should be merged [KBS 91].

4) Analyzing sets of objects
Selections or combinations of existing sets of objects are often followed by fu
processing steps in practical applications. The operations and algorithms used for
steps are very specific for a particular application and, therefore, are not supporte
general storage and access architecture. Without considering the details, we can
guish two classes of these operations and algorithms.

 • Automatic analysis
Analyzing functions applied to the spatial and/or the thematic component of the
jects are part of this class. Typical representatives are: calculating the average
area or perimeter of a set of objects, calculating the minimum and maximum of
matic attributes etc.

 • Visualization
In many cases the automatic analysis of a database is not possible and manua

P

(a)

R

(b)

a b,() a A b B∈,∈,
a A∈

t” or
ists of
that is
query

atial

cality
e ob-
rther
mediate steps performed by a user are necessary to complete the analysis. For this
purpose, a visualization of the data on a graphic device is necessary.

The above mentioned facts clearly demonstrate that spatial selections are of great im-
portance within the set of spatial queries and operations. They do not only represent an
own query class, but also serve as a very important basis for the operations of the classes
2 - 4. Therefore, an efficient implementation of spatial selections is an important re-
quirement for good performance of the complete geographic information system.

3 A phase model for geometric query processing
After the description and specification of objects and queries, we will design an archi-
tecture for storing spatial objects and efficiently processing queries. The main task of
the architecture is the efficient processing of spatial queries and operations. Therefore,
in this section, we take a closer look at this type of queries, distinguish different phases
in their processing and specify algorithms and data structures for their processing.

As mentioned in the last section, spatial selections are the most important basic op-
eration in spatial query processing. Their execution can be described abstractly as a se-
quence of steps:

Step 1: Scaling down the data space
Considering spatial selections in more detail, it turns out that only a local part of the
complete data space has to be investigated. Only this area contains candidate objects
that may fulfill a selective query.

For an efficient scaling down of the data space, it is essential to use data structures
organizing the objects with respect to their spatial locality and shape. Obviously, ob-
jects jointly fulfilling a query condition lie close together in the data space. Therefore,
a physical clustering of the objects with respect to their spatial locality and shape is es-
sential for providing efficient spatial query processing.

Due to the arbitrary complexity of real geographic objects, it is not possible to build
up an index considering the complete information on the extension of the objects. Thus,
the access method is not able to yield the exact result of a query. Instead, it excludes a
large subset of objects from the result. A set of candidate objects that may fulfill the
query condition remains and has to be passed on to step 2 of the query processing mech-
anism. Orenstein established in [Ore 89] the terms filtering and refinement for this type
of query processing.

Step 2: Exact investigation of the objects
Step 2 of the query processing tests whether a candidate object actually fulfills the query
condition or not. For that purpose, a spatial predicate, e.g. “polygon contains poin
“rectangle intersects polygon”, has to be checked. Similar to step 1, this test cons
different phases. First, the test has to be restricted to only that part of the object
really relevant for the test. Figure 4 gives an example: To evaluate whether the
window R overlaps Lake Volta, only its northern west peak has to be examined.

Due to the complexity of the objects on the one hand and the selectivity of sp
queries on the other hand, it is useful to structure the objects locally. The resulting struc-
ture elements have to be organized in a data structure referring to their spatial lo
and extension. Using this data structure, we can efficiently decide which parts of th
ject are actually relevant to the query. Only this small number of local parts is fu

examined using computational geometry algorithms, which finally decide whether an
object fulfills the query or not.

Fig. 4. Test of a query window against Lake Volta

Step 3: Output of objects for further processing
After identifying an object as part of the result, it is usually passed on to further process-
ing e.g. analyzing steps, output operations etc. Therefore, a physically connected stor-
age of all parts of the objects is necessary to support a fast access to the complete object.

4 An architecture for query processing in spatial database systems
After the abstract description of the phase model for spatial query processing, we
present algorithmic techniques for supporting the individual phases. Later on in this
section, these techniques are used as building blocks within our geo architecture.

4.1 Spatial access methods

Access methods as an essential part of the internal level of a database system are used
to organize a dynamic set of objects on secondary storage. One-dimensional access
methods like B-trees or linear hashing are not suitable for spatial database systems. For
these systems, we have to look for data structures which organize the polygonal objects
with respect to their location and extension in the data space. The arbitrary complexity
of the spatial objects (simple polygon with holes) makes it very difficult to develop a
structure considering the whole object description. Instead, we consider access methods
for simpler two-dimensional objects. Surveys of spatial access methods can be found
e.g. in [Sam 90] and [Wid 91].

Fig. 5. Schematic presentation of an R*-tree

The simplest class of two-dimensional objects are rectilinear rectangles. For this class
of objects, a number of index structures already exists. A popular representative is the
R-tree [Gut 84]. The R-tree stores as many spatially close objects (rectangles) on one
data page as it accommodates and surrounds them by their minimum bounding box. A

R

directory level 1

directory level 2

data pages

set of such bounding boxes is stored on a (directory) page. Again, their minimum
bounding box is computed and stored in a directory page one level above and so on. In
this way, the whole object set is stepwise spatially clustered and a tree-like directory is
created (see figure 5).

