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Abstract

Similarity search and content-based retrieval are
becoming more and moreimportant for anincreas-
ing number of applications including multimedia,
medical imaging, 3D molecular and CAD data-
base systems. Asageneral similarity model that is
particularly adaptable to user preferences and,
therefore, fits the subjective character of similari-
ty, quadratic form distance functions have been
successfully employed, e.g. for color histograms
as well as for 2D and 3D shape histograms. Al-
though efficient algorithms for processing adapt-
able similarity queries using multidimensional
index structures are available, the quadratic nature
of the distance function strongly affects the CPU
time which in turn represents a high percentage of
theoverall runtime. The basicideaof our approach
isto reducethe number of exact distance computa-
tions by adapting conservative approximation
techniques to similarity range query processing
and, in addition, to extend the conceptsto k-nearest
neighbor search. Aspart of adetailed analysis, we
show that our methods guarantee no false drops.
Experiments on synthetic dataaswell ason alarge
image database containing 112,000 color images
demonstrate a significant performance gain, and
the CPU timeisimproved by afactor of upto 6.

1 Introduction

In recent years, awiderange of database applicationshas
appeared for which new query typesturn out to beuseful. In
particular, similarity search is an essential query type for
spatial and multimedia databases containing images, video
audio or 3D-objects [Jag 91] [AFS 93] [GM 93] [FRM 94]
[ALSS95] [Kor+ 96] [BK 97]. The last few years of re-
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search have produced several resultsfor efficiently support-
ing similarity search, and among them, quadratic form dis-
tance functions have shown their high usefulness. They
were successfully used for color histogram similarity
[Fal+94] [Haf+95] [SK 97], 3-D shape similarity
[KSS97] [KS98], pixel-based similarity [AKS 98], and
severa other similarity models[Sei 97]. The reason for us-
ing quadratic forms as distance functionsis the observation
that for many applications, the Euclidean distanceis not ad-
equate due to its fundamental assumption that all dimen-
sions are independent of each other. Any quadratic form
distancefunction dz(x, y) = (x—y) DA Qqx—y)T isdeter-
mined by asimilarity matrix A whose componentsrepresent
themutual similarities, or correlations, of the dimensions. If
the matrix A is positive definite, i.e. d(x, y) >0 for x#y,
meaningless negative distance values are avoided. Whereas
the Euclidean distance produces spherical query regions,
general quadratic form distance functions represent ellip-
soids as query regions which give the new query type its
name, ellipsoid query. In[SK 97], anovel algorithm for ef-
ficient ellipsoid query processing on multidimensional in-
dex structures was presented which directly uses the exact
representation of an ellipsoid asthe query region. However,
wemay not rely on the applicability of the exact method for
the following reasons:
L egacy Systems. Imaginethat you are bound to alegacy
system that only supports multidimensional window
queries or sphere queries, and which resists an exten-
sion, for example, one which is necessary for the algo-
rithm for exact ellipsoid query processing asproposedin
[SK 97]. In order to provide efficient support for ellip-
soid queriesin spite of thisrestriction, weinvestigatethe
adaptability of standard approximation techniquesto el-
lipsoid queries.
Perfor mance Aspects. Since the evaluation time for an
ellipsoid function is quadratic in the general case, it may
bring benefits to use approximations for query process-
ing. Thus we can achieve a reduction of the time com-
plexity for calculations on data pagesaswell ason direc-
tory pages. In a d-dimensional space, testing whether a
database object is contained in the query ellipsoid re-
quires O(d?) time, and testing theintersection of arecti-
linear box from the index and the query ellipsoid takes
O(d2 ) time for asmall iteration factor i [SK 97]. By



using appropriate approximations, these complexities
may be reduced to linear time. In order to meet this ex-
pectation, the selected approximations should be smple
for storage and computational reasons. On the other
hand, the approximation should have a high quality of
approximation to the ellipsoid so as to save as many ex-
act evaluations as possible. The impact of such methods
on the performance has to be evaluated by experiments
which require the availability of approximation tech-
niques that are competitive with the exact ellipsoid que-
ry processing algorithm. The relevance of reducing the
number of distance evaluations in comparison with the
overal runtime will be demonstrated later in this paper.

In the past, the use of approximation techniquesfor effi-
cient query processing was extensively investigated in the
context of 2-D spatial database systems, in particular to ef-
ficiently support point and range queries [BKS 93]
[KSB 93] as well as spatial joins [BK 94] [Bri 94]. From
the investigated types, conservative approximationsin par-
ticular meet the requirements of range query processing.
Since they totally enclose the exact objects, conservative
approximations guarantee no false drops for range query
processing. In this paper, we demonstrate how to adapt con-
servative approximations to ellipsoid range and k-nearest
neighbor query processing in order to keep the number of
false hitsaslow as possible.

Notethat the conservative approximation of agiven que-
ry region itself is a query region. This means that it has a
boundary and a defined extension similar to the original
query region. However, thisidea does not extend to k-near-
est neighbor queries, which play animportant role for simi-
larity search [Sel 97] [SK 98]. Thisquery type doesnot cor-
respond to defined query regions but is based on similarity
distance functions. We have aready become acquainted
with an approximation technique for distance functions
which has a similar importance for similarity query pro-
cessing as the conservative approximations for spatial que-
ry processing, namely the lower-bounding property
[FRM 94] [SK 98].