A very efficient version of the R-tree is the R*-tree [BKSS 90]. Within this data
structure sophisticated algorithms for page splitting and local reorganizations are used.
The overlap of page regions and the length of their margin are minimized as well as the
dead space, i.e. the space occupied unnecessarily by page regions.

This idea of organizing rectangles leads to an efficient processing of point queries
and small window queries [BKSS 90]. Unfortunately, this is restricted to rectangles or
other simple spatial objects, not larger than a data page. In real applications, it is abso-
lutely necessary to store more complex objects and to process large window queries ef-
ficiently. Later on in this section, we will present an access architecture for managing
arbitrary simple polygons with holes and processing large window queries efficiently.

4.2 Approximations

The set of results to a spatial query consists of all the objects fulfilling a geometric pred-
icate e.g. containing a query point. As mentioned in the last section, spatial access meth-
ods are used for excluding a large subset of the objects from the result as early as pos-
sible. The remaining candidate objects have to be investigated by computational geom-
etry algorithms. Considering complex objects (polygons with large numbers of
vertices), this is a time consuming task. This leads to the idea of a geometric pretest.
Such a test should be easy to process and should decide for a large number of objects
whether they fulfill the query condition or not.

For implementing the idea of a geometric pretest, the concept of object approxima-
tions is an adequate approach. In [Kri 91a] a detailed classification of different approx-
imation techniques is given. The description of an approximation should be simple and
its quality should be high, two obviously competing criteria. To make object approxi-
mations useful for a geometric pretest, the object has to be contained completely in its
approximation (conservative approximation) [Sch 92]. Examples for conservative ap-
proximations are minimal bounding boxes, convex polygons, ellipses etc. (figure 6).

Fig. 6. Various conservative approximations

Let us have a closer look at the processing of a point query using object approximations.
First, for all candidate objects it is tested, whether their approximation contains the
query point or not. In case of a negative result, the object does not contain the query
point either. The object is discarded and a time consuming point-in-polygon test could
be saved. Only in case of a positive pretest, the object itself has to be tested.

[BKS 93a] contains a detailed examination of object approximations used for spatial
query processing in a real data environment. It turned out that the convex 5-corner is the
best compromise between the approximation quality and storage amount. Using the

minimal bounding box convex hull 5-corner ellipse

red in.
is usu-

device
 their
unt of
R*-tree, it is shown that other approximations than the minimal bounding box can effi-
ciently be organized in a spatial access method originally designed for bounding boxes.

4.3 Object decompositions

Object approximations are applied to avoid complex geometric tests. Object decompo-
sition techniques, however, are used to simplify and speed up their processing.

Consider again a point-in-polygon test. For processing this test an algorithm with
linear runtime complexity is necessary [PS 88]. This examination of complex polygons
i.e. polygons with thousands of vertices consumes a considerable amount of CPU time.
On the other hand, only a small local part of the object is actually relevant for the deci-
sion whether an object contains a point or not. This leads to the idea of object decom-
position. Applying this idea, the objects are divided into a number of simple and local
components, e.g. triangles, convex polygons etc.. During spatial query processing, only
one or a small number of these components has to be checked. In [KHS 91] and
[Kri 91a] the decomposition approach for simple polygons with holes is presented and
discussed in detail.

Fig. 7. Three decomposition techniques for simple polygons

Using object decompositions geometric tests are applied only to components, e.g. trap-
ezoids, which is much more efficient than testing the whole polygon. To decide which
components are relevant for a particular test, we use again an R*-tree to organize the
components of one object with respect to their location and shape. The resulting tree is
called a TR*-tree. In [SK 91] we demonstrated that the TR*-tree efficiently supports
various types of spatial queries and operations.

4.4 Scene organization

One important requirement for geographic database systems is the set orientation
[Wid 91]. A spatial query processor has to perform small queries as well as large que-
ries efficiently. When processing a large query, a large amount of data is transferred
from secondary storage into main memory. The concepts presented up to now in this
paper, merely support an efficient processing of small queries but do not speed up large
queries considerably. Therefore, there is an obvious demand for a concept supporting
set orientation.

Considering the existing storage organization and the type of objects to be stored,
we can observe the following points:

 • The objects are very large in comparison to the size of the pages they are sto
Even in the case of large pages (e.g. 4 KByte), the number of objects per page
ally small and often we need several pages for storing just one single object.

 • The pages used for storing objects are distributed on the secondary storage
independently from spatial aspects, i.e. pages lying adjacent in space lose
neighborhood on the storage device. Large region queries transfer a large amo

convex polygons triangles trapezoids

spatially adjacent pages into main memory. Therefore, an arbitrary distribution of
these pages on the disk leads to very high access costs during query processing.

The concepts presented in the sections before preserve only a local ordering within the
pages [Wid 91]. To support the set orientation in an appropriate way, a global order
preservation i.e. a physical clustering of larger storage units, is required.