The paper is organized asfollows: In section 2, efficient
processing of similarity queries is described including the
improvements to state-of-the-art algorithms for similarity
search. Section 3 covers three approximation types: The
minimum bounding box, the minimum bounding sphere
and the combination of both. In section 4, we present the re-
sults of our experiments that reveal the performance en-
hancement. Section 5 concludes the paper.

2 Efficient Processing of Similarity Queries

The specific query typesthat occur in the context of sim-
ilarity search are range queries, nearest neighbor queries
and k-nearest neighbor queries. Since in current databases
strong efficiency requirements have to be met, a fast pro-
cessing of these complex similarity queries is crucial. As
mentioned above, the evaluation time of our adaptable sim-
ilarity distance functions is quadratic and, therefore, con-
sumesagreat deal of CPU-time. In order to reduce the num-

ber of expensive exact distance evaluations, we propose
techniquesto efficiently process similarity queriesby intro-
ducing approximation-based distance evaluation. The pre-
sented algorithms work on access methods which manage
the secondary storage pages by rectilinear hyperboxes, e.g.
minimum bounding boxes (MBBSs), in order to form higher
level directory pages.

2.1 Approximation-based Similarity Range Query

The similarity range query is a fundamental query type
which can be defined as follows: Let the symbol O denote
the universe of all objects that may occur as database ob-
jectsor query objects. For every type of similarity search, a
distance function d: O x O - O, hasto be provided such
that d(o,, 0,) measures the (dis-)similarity of two objects
0, and 0,. By DB 0 O, let usdenote an actual database. We
specify similarity range queries by a query object q and a
range value €, and the answer set is defined to contain all
the objects s from the database that have a distance to the
query object q of lessthan or equa to €:

Definition 1 (Similarity range query). For aquery object
g 0 O andaquery range € [ Dg , the similarity range que-
ry returns the set:

simq(s) = {o0ODB]|d(o,q)<¢}

From ageometric point of view, the given distance func-
tion and the range value € define aregion around the query
object g. Thus, the similarity range query reports all data
objectswhich are contained in thisregion. Processing range
queries on a multidimensional access method is performed
as follows: The search algorithm starts from the root and
then traverses the tree recursively. At each directory node,
the entries (MBBs) which intersect the query region are
identified and the search is directed downwards. At data
nodes, all objects which are contained in the query region
arefinally reported. There are two query-dependent compo-
nentsin this algorithm: The method inter sects(box, region)
returnstrueif aMBB in adirectory nodeintersects the que-
ry region, and the method contains(object, region) returns
trueif adataobject islocated inside the query region.

In the case of adaptable similarity models based on qua-
dratic form distance functions, both methods have to deter-
mine the expensive exact distance of each considered object
(MBB or data object) to the query region. We observed that
the time for distance calculation highly affects the CPU
timewhich in turn represents a high percentage of the over-
all runtime. Thus, we are strongly interested in reducing the
number of exact distance evaluations. The basic idea of our
approach is to adapt the concept of conservative approxi-
mations to similarity range queries. Conservative approxi-
mations of query regionstotally enclose the complete query
region and can efficiently be used in filter stepsto generate
candidates since they guarantee no false drops and ideally
produce only a small number of false hits. Desired models
are approximations that are less complex than the original
region (whichisan ellipsoid in our case) and therefore need
considerably less evaluation time, if possible only linear



evaluation time. By introducing conservative approxima-
tionsto similarity range queries, we now can exploit thein-
clusion of the query region in the approximation to avoid
unnecessary exact distance evaluations. Thus, theexact dis-
tanceis evaluated only if the approximation of the consid-
ered object fulfillsthe query condition. In figure 1 we show
the code of theimproved inter sects(box, query, approx) and
contains(object, query, approx) agorithms. Note that in
method inter sects the intersection test with the exact query
region could be omitted without affecting correctness. This
defersthe evaluation of exact distancesto datanodeswhich
could improve or decrease performance. We analyzethisis-
suelater in section 4.2.

method intersects (DirEntry box, Region query;,
Region approx) —  bool;
{

if not intersects (box, approx) then return false;
elseif not intersects (box, query) then return false;
elsereturn true;

}

method contains (DataEntry object, Region query,
Region approx) —  booal;

if not contains (object, approx) then return false;
elseif not contains (object, query) then return false;
elsereturn true;

}

Figure1: Approximation-based intersection and containment
evaluation

In order to show the correctness of our approximation-
based approach, we prove that the proposed algorithms
guarantee no false drops.

Lemma 1. The algorithms of figure 1 produce no false
drops for conservative approximations.

Proof. Given a data object obj, a MBB box, aquery re-
gion query = sim,(&) and aregion approx. If approx isa
conservative approximation of query, then approx O query
istrue and the following implication holds:

box n approx = [
O boxn query =0
0 Oobj U box: obj U simg(€)

Furthermore, for data nodes we have:
obj U approx U obj U query O obj O sim(¢) . ¢

Generally, we define the approximation quality Q,pprox

by the ratio of the volume of the approximation to the vol-
ume of the origina region, eg.
_ Vol (approx(region))
Qepprox = Vol (region)

responds to a worse approximation quality. Obvioudly, the

. Thus, alarger ratio cor-

higher the quality of the conservative approximation, the
higher is the performance gain in query processing time. In
section 3, we will consider several promising conservative
approximations models.

2.2 Approximation-based k-Nearest Neighbor Query

Since similarity distance functions are quite abstract, the
user must be experienced with typical similarity distances
in order to specify useful similarity range queries. Thisis
the reason why k-nearest neighbor queries are becoming
more and more important for similarity searchin large data-
bases of complex objects. The k-nearest neighbor query re-
trieves, for any query object, thek most similar objectsfrom
the database and can be defined asfollows:

Definition 2 (k-nearest neighbor query). For aquery ob-
ject g O O and aquery parameter k> 1, thek-nearest neigh-
bor query returns the set NNy(k) L DB that exactly con-
tains k objects from the database for which the following
condition holds:

0o U NNy(K), Oo' 0 DB —NNy(K): d(o, ) < d(0', q)

Note that possibly several objects in the database exist
which have the same distance to the query object asthe k-th
object in the answer set. In this case, the k-th object in
NN, (k) is a non-deterministic selection of one of those
equally distanced objects. Severa approachesto process k-
nearest neighbor queries are available from the literature
which are suitablefor introducing approximation based dis-
tance evaluation, for instance [Hen 94] [RKV 95] [HS 95].
In this paper, we focus on the similarity ranking algorithm
proposed in [HS 95] which is proven to be optimal with re-
spect to the number of accessed index pages [BBKK 97]
and can easily be adapted to process k-nearest neighbor
queries by ranking exactly k data objects. The basic idea of
thisalgorithm isto visit nodes in the order of their mindist,
e.g. the minimum distance from the query object to any pos-
sible object inside anode. Although the original ranking al-
gorithm employed the Euclidean distance function, the
method worksfor any arbitrary distance function. Thealgo-
rithm is generaly designed for multidimensional access
methods that hierarchically manage page regions. There-
fore, it can be applied to the R-tree [Gut 84], the R*-tree
[SRF 87], the R*-tree [BKSS 90], the X-tree [BKK 96]
[Ber+ 97] and many others[GG 97].

Considering the k-nearest neighbor algorithm, we en-
counter asimilar situation asin the standard range query al-
gorithm: For each considered MBB and data object, the ex-
act distance to the query object has to be evaluated, which
again has a quadratic complexity for adaptable similarity
distance functions. Thus, as in the case of similarity range
queries, our goal is to reduce the number of expensive dis-
tance evaluations. Obviously, we cannot adapt the concept
of conservative approximations to k-nearest neighbor que-
ries, since this query type does not correspond to delimited
query regions. Rather, we introduce approximate distance
functions to the k-nearest neighbor algorithm which are
lower-boundsto the exact quadratic form distance function.



Formally, for any lower-bounding distance function d,o,
of a given object distance function d. the following
holds: 1o, g [0 O: dgppox (0, G) < ey (0, Q) -

We can then exploit the lower-bounding property in the
following way: When the distance to MBB or a data object
hasto be evaluated, wefirst calculate the minimum distance
to the query object with respect to the lower-bounding dis-
tance function d,, - If this distance is less than or equal
to the distance of the query object to the actual k-th nearest
neighbor, the exact distance to the query object is evaluated
using dg,, - I during the search process no k-th data object
has been found yet, the exact distance of the query object to
the k-th nearest neighbor is defined to be some valuethat is
greater than any possible distance value in the underlying
dataspace. Additionally, we only insert those nodesinto the
priority queue, which have a minimum distance less than or
equal to the distance of the query object to the actual k-th
nearest neighbor. In figure 2 we present the code of our pro-
posed approximation-based k-nearest neighbor algorithm.

method XTree:: k_ranking (Object query,

DistFunction dg,,, DistFunction d Integer k)

approx

{
PriorityQueue queue;
SortedList results;

// node queue
/I objects and distances

queue.insert(0, root);
while not queue.isempty() do
Element first = queue.pop();
if first.distance > resultgK].dist then break;
else casefirstisa
DirNode:
foreach child in first do
if dapprox(Query, child.box) < resultgk].dist then
if deyaci(query, child.box) < resultg[K].dist then
queue.insert(de,,(query, child.box), child);
DataNode:
foreach obj in first do
if dapprox(Query, obj) < resultg[K].dist then
if deyaci(Query, obyj) < resultgK].dist then
results.insert(dec(Query, obj), obyj);
end
enddo;
report (results, k);
}

Figure2: Approximation-based k-nearest neighbor agorithm

The correctness of our approach is shown by the follow-
ing lemma 2:

Lemma 2. The algorithm of figure 2 produces no false
drops for lower-bounding distance functions.