Different approaches are conceivable to handle larger storage units. In [Wei 89] us-
ing larger pages, pages of variable length, various buffering strategies and physical
clustering of pages combined with a set-oriented interface are discussed in detail to han-
dle large complex objects. In this paper, physical clustering of pages is favored and nat-
urally offers itself as an adequate approach to store scenes within our geo architecture.
To translate this approach into action, we need a set-oriented interface between the da-
tabase system and the secondary storage device [Wei 89]. Such an interface allows an
efficient transfer of physically adjacent pages from secondary storage to main memory.
The implementation of such an interface is not the subject of this paper.

In [HSW 88] an idea based on dynamic z-hashing for implementing physical clus-
tering of pages is presented. This idea is applied to rectangles in [HWZ 91]. However,
the global order is preserved only for approximations of objects. Furthermore, this hash
approach is not applicable to access methods with an arbitrary space partitioning
scheme. Therefore, we have developed a concept based on the partitioning scheme of
the R*-tree.

Building up the scene organization
As mentioned before, we use the R*-tree as a major component of our geo architecture,
due to its good performance and its robustness. The R*-tree uses a very efficient scheme
for space partitioning neither clipping nor transforming the spatial objects. These facts
lead to the idea of using the partitions i.e. subtrees of the R*-tree as basic units for phys-
ical clustering. In the following, a scene is defined as a subtree of the R*-tree physically
clustered on secondary storage. One scene consists of a large set of physically adjacent
pages containing all corresponding objects. Using this approach, no additional data
structure for handling scenes is necessary.

An object larger than one page is stored on several pages such that all of them are
physically clustered within one scene. Thus, also the transfer of such a large object into
main memory is supported by the scene organization (see step 3 of the phase model).
Note that no order has to be preserved within each scene.

Fig. 8. Scene organization

In addition to a schematic structure of the scene organization, figure 8 presents the par-
ticular scene organization for the counties of the European Community (see figure 1

(a) approximations (b) scenes

R*-tree
Level of
scene
description

subtrees for the scenes
physically clustered

also). The R*-tree contains the polygons representing the counties, their decomposition
components and their approximations (figure 8 (a)). Figure 8 (b) depicts the partition-
ing of the R*-tree on a higher directory level. The rectangles describe the scenes, the
corresponding subtrees are physically clustered.

Query processing
Using our scene architecture, small queries as well as large queries are processed effi-
ciently. Small queries are processed by single page accesses as described before. If a
range query specifies a larger query region, all scenes intersecting the query region, i.e.
subtrees of the R*-tree, are transferred into the main memory. For each scene just one
search operation on secondary storage is necessary. Without a scene organization, we
need one search operation for each page which is much more expensive. Unfortunately,
a scene may contain a number of objects not fulfilling the query condition (false hits).
Nevertheless, the false hits are also transferred into main memory. A relatively small
number of false hits does not affect performance considerably, since the time needed
for searching a page drastically exceeds the time for transferring a page [PH 90]. In ad-
dition, the degree of intersection between the scene and the query region may be used
as a measure to decide whether the scene is transferred completely or whether the query
is answered without using the scene organization. A detailed performance evaluation of
the scene organization is presented in section 5.1.

After transferring the scene into main memory, a query is processed as usual, i.e. us-
ing approximations and decomposition techniques (see section 4.2 and section 4.3). A
detailed algorithmic description of the dynamic organization of the scene architecture
is presented in [Sch 92] and [BKS 93b]. Supplementing the presented query processing
techniques by a scene organization allows an efficient query processing for queries of
arbitrary size.

4.5 Integration of thematic attributes

The techniques presented up to now are completely dedicated to spatial queries. Que-
ries referring to thematic attributes of the stored objects are also important in geographic
information systems (see section 2.1).

For an efficient support of thematic queries, an additional index, i.e. a secondary in-
dex (e.g. a B-tree) is necessary for the relevant thematic attributes. The R*-tree in co-
operation with the scene organization determines the location of physical storage of the
objects. For connecting both, we need a link table. This table assigns to each spatial ob-
ject, which is represented by a unique surrogate one data page of the R*-tree. If the data
page of the spatial object changes, only the entry of the link table has to be updated. An
update of the secondary index is not necessary. To allow an access from the spatial in-
dex to the link table, all entries of the spatial objects in the data pages have to be ex-
tended by a surrogate.

In figure 9, the integration of a secondary index and a link table into our complete
geo architecture is presented (for more details see also [Kri 91b] and [Sch 92]).

4.6 The geo architecture

Up to now, we have presented basic concepts and techniques for an efficient query
processing in geographic databases. The goal of this section is the integration of these
concepts into our geo architecture. This architecture is presented in figure 9.

The basic building block of our architecture is the R*-tree. It organizes the objects
on secondary storage pagewise and allows an efficient spatial indexing. Starting with

the root, a spatial query passes through the R*-tree, thereby locating one or several
scene descriptions. If the intersection of the query region and the scene exceeds a given
threshold, the scene is completely transferred into main memory where query process-
ing proceeds. Otherwise, the required data regions are transferred page by page.