Proof. Given a data object obj, a directory entry box, a
query object query and two distance functions d,,,; and

approx - LEL NNy be the actual k-th nearest neighbor of the

query object query. If dg,,.ox isalower-bounding distance
function of dguy, then for al o,qUO,
Aapprox (0, 1) < ey (0, @) s true and the following impli-
cation for directory nodes holds:

approc(QUENY, DOX) > e (Query, Nny)
O dguct(query, box) > dg,.«(query, nn,)
O Oobj O box: dg,(query, obj) > dg.(query, nn,)
0 Oobj O box: obj 0 NNgyer,(K)

Additionaly, the following implication holds for data
nodes:

dapprox(query- Obj) > dexact(querya nnk)
O deace(Query, 0bj) > dg,q(query, nny)
O obj O NNgery(K) . ¢

Obviously, the efficiency of our approach depends on
the quality of the lower-bounding distance function. Main-
ly, we are interested in approximation models that yield
lower-bounding distance functions which are less complex
to evauate than the origina distance function. Further-
more, the maximum improvement is achieved with the
greatest of al lower-bounding distance functions with re-
spect to the sel ected approximation model. Inthefollowing,
we propose distance functions which exactly meet these re-
quirements.

3 Conservative Approximation Techniques

Varioustypes of conservative approximation techniques
have been investigated in the context of Geographic Infor-
mation Systemsand 2-D spatial database systems[BK S 93]
[KSB 93], and we adapted them to our ellipsoid queriesin
d-dimensional spaces. Both the Minimum Bounding Box
(MBB) and the Minimum Bounding Sphere (MBS) require
only O(d) space and O(d) time for testing intersections
and containments. The Convex Hull as well as Minimum
Bounding n-Corners mismatch the spherical character of
ellipsoids. In comparison with the MBB, the Rotated Mini-
mum Bounding Box (RMBB) is not restricted to be rectilin-
ear which, in general, yields abetter approximation quality.
However, the RMBB requires O(d?) space to represent its
orientation in the d-dimensional space, and the computation
of intersections, containments and distancesis, at best, per-
formed by linear programmingin O(dl%21) [PTVF 92] or
O(d!) [Sei 90] time. Thus, the RMBB is not expected to be
beneficial when approximating ellipsoids, and we concen-
trate on the MBB and the MBS as the most promising ap-
proximation techniques. On top of these basic approxima-
tions, we demonstrate how to combine them to exploit the
advantages of both.

Each technique, MBB and MBS aswell asthe combined
approximeation, are applied to both similarity range queries
and k-nearest neighbor queries. For thispurpose, we haveto
provide two instances for each model: First, the conserva-



tive approximation itself which represents a geometric re-
gion enclosing the query ellipsoid, and second, an approxi-
mate distance function that lower-bounds the respective
quadratic form distance function. Since both instances are
closely related, wefocus mainly on the more general case of
lower-bounding distance functions.

Whereas we already defined the ellipsoid distance func-
tion dZ(p, g) to be aquadratic form, we additionally intro-
duce the symbol ellip(A, g, €) to represent an ellipsoid of
level € around aquery point g as query region:

ellip(A, q,€) = {p0 0% di(p, q)<e}

3.1 Minimum Bounding Box Approximation

The Minimum Bounding Box (MBB) of a spatial object
is the smallest rectilinear box that totally encloses the ob-
ject. The MBB is afavorite approxi mation technique due to
its compact representation which requires only 2 [d pa
rameters in d-dimensional spaces since it suffices to store
the lower and upper bound in each dimension. It is easy to
determine and highly compatible to rectilinearly organized
multidimensional access methods. Figure 3 providesa 2-D
example.

MBB(A,q.e)

Figure3: Minimum Bounding Box (MBB) of a2-D ellipsoid
of level €.

The MBB(A, q, €) of an ellipsoid elip(A, g, €) may be
computed by determining the tangential hyperplaneswhose
normal vectors are parallél to the coordinate axes. Thus, we
obtain for the i-th component of MBB(A, q, €) :

MBB(A, 0, €); = [q; — /& A i, g; + A& (A )ii]

We defer the formal derivation of thisformula since the
same result is immediately obtained from the correspond-
ing lower-bounding box distance function which we derive
inthefollowing.

L ower-Bounding Box Distance Function. The generali-
zation of boxes to distance functions involves a weighted
maximum norm L., which corresponds to rectilinear rect-
angular query regions (cf. figure 4). The common case of
non-sguare rectangles is represented by involving weight-
ing factors for the individual dimensions. The following
definition formalizes the minimum bounding box distance
function asrequired for our purpose.

2 =
d“vesag = €

Figure 4: Greatest lower-bounding box distance function

Definition 3 (M BB distance function). Let A be asimi-
larity matrix, and AT |ts inverse. The minimum bounding
box distance function dMBB(A) of Aisdefined asfollows:

d 0
MBB(A)(p q = mﬁxlé(%

Note that df,,BB(A) is well-defined since A™ exists for
every positive definite matrix A. Thefollowing theorem in-
dicates that the MBB distance function represents a lower
bound of the original ellipsoid distance function.

Theorem For every similarity matrix A and every
p,qU 09, the MBB distance function deBB(A) is alower
bound of the ellipsoid distance function d :

MBB(A)(pa o < A(p- a)

Proof. We show that for every p, q O nk , anintermedi-
ate point p, exists such that the following formula is true
which immediately implies the proposition:

dusee(P. @ = da(Po, @) < da(p, g)

Figure 5 demonstrates the existence of such an auxiliary
point p, , given asthetangential point of the box and the el-
lipsoid of whichthebox istheMBB. Thisdefinitionimplies

dyeam(Po @ = da(Po 6 - Obviously, p, is located on

the same box asp, i.e. df/IBB(A)(pO! q = df/IBB(A)(p' q) , and
the ellipsoid of p, issmaller than the ellipsoid on which p

islocated, i.e. d,i(po, q < di(p, q) . From these consider-

ations, the proposition followsimmediately. A formal proof
is provided in the appendix of this paper. ¢

The fact that p itself may be the tangennal point pg
shows that dM sy (P, @ canreach dA(p, g). Thiscasein-
dicates that dygg(s represents the greatest of al box-
shaped lower-bounding distance functions. As a conse-
guence, d,%,,BB(A) guarantees the best filtering quality that
can be achieved for lower-bounding distance functions that
are based on aweighted maximum norm.



q.

Figure5: Theauxiliary point p, sharesits box distance with
pbutislocated on asmallerelllpsmdthanp Atj)0 thebox and
dlipsoid distances are equal: dA(pO q = dMBB(A)(pO q)

Geometry of the Minimum Bounding Box. Concluding
the introduction of MBB approximations, we demonstrate
how the MBB of an ¢-€llipsoid is obtained from the MBB
distance function. Lemma 3 shows that an €-range of the
MBB distance function actually represents the minimum
bounding box MBB(A, g, €) of the corresponding ellip-
soid.

Lemma 3. For every similarity matrix A, query point g,
and Jange parameter &, the MBB distance range
{p| dMBBA(p g) <€} exactly represents the minimum
bounding box MBB(A, q, €) of theellipsoid elip(A, g, €) .

Proof. For all p, thefollowing equivalences are true:

df/IBB(A)(pv Q<e -

d 2
_ mﬁxlé(p. lq)D< T il VA
: (A )II (A )||

- Oi:g—Je A )i <p <+ e A )i

= pOMBB(A q,¢€).¢

3.2 Minimum Bounding Sphere Approximation

The Minimum Bounding Sphere (MBS) of a spatial ob-
ject is the smallest sphere that totally encloses the object.
The MBSrequiresonly d + 1 parametersin d-dimensional
spacesto store theradius and thed coordinates of the center
point. For ellipsoids, the center of the MBS coincides with
the center of the ellipsoid. Figure 6 provides an examplein
the 2-D.

L ower-Bounding Sphere Distance Function. Alsofor the
MBS approximation model, we provide a distance function
dz sa) that lower-bounds the ellipsoid distance function
d, . An appropriate generalization of spheres to distance
functionsleadsto the Euclidean distance which is scaled by
afactor that corresponds to the radius of the sphere.
Definition 4 (M BS distance function). Let A be asimi-
larity matrix, and Wmm the minimum eigenval ue of A. The
minimum bounding sphere distance function dMBS(A) of A

MBS(A,g,€)

' \/E/Wl

Figure 6: Minimum Bounding Sphere (MBS) of an ellipsoid
elip(A, g, €) . The radilzjsof the MBS depends on the small-
est eigenvalue wi;,, of A and onthelevel €.

is defined to be the scaled and squared Euclidean distance
function:

di/IBS(A)(pi q) = Wrznin [(p—Q)Z

Theorem. For every similarity matrix A, the MBS dis-
tancefunction d,\,IB ) of Aisalower bound of theellipsoid
distance function d,, i.e. for al p, q O 0? the following
holds:

deras(P. O < dA(P, )

Proof. Sincethe matnx Aispositive defi nlte the diago-
nalization A = VOWDV' emstswhereVD/ = Id, and
the diagona matrix W = di ag(wl, . wd) consists of the
e|genvalzuec wf, . wd of A. When consderl ng the mini-
mum Wi, of th@e eigenvalues, we obtain:

di(p. @) = (p—q) VWDV [p-q)" =
S W IpV-av) 2 3 wh, OpV-aV) =

Wi [p-q) VOV p-q)”

= dupse(® Q). 0

Note that for acertaln P, MBS(A)(p, q) reaches dA(p Q)
and, therefore, dMBS(A represents the greatest lower-
bounding distance function of the spherical type. This opti-
mality criterion ensures the best approximation quality that
could be achieved for the type of scaled Euclidean distance
functions.

Geometry of the Minimum Bounding Sphere. For a giv-
en center point candradiusr, thespherels represented by the
function sphere (p) = (p—c) 2/r? , and the inequality:

shere, (p)<1 < (p—c)’<r?