The next ingredient of the architecture are approximations. They support a first
preselection to determine whether an object fulfills the query or not. For that purpose,
the approximations, e.g. minimal bounding 5-corners, of the objects are stored in the en-
tries of the data pages. If the approximation of a spatial object fulfills the query, the ob-
ject itself has to be further investigated. Therefore, each object entry contains a pointer
to its exact geometric representation managed by a TR*-tree. The TR*-tree organizes
all decomposition components and helps exploiting spatial selectivity in query process-
ing. Instead of applying time consuming computational geometry algorithms to com-
plete spatial objects, the query condition is evaluated just considering simple compo-
nents.

The architecture is completed by secondary indices for thematic attributes. A the-
matic query traverses the B-tree yielding one or more surrogates. These surrogates are
used for accessing to the link table providing the number of the data page storing the
object entry.

Fig. 9. Integration of efficient building blocks into our geo architecture

5 Evaluation
The techniques integrated in our architecture for spatial databases have been investi-
gated and tested extensively. The basic component of the architecture is the R*-tree. In
[BKSS 90] a detailed performance evaluation is presented and it turns out that the
R*-tree outperforms the other R-tree variants. A performance comparison of the
R*-tree, the R+-tree and the PMR-Quadtree is presented in [HS 92]. Various approxi-
mations are compared in [BKS 93a]. The minimum bounding 5-corner turns out to be
best suited for spatial query processing.

The decomposition approach is examined in [Kri 91a] and [KHS 91]. Especially
small queries are processed much faster using the convex and the trapezoid decompo-

spatial secondary index

. . . .

. . . . link table

primary index for thematic attributes

surrogate

number of
the data page

B-tree

R*-tree

...
data pages

scene

with entries

approx. surrogate themat.
attributes

decomposition

... ...

point coordinates

entry

scene

...
scene

description

pointer to a
TR*-tree exact object repres.

TR*-tree

scene

ze sig-
sition instead of the undecomposed representation. The integrated representation of a
polygon decomposed into trapezoids using a TR*-tree is considered in [SK 91].

The combination of spatial objects to scenes is introduced in this paper for the first
time. As mentioned before, we expect a considerable performance improvement by us-
ing this approach. This expectation is confirmed by a detailed performance evaluation
of the scene architecture presented in the following subsection.

5.1 Evaluation of the scene organization

Basically, there are three different models for storing spatial objects:

 1.) Storing the exact object representations outside of the data pages (model 1)

In the data pages of the index structure, we store the approximations and the
pointers to the exact representations of the objects. The exact representation is
stored outside the index structure, e.g. in a sequential file. This approach is used
in quadtrees for instance [HS 92]. In other words, the spatial index structure is a
primary index for the approximations and a secondary index for the spatial ob-
jects. This model is shown schematically in figure 10. The main advantage of
this scheme is the large number of approximations stored together in one data
page, i.e. a maximum degree of local ordering of the approximations is pre-
served. Furthermore, there is no limit to the size of the exact object representa-
tion. A fundamental drawback is the fact that the order preservation just refers
to the object approximations and not to the objects themselves. Consequently,
when processing range queries for each access to an exact object representation
an additional page access is necessary.

 2.) Storing the exact object representation inside the data pages (model 2)

The exact representation of the objects is stored, in addition to the approxima-
tions, inside the data pages. Therefore, spatial neighborhood is physically pre-
served and objects are transferred into main memory just using one disk access
[Wid 91]. In contrast to the first model, the index structure is a primary index for
the spatial objects and determines their storage location. An essential drawback
of this approach is the low number of objects fitting into one page. As a conse-
quence, neighboring objects are often stored in different pages. In section 2.2 we
have emphasized that objects larger than one data page often occur in geographic
databases. Handling these objects with the second model is a difficult task be-
cause a special page overflow mechanism has to be implemented.

 3.) Storing objects in a scene organization (model 3)

This model has already been presented in section 4.4. Larger parts of the data are
physically clustered within so called scenes and organized in an R*-tree.

In figure 10 the three models are depicted.

The scene organization has been designed for supporting large region queries. Con-
sidering such set-oriented queries, we have to take a closer look to two important prob-
lems:

 • Which performance is gained by the three models ? Is the performance of the
organization superior to the other two models ?

 • Which size of the scenes leads to the best query performance ? Does this si
nificantly depend on the size of the range queries ?

Fig. 10. Models for storing spatial objects

Test environment
To find an answer to these questions, we have carried out a detailed empirical perform-
ance comparison of the three models. We used real test data from the US Bureau of the
Census [Bur 89] containing county borders, highways, railway connections and rivers
of four Californian counties. This database consists of 119.151 lines, each consisting of
2 to 349 points. Each co-ordinate is represented by a real number of 8 Bytes. Altogether
the database has a size of 15.9 MByte. The lines were approximated by using minimal
bounding boxes. For the representation of these boxes 16 Bytes are available. These
boxes are depicted in figure 11 (a).