It remains to determine the radius of the minimum cir-
cumscribing sphere. Observe that the minimum bounding
sphere in particular touches the ellipsoid, i.e. the elipsoid
and its MBS have some points in common. A necessary



condition which holds for all touching and smooth surfaces
is that the normal vectors of the objects at any tangential
point arelinearly dependent, i.e. parallel. Thenormal vector
of a surface is equal to the gradient of the corresponding
surface function. We set the gradient of the centered sphere
function, p2/ r?, in relation to the gradient of the centered
ellipsoid function, p CA EpT , inorder to state the linear de-
pendency:
Uellipa(p) = A [lsphere,(p)

2p[A = AR [p/r?
plA = A/r’ P

By means of linear algebra, this statement says that
A/r” isone of the eigenvalues Wi, e Wﬁ of the matrix A,
and the tangential point p corresponds to an eigenvector.
Sincewe are not yet aware of thevalue of A, we assumethe
equality of the spherical function and the ellipsoid function
for every tangential point p, that fulfillsthe above gradient
equation:

ellipa(p) = sphere,(p) = p CADH, = pi/r’ o
A2, Do = pi/r® = A = 1.

Thus, every eigenvalue of the matrix A directly repre-
sentsthereciprocal square of aradius 1/ r® that belongsto
the corresponding tangential point. Vice versa, the candi-
date valuesfor the radius are given by the reciprocal square
roots of the eigenvalues of A, that is 1/wy, ..., 1/wy.
Since we have to determine the bounding sphere as a con-
servative approximation of agiven ellipsoid region, that is:
elipa(py) < €, we have to select the maximum radius r .,
thzat Qoeurs over 2aII tan%ential points to obtain the sphere
p/r'<e < p <elr”. This requirement immediately
implies that we have to choose the minimum eigenvalue of
A for the computation of the desired radius r of the mini-
mum bounding sphere:

e Jeg_ e

r = maXx ) eeny
MBS(A, £9) Cov,” " wgD ™ wigg,

3.3 Combined Conservative Approximations

Both the MBB and MBS approximation have specific
characteristics with respect to their approximation quality
and their potential of improving query processing efficien-
cy. In order to exploit the advantages of both techniques, it
is near at hand to look for combinations of these basic ap-
proximations. In the following, we demonstrate how basic
conservative approximations are combined to complex ap-
proximations, and how to combine basic lower-bounding
distance functionsto complex ones.

Combination of Approximations. Given an élipsoid
elip(A q,€), let C = {APP(A, q, €)} beaset of conserva
tive approximations of elip, eg.
C = {MBB(A q,€), MBS(A, q,€)} . By the following
lemma 4 we show that the intersection of the approxima-

tions of C again is a conservative approximation. For the
proof, we exploit the property that each of the conservative
approximations totally encloses the original object, and
hence, their intersection also encloses the object:

Lemma 4. Given an ellipsoid dlip(A, q, €), let
C = {APP(A, q,€)} beaset of conservative approxima
tions of dlip. Then, the intersection of all APP(A, q, €) is
again aconservative approximation of elip:

N APP(A q,¢) Oelip(A, g, €)
APPOC

Proof. Since every APP [0 C isaconservative approxi-
mation of dlip, it fulfills the relationship
APP(A, q, €) O dlip(A, g, €) whichisequivaenttotheim-
plication

OpO 0% pOdlipA g,e) O pOAPPA, g€

Thisimplicationistruefor all APP O C and, hence, also
for the intersection of the APPs. Overall, we obtain the fol-
lowing implication whichis equivalent to the proposition as
it holdsfor every p O 0

pUOédlip(A,g,¢) O pO N APPA Qe ¢
APPOC

Figure 7 shows a 2-D example for a conservative ap-
proximation that combines the minimum bounding box
(MBB) and the minimum bounding sphere (MBS) approxi-
meation of an ellipsoid. Obviously, the volume of the inter-
section is smaller than the volumes of the individual com-
ponents which results in an improved approximation
quality in comparison with the basic approximations.

MBB(A,0,) n MBS(A,q.¢)

Figure7: Combined approximation (here: MBB and MBS) of
an ellipsoid of level €.

Combination of Lower-Bounding Distance Functions.
Analogously to the approximation techniques mentioned
above, we present a combination of lower-bounding dis-
tancefunctionsthat again lower-boundsthe exact similarity
distance function. By the subsequent forma proposition,
we show that the maximum of the component distance
functions fulfills this requirement.

Definition 5 (Combined distance function). Let
C= {diz} be a set of distance functions. Then, the com-



bined distance function d(Z: is defined to be the maximum of
the component functions:

da(p, q) = max{d’(p, 9)}

Theorem. For every similarity matrix A and every set of
Iower-boundmg dlstance functions C = {dip p(a)) s

APP(A)(p Q) < dA(pi g) for al p,qC n¢ , the comblned

dlstancefunctlon d: isalower bound of the ellipsoid dis-
tance function dA, and, forall p,q 0O 09 it holds that:

de(p, @) < di(p. )

Proof. Forall p,g 0 n¢
true: dg(p, o) < d(p, ) max{ dipeey(P, @)} < d3(p, )

~  Odappgay: dappeay(P: A) < da(p, ) . Thefinal inequali-
ty represents the precondition. ¢
In particular, the maximum distance function is the
greatest lower-bounding distance function that can be de-
rived from a set of distancefunctionssinceit awaysreturns
the greatest value of all component functions. This maxi-
mum property guarantees an optimal selectivity and, there-
fore, yieldsthe best performanceimprovement for k-nearest
neighbor query processing.

, thefollowing equivalencesare

4 Experimental Evaluation

In the experimental evaluation, we applied our approxi-
mation techniques to a large image database, containing
8-D color histograms of 112,000 images as well asto ada-
tabase of 1,000,000 objectsthat are uniformly distributedin
the 8-D. The experiments were performed on an HP-735
under HP-UX 10.20. The approximation techniqueswill be
denoted by BOX for box approximation, SPHERE for
sphere approximation, and COMB for the combination of
BOX and SPHERE. The symbol NONE stands for the pure
exact ellipsoid evaluation without using any approxima-
tion.

All similarity matriceswe applied werederived from our
color similarity search system. Inthe context of thissystem,
the user can specify the four parameters o, w;, Wy, and w,
fromwhich the componentsa;; of the similarity matrix Aare
determined by the following formulafrom [Haf+ 95]:

2
aij — e—U H(d,(Ci, ¢)/ dmax)
Thus, o is a positive constant that affects the overall
shape of the query ellipsoid, and d,(c;, ¢;) represents the
weighted Euclidean distance of the basic colors ¢; and ¢;.
The weighting factors w = (w,, wg, Wp) denote the rela
tive weight of the red, green, and blue component in the
RGB color space. In the following, we specify our similari-
ty matrices by these four parameters.

Since the performance aspect is a basic motivation for
our approach, wefirst show the high impact of the quadratic
evaluation time for an ellipsoid function on the total query
time (cf. figure 8). For this experiment, we used different

matrices (cf. table 1) to perform 100 different range queries
as well as 100 different 5-nearest neighbor queries. The
measured average percentage of the evaluation time for the
corresponding ellipsoid function compared with the total
query time was as high as 74%. Such a high percentage of
the eva uation time clearly underlines the relevance for ef-
ficiency improvements.

a) Range Queries b) k-nn Queries
100%

80% -

60% - O Vo time

40% - W CPU time

20% -

0% -

different similarity matrices

Figure 8: For adaptable similarity search, CPU timeisahigh
percentage of the overall runtime. @) Range queries on Im-
ageDB, b) k-nn queries (k=5) on ImageDB.

Matrix o W, A W,
ZT11 10 1,000 1 1
Z711 10 700 1 1
7411 10 400 1 1
7711 10 10 1 1
Z111 10 1 1 1

Table 1: User-defined parameters for the matricesused in
our experiments

4.1 Approximation Quality

In our further experiments, we measured the perfor-
mance of our approximation agorithms with respect to
their dependency on different similarity matrices. Sincethe
effects and performance of an approximation is mainly in-
fluenced by the shape of the corresponding ellipsoid, we
characterize the corresponding ellipsoid through a geomet-
ric measure instead of user-defined parameters.

For explaining the quality of the sphere approximation,
we denote sphericity astheratio of the volume of the sphere
divided by the volume of theellipsoid, which complieswith
the definition of the approximation quality in section 2.
Thismeansasphericity of about 1 characterizesasimilarity
matrix almost representing a sphere, whereas a high sphe-
ricity value indicates that the minimum bounding sphereis
considerably larger than the ellipsoid.

To demonstrate the quality of the box approximation,
two measures seem to be adequate. First, the approximation
quality of the minimum bounding box can be used for our
purposes. The disadvantage of this measure is that it does
not consider the obliqueness of the ellipsoid which obvious-



ly affects the approximation quality. Therefore, a second
possible measure is the volume ratio of the minimum
bounding box and the rotated minimum bounding box.

The influence of al these matrices on the parametersis
reflected in Figure 9. We can ascertain for our different ma-
trices that matrices with high vaues of sphericity also have
high values in the two measures for the minimum bound
box quality. Similarly, matrices with low values of spheric-
ity have low values in each measure. In the following, we
will usethe parameter sphericity for describing the matrices
used in our experiments.
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Figure9: Therelative volume of the approximations (approx-
imation quality) are used as shape parameters of ellipsoids.

4.2 Approximations and Exact Evaluationsin the
Directory

Considering the algorithms of section 2, the question
emerges if evaluating exact distances solely in data nodes
but not in directory nodes could be more efficient than our
approach. Obvioudly, deferring exact evaluations to data
nodes results in a reduced evaluation time per directory
node. However, as directory nodes are not exactly evaluat-
ed, the effect of thisapproach isthat alarger number of data
nodes haveto betested. Thus, the decision to evaluate exact
distances only in datanodes is a trade off between areduc-
tion of computation timeintheindex and an increased num-
ber of data nodes that are evaluated. To analyze this effect,
we performed atest of range queriesfor various query rang-
es, and the similarity matrix corresponds to an ellipsoid
with sphericity 1.035. Asfigure 10 depicts, evaluating the
exact distancein both directory nodes and datanodesyields
abetter overall timein comparison with restricting the exact
distance evaluation to data nodes.