Fig. 11. Data and queries used for the tests

Using this data set we built up three R*-trees referring to the three different models. The
page capacity was 4 KByte.

To investigate the performance of the models for large query regions, we carried out
four test series with different sizes of the query regions. Each series consists of 464
quadratic window queries uniformly distributed over the data space covered by the ob-
jects. The area of the query regions varies between 0.25% and 16% of the data space.
In figure 11 (b) the 1% queries are shown. Table 1 presents the query specification of
the four test series.

data pages...

...

...

scenes

model 1 model 2 model 3

...

directory

directory

directory

extern
data pages

data pages

(a) Test data (b) Query regions (1% area)

To evaluate the performance of the three models, we need a measure for the access cost.
The time necessary for reading one page into main memory consists of the search time,
i.e. the time needed for locating the page on secondary storage, and the transfer time,
i.e. the time needed to transfer the data from secondary into main memory. Normalize
the cost for a transfer operation to 1. Then in real magnetic disk drives the cost for a
search operation is approximately 10 [PH 90]. If NS denotes the number of search op-
erations and NT denotes the number of transfer operations then the complete access cost
A is given by:

Considering range queries, the access cost within the R*-tree is negligible in compari-
son to the access cost of the exact object representation. Thus, in the following, we take
into account only the access cost for reading the exact object representation.

Test results:
In table 2, we present the access cost when storing the lines outside the data pages
(model 1). The number of search operations (NS), the number of transfers (NT) and the
access cost A are presented (in the following table, A is not directly calculated from NS
and NT due to rounding).

Storing the exact object representation outside the data page, requires at least one (ex-
pensive) search operation for each answer, because of the missing spatial organization
of the exact object representations.

Table 3 contains the results for model 2, i.e. for storing the lines inside the data
pages.

test series

size of
the queries
(per cent of

the data space)

per test series average per query

number
of records

data volume
(KByte)

number
 of records

data volume
(KByte)

I 0.25 % 189,229 29,392 408 63

II 1 % 714,937 105,521 1,541 227

III 4 % 2,687,648 382,483 5,792 824

IV 16 % 9,462,455 1,315,236 20,393 2,835

Tab. 1. Characteristics of the test series

test series I (0,25 %) test series II (1 %) test series III (4 %) test series IV (16 %)

NS NT A NS NT A NS NT A NS NT A

189 189 2,082 715 715 7,864 2,688 2,689 29,585 9,462 9,463 104,088

Tab. 2. Access cost for model 1 (in thousand, rounded)

test series I (0,25 %) test series II (1 %) test series III (4 %) test series IV (16 %)

NS NT A NS NT A NS NT A NS NT A

16 16 175 52 52 573 180 180 1,985 610 610 6,710

Tab. 3. Access cost for model 2 (in thousand, rounded)

A 10NS NT+=

or for
Compared to model 1, model 2 needs considerably less search operations. The reason
for this behavior is the fact that many neighboring objects are stored in just one data
page and read into main memory by one access. The improvement only marginally de-
pends on the size of the query ranges. NT has basically the same size as NS, because in
the test data only a few records are larger than one page.

In the scene organization (model 3), the results considerably depend on the average
size of the scenes. Using model 1, the exact object representation is only accessed if it
is necessary for query processing. Contrarily, in the second model exact object repre-
sentations are read into the main memory if they are close to the margin of the query
region, but do not intersect the query region (false hits). Large scenes need only a small
number of search operations but a high number of transfers from the secondary to the
main memory due to the large number of false hits. On the other hand, the smaller the
scenes, the higher the effort for searching and the lower the number of transfers. To ex-
amine this effect in more detail and to determine the optimal scene size, we varied the
scene size in our comparisons. The results are presented in table 4 where the best results
are shaded.

As expected, with increasing scene size NS decreases and NT increases. Scene sizes be-
tween 25 and 100 KByte lead to minimum access cost, depending on the size of the que-
ries. The larger the queries, the larger the optimal scene size. However, this dependency
is not as strong as expected. There is a factor of 64 in the size of the queries between
test series I and IV, but only a factor of 4 in the resulting optimal scene sizes. Addition-
ally, the graphs for the cost functions are very flat close to their minimum. Thus, we
chose 77 KByte as a nearly optimal scene size for all test series.