4.3 Dependency on the Similarity Matrix

For our next experiments, we performed a sample of
range queries for different similarity matrices correspond-
ing to ellipsoids having a sphericity of 1.035 up to 2,200.
On both databases, the image database as well as the uni-
formly distributed data, the range queries returned between
1 and 10 results on the average. Figure 11 depicts the per-
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g 0 2'5 1 exact
L, e evaluation
g 0.2
= 0.15 1 B immediate
s 01 exact
2 0.05 { evaluation
o 0 i

—
o O
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S 9
o O

query ranges

0.0003
0.0004
0.0005
0.0006

Figure10: Comparison of deferred and immediate exact eval-
uationsin the index (example: image database).

centage of exact elipsoid evaluations that were saved by
using the approximation techniques, due to approximation
based exclusions. For the image database, more than 90%
of the ellipsoid evaluations are avoided in all of our experi-
ments. In case of uniformly distributed data, 90% of ellip-
soid evaluations are avoided only for elipsoids that are
quite similar to spheres, and for less spherical ellipsoids,
still 20% to 60% of the expensive ellipsoid evauations are
avoided. Obviously, the combined approximationyieldsthe
most savings. So we have found out that our approximation
yields a very high percentage of saved exact evaluations.
Next, weinvestigated the result of the savings.

a) Image b) Uniform
100 Database Distribution
m BOX
W SPHERE
O COVMB

1.035

saved evaluations [%]
o 885 8 8
420

1.035
4.26
839.2
1526.2
2215.4

839.2
1526.2
2215.4

sphericity of ellipsoid

Figure11: Saved evaluations of intersection and containment
tests for range queries using similarity matrices that corre-
spond to elipsoids with different sphericities.

Infigure 12, the impact of avoiding exact ellipsoid eval-
uations on the elapsed time isillustrated for the same sam-
ple of range queries as above. For the image database, the
factor of performance improvement ranges from 2.8t0 6.3,
depending on the sphericity of the elipsoid. For the uni-
formly distributed data, we observed the same improve-
ment factor of 6 only for ailmost spherical elipsoids. For



higher sphericity values, the approximation quality isworse
and in some cases, it would be better off to directly test the
exact ellipsoid tests without using approximations. An opti-
mizer could use this information in order to decide which
approximation should be used, if any, depending on the
shape of the query ellipsoid.

a) Image Database
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Figure 12: Elapsed time for range queries depending on the
sphericity of the query elipsoid.

4.4 Dependency on Query Parameters

For our next series of experiments, we show the robust-
ness of our approximation approach concerning different
query types. Therefore, we performed samples of range
gueries and k-nearest neighbor queries for various query
ranges and query parametersk. The similarity matrix corre-
sponds to an ellipsoid with sphericity 1.035. Figure 13 de-
picts the elapsed time for query processing depending on
the average number of resultsthat are returned by the range
gueries. On average, the used query ranges return 2.8 to 19
results from theimage database and 5.2 to 50.6 resultsfrom
the uniformly distributed data. I n these experiments, the ap-
proximations outperform the pure ellipsoid evaluation by a
factor of 2.7 (image database) and 4.2 to 6.3 (uniform distri-
bution).
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Figure 13: Elapsed time for range queries depending on the
query range.

In figure 14, we demonstrate the improvement that we
achieved for k-nearest neighbor queriesfor avarying value
of k. For the image database, we achieved a performance
gain of approximately 40% for the MBS approximation,
and for the uniform distribution an acceleration of 35% to
40%.

5 Conclusions

In this paper, we investigated the efficiency of adaptable
similarity search asit occursin avariety of modern database
applications including multimedia, molecular biology,
medical imaging, and CAD/CAM. Based on the observa-
tion that the exact evaluation of the underlying quadratic
form distance functions consumes a high percentage of the
overall search time, we developed an approximation-based
approach for improving the performance of similarity query
processing. We adapted the concept of conservative ap-
proximationsin order to accel erate similarity range queries,
and, in particular, investigated the Minimum Bounding Box
(MBB), the Minimum Bounding Sphere (MBS), and the
combination of these two approximations. Additionally, we
extended the concepts of these approximation types to
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Figure 14: Elapsed time for k-nearest neighbor queries for
various values of k.

k-nearest neighbor queries. These queries aredirectly based
on similarity distance functions rather than on geometric
query regions. For this purpose, we devel oped greatest |ow-
er-bounding distance functions for each of the considered
approximation types. In a detailed analysis, we proved the
correctness of our techniques. For our experiments, we used
an image database containing 112,000 color histograms,
and a synthetic database containing 1,000,000 uniformly
distributed 8-D points. The results demonstrate that by us-
ing the approximation techniques, a high percentage of the
expensive exact evaluations can be avoided, depending on
the data, on the similarity matrix, and on the query parame-
ters. We observed an improvement of the CPU time by fac-
torsbetween 2 and 6 for range queries, and between 1.4 and
1.7 for k-nearest neighbor queries.

In our future work, we plan to investigate the impact of
the similarity matrix, i.e. the geometry of the query dlip-
soid, on the performance of similarity query processing.
Provided with this knowledge, aquery optimizer can be de-
veloped that is able to select the most efficient execution
plan that may or may not include approximations for simi-
larity search.
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