Conclusion
In table 5, the access cost for all three models is presented. The cost for model 1 is stand-
ardized to “1”. For the other two models the numbers describe the speed up fact

average
scene size

(Byte)

test series I (0.25 %) test series II (1 %) test series III (4 %) test series IV (16 %)

NS NT A NS NT A NS NT A NS NT A

1,852,750 1.1 698 709 1.2 781 794 1.6 943 959 2.1 1,666 1,188

757,943 1.2 275 287 1.6 343 345 2.4 505 529 4.1 837 877

273,357 1.5 128 144 2.3 185 208 4.2 324 365 8.6 638 725

140,124 1.8 78 96 3.0 123 153 6.0 238 298 14.1 528 669

91,619 2.2 62 84 3.9 103 142 8.5 214 299 20.8 503 711

79,027 2.1 51 72 3.9 90 130 8.8 191 280 22.7 474 701

63,402 2.3 46 70 4.5 85 130 10.4 187 291 27.5 467 742

33,283 3.2 36 68 6.7 70 137 17.3 167 340 48.8 447 936

18,610 4.2 26 68 10.0 57 158 27.8 151 429 82.8 432 1,260

10,716 6.1 23 84 15.4 54 209 45.6 153 609 140 452 1,853

8,367 6.8 21 87 18.2 52 235 55.6 152 708 175 460 2,210

Tab. 4. Access cost for the scene organization (model 3) (in thousand, rounded)

eds up
arate
r. For
r the
larger
senta-

odel 2

rison.
 stor-
arison
s.

ndent
size is

ed up
ed by

query

ta on
search
r ar-
e
um
f the
tation
-

his al-
e to the
nal

ted by
query processing using these models. The average scene size for model 3 is 79,027
Bytes.

In conclusion, we would like to point out the following statements:

 • Storing the exact object representation inside the data pages (model 2) spe
query processing by a factor of 12 to 15 in comparison to model 1 (using sep
pages). The size of the query regions has only a small influence on this facto
the interpretation of the results one remark is important: The objects used fo
tests are relatively small in comparison to the size of the data pages. Using
objects, i.e. objects larger than one data page, requires storing the exact repre
tion outside of the data pages. As a consequence, query performance of m
comes closer to the performance of model 1.

 • The new scene organization is the clear winner of the performance compa
Even the processing of small queries is performed considerably faster by this
age model. For small queries, we have a speed up factor of about 30 (in comp
to model 1) which is increasing to the impressive value of 148 for large querie

Another important result is the fact that the optimal scene size is almost indepe
of the query sizes. Therefore, using the scene architecture with a fixed scene
beneficial to queries of very different size.

Furthermore, the flat form of the cost function guarantees a considerable spe
of the query processing, even if the average size of the scene is varying caus
insertions and deletions of objects.

6 Conclusion
We proposed a storage and access architecture for geographic database systems. This
architecture integrates a number of various concepts and techniques for efficient
processing.

The R*-tree is the basic component of our geo architecture. It organizes the da
secondary storage with respect to their spatial location and shape. In this way, the
region of spatial queries can be quickly narrowed down. The next ingredient of ou
chitecture are object approximations. They support an efficient preselection to decid
whether an object fulfills the query or not. In comparison to the usually used minim
bounding box, the minimum 5-corner is a good compromise between the quality o
approximation and the amount of required storage. The exact geometric represen
of an object is managed by a TR*-tree. The polygonal objects are decomposed into sim
pler components and organized with respect to their spatial location and shape. T
lows a selective access to the components needed to process a spatial query. Du
simplicity of the components, the application of time consuming computatio
geometry algorithms to complex objects is avoided. Thematic queries are suppor

model
speed up factors for query processing

I (0.25 %) II (1 %) III (4 %) IV (16 %)

1: Geometry outside of the data pages 1.0 1.0 1.0 1.0

2: Geometry inside the data pages 11.9 13.7 14.9 15.5

3: Scene organization 28.9 60.5 105.7 148.5

Tab. 5. Speed up factors for query processing using model 2 and 3 in comparison to model 1

on

base

e-

a-
secondary indices for thematic attributes. These secondary indices are connected to the
primary index, i.e. the R*-tree, using a link table.

The parts of our architecture mentioned above support efficient processing of que-
ries with high spatial selectivity, i.e. point queries and small window queries. To speed
up the set-oriented object access of large range queries, we added a new ingredient to
our architecture: the scene organization. Using this new approach, large parts of the
data are combined in scenes and spatially clustered on secondary storage. These scenes
are organized within the primary R*-tree. We investigated the performance of this ap-
proach in a detailed performance comparison. For large range queries, the scene organ-
ization is superior in performance to ordinary storage models with a speed up factor up
to two orders of magnitude.

The use of our architecture is not restricted to geographic information systems. With
only slight modifications it can also be used in systems for computer aided design
(CAD) or computer integrated manufacturing (CIM).

In our future work, we plan to incorporate our geo architecture into an existing ex-
tensible database system for spatial applications. Promising candidates for this idea are
DASDBS, GRAL and POSTGRES. Performance evaluations of our geo architecture af-
ter incorporating it into such a system will be very interesting.

Furthermore the design of a parallel geo architecture is an interesting challenge for
future research activities. Parallelism should be exploited in two ways. First, we want
to use a multi processor system to process queries in main memory in a massively par-
allel way. Using object decomposition techniques in a parallel environment promises a
considerable performance improvement. Second, we want to use multi disk systems to
organize the large data volume of geographic applications more efficiently. The main
problem to solve is, to determine an appropriate distribution of the data over the differ-
ent disk drives.

The application of the presented techniques to 3D-objects is another interesting field
of research activities for the future. For example, bio-computing is an important field of
application for 3D-spatial objects. The first step in this direction is the development and
implementation of 3D-approximation and decomposition techniques.

References
[Aro 91] Aronoff S.: ‘Geographic Information Systems’, WDL Publications, 1991.
[Bar 88] Bartelme N.: ‘GIS Technology: Geographic information systems, land informati

systems and their fundamentals’ (in German), Springer, 1988.
[BKS 93a] Brinkhoff T., Kriegel H.-P., Schneider R.: ‘Comparison of Approximations of Com-

plex Objects used for Approximation-based Query Processing in Spatial Data
Systems’, Proc. 9th Int. Conf. on Data Engineering, Vienna, Austria, 1993.

[BKS 93b] Brinkhoff T., Kriegel H.-P., Schneider R.: ‘Scene Organization: A Technique for
Global Clustering in Spatial Database Systems’, 1993, submitted for publication.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: ‘The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles’, Proc. ACM SIGMOD Int. Conf.
on Management of Data, Atlantic City, NJ., 1990, pp. 322-331.

[Bur 86] Burrough P.A.: ‘Principles of Geographical Information Systems for Land R
sources Assessment’, Oxford University Press, 1986.

[Bur 89] Bureau of the Census: ‘TIGER/Line Percensus Files, 1990 Technical Document
tion’, Washington, DC., 1989.

ec-
90,

 Vol.

a-

e

525,

s’,
[CDRS 86] Carey M. J., DeWitt D. J., Richardson J. E., Shekita E. J.: ‘Object and File Manage-
ment in the EXODUS Extensible Database System’, Proc. 12th Int. Conf. on Very
Large Data Bases, Kyoto, Japan, 1986, pp. 91-100.

[Cra 90] Crain I.K.: ‘Extremely Large Spatial Information Systems - A Quantitative Persp
tive’, Proc. 4th Int. Symp. on Spatial Data Handling, Zürich, Switzerland, 19
pp. 632-641.

[Fra 91] Frank, A.U.: ‘Properties of Geographic Data’, Proc. 2nd Symp. on Large Spatial
Databases, Zürich, Switzerland, 1991, in: Lecture Notes in Computer Science,
525, Springer, 1991, pp. 225-234.

[GC 87] Gorny A.J., Carter R.: ‘World Data Bank II: General users guide’, Technical report,
U.S. Central Intelligence Agency, Washington, 1987.

[Gut 84] Guttman A.: ‘R-trees: A Dynamic Index Structure for Spatial Searching’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Boston, MA., 1984, pp. 47-57.

[Güt 89] Güting R. H.: ‘Gral: an extensible relational database system for geografic applic
tions’, Proc. 15th Int. Conf. on Very Large Data Bases, Amsterdam, Netherland,
1989, pp. 33-44.

[HS 92] Hoel E.G., Samet H.: ‘A Qualitative Comparison Study of Data Structures for Larg
Line Segment Databases’, Proc. SIGMOD Conf., San Diego, CA., 1992,
pp 205-214.

[HSW 88] Hutflesz A., Six H.-W., Widmayer P.: ‘Globally Order Preserving Multidimensional
Linear Hashing’, Proc. 4th Int. Conf. on Data Engineering, Los Angeles, CA., 1988,
pp. 572-579.

[HWZ 91] Hutflesz A., Widmayer P., Zimmermann C.: ‘Global Order Makes Spatial Access
Faster’, Int. Workshop on Database Management Systems for Geographical Appli-
cations, Capri, Italy, 1991, in: Geographic Database Management Systems,
Springer, 1992, pp. 161-176.

[KBS 91] Kriegel H.-P., Brinkhoff T., Schneider R.: ‘An Efficient Map Overlay Algorithm
based on Spatial Access Methods and Computational Geometry’, Int. Workshop on
Database Management Systems for Geographical Applications, Capri, Italy, 1991,
in: Geographic Database Management Systems, Springer, 1992, pp. 194-211.

[KHS 91] Kriegel H.-P., Horn H., Schiwietz M.: ‘The Performance of Object Decomposition
Techniques for Spatial Query Processing’, Proc. 2nd Symp. on Large Spatial Data-
bases, Zürich, Switzerland, 1991, in: Lecture Notes in Computer Science, Vol.
Springer, 1991, pp. 257-276.

[Kri 91a] Kriegel H.-P., Heep P., Heep S., Schiwietz M., Schneider R.: ‘An Access Method
Based Query Processor for Spatial Database Systems’, Int. Workshop on Database
Management Systems for Geographical Applications, Capri, Italy, 1991, in: Geo-
graphic Database Management Systems, Springer, 1992, pp. 273-292.

[Kri 91b] Kriegel H.-P., Heep P., Heep S., Schiwietz M., Schneider R.: ‘A Flexible and Exten-
sible Index Manager for Spatial Database Systems’, Proc. 2nd Int. Conf. on Data-
base and Expert Systems Applications, Berlin, Germany, 1991, pp. 179-184.

[Ore 89] Orenstein J. A.: ‘Redundancy in Spatial Databases’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Portland, USA, 1989, pp. 294-305.

[PH 90] Paterson D., Hennessy J.: ‘Computer Architecture: A Quantitative Approach’, Mor-
gan Kaufman, 1990.

[PS 88] Preparata F.P., Shamos M.I.: ‘Computational Geometry’, Springer, 1988.
[Sam 90] Samet H.: ‘The Design and Analysis of Spatial Data Structures’, Addison Wesley,

1990.
[Sch 92] Schneider R.: ‘A Storage and Access Structure for Spatial Database System

Ph.D.-thesis (in German), Institute for Computer Science, University of Munich,
1992.

-

-

ure
[SK 91] Schneider R., Kriegel H.-P.: ‘The TR*-tree: A New Representation of Polygonal Ob
jects Supporting Spatial Queries and Operations’, Proc. 7th Workshop on Compu-
tational Geometry, Bern, Switzerland, 1991, in: Lecture Notes in Computer Science,
Vol. 553, Springer, 1991, pp. 249-264.

[SR 86] Stonebraker M., Rowe L.: ‘The Design of POSTGRES’, Proc. ACM SIGMOD Conf.
on Management of Data, Washinton D.C., 1986.

[SV 89] Scholl M., Voisard A.: ‘Thematic Map Modelling’, Proc. 1st Symp. on the Design
and Implementation of Large Spatial Databases, Santa Barbara, CA., 1989, in: Lec-
ture Notes in Computer Science, Vol. 409, Springer, 1990, pp. 167-190.

[SW 86] Schek H.-J., Waterfeld W.: ‘A Database Kernel System for Geoscientific Applica
tions’, Proc. 2nd Int. Symp. on Spatial Data Handling, Seattle, Washington, 1986,
pp. 273-288.

[Wei 89] Weikum G.: ‘Set-Oriented Disk Access to Large Complex Objects’, Proc. 5th Int.
Conf. on Data Engineering, Los Angeles, CA., 1989, pp. 426-433.

[Wid 91] Widmayer P.: ‘Data Structures for Spatial Databases’ (in German) in: Vossen G.,
Witt K.-U. (eds.): ‘Entwicklungstendenzen bei Datenbank-Systemen’ (Fut
Trends in Database Systems), Oldenbourg, 1991, pp. 317-361.

	A Storage and Access Architecture for Efficient Query Processing in Spatial Database Systems
	Thomas Brinkhoff, Holger Horn, Hans-Peter Kriegel, Ralf Schneider
	Institute for Computer Science, University of Munich Leopoldstr. 11 B, W-8000 München 40, Germany
	e-mail: {brink,holger,kriegel,ralf}@dbs.informatik.uni-muenchen.de
	1 Introduction
	2 Objects and operations of a spatial database system
	2.1 Objects
	The spatial component
	Fig. 1. Simple polygon with holes

	The thematic component
	The object model
	Fig. 2. Map of the European counties modeled by a set of SPH

	2.2 Characteristics of the objects
	Complexity and variation of the data
	Persistent storage of the objects in a weak dynamic environment

	2.3 Queries and operations
	1) Modifications
	2) Selections
	a) Spatial selections:
	Fig. 3. Examples for a point and a window query

	b) Thematic Selections:
	3) Combinations
	4) Analyzing sets of objects

	3 A phase model for geometric query processing
	Step 1: Scaling down the data space
	Step 2: Exact investigation of the objects
	Fig. 4. Test of a query window against Lake Volta

	Step 3: Output of objects for further processing

	4 An architecture for query processing in spatial database systems
	4.1 Spatial access methods
	Fig. 5. Schematic presentation of an R*-tree

	4.2 Approximations
	Fig. 6. Various conservative approximations

	4.3 Object decompositions
	Fig. 7. Three decomposition techniques for simple polygons

	4.4 Scene organization
	Building up the scene organization
	Fig. 8. Scene organization

	Query processing

	4.5 Integration of thematic attributes
	4.6 The geo architecture
	Fig. 9. Integration of efficient building blocks into our geo architecture

	5 Evaluation
	5.1 Evaluation of the scene organization
	1.) Storing the exact object representations outside of the data pages (model 1)
	2.) Storing the exact object representation inside the data pages (model 2)
	3.) Storing objects in a scene organization (model 3)
	Fig. 10. Models for storing spatial objects

	Test environment
	Fig. 11. Data and queries used for the tests
	Tab. 1. Characteristics of the test series

	Test results:
	Tab. 2. Access cost for model 1 (in thousand, rounded)
	Tab. 3. Access cost for model 2 (in thousand, rounded)
	Tab. 4. Access cost for the scene organization (model 3) (in thousand, rounded)

	Conclusion
	Tab. 5. Speed up factors for query processing using model 2 and 3 in comparison to model 1

	6 Conclusion
	References

