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Abstract

Similarity search and content-based retrieval are
becoming more and more important for an increas-
ing number of applications including multimedia,
medical imaging, 3D molecular and CAD data-
base systems. As a general similarity model that is
particularly adaptable to user preferences and,
therefore, fits the subjective character of similari-
ty, quadratic form distance functions have been
successfully employed, e.g. for color histograms
as well as for 2D and 3D shape histograms. Al-
though efficient algorithms for processing adapt-
able similarity queries using multidimensional
index structures are available, the quadratic nature
of the distance function strongly affects the CPU
time which in turn represents a high percentage of
the overall runtime. The basic idea of our approach
is to reduce the number of exact distance computa-
tions by adapting conservative approximation
techniques to similarity range query processing
and, in addition, to extend the concepts to k-nearest
neighbor search. As part of a detailed analysis, we
show that our methods guarantee no false drops.
Experiments on synthetic data as well as on a large
image database containing 112,000 color images
demonstrate a significant performance gain, and
the CPU time is improved by a factor of up to 6.

1 Introduction
In recent years, a wide range of database applications has

appeared for which new query types turn out to be useful. In
particular, similarity search is an essential query type for
spatial and multimedia databases containing images, video
audio or 3D-objects [Jag 91] [AFS 93] [GM 93] [FRM 94]
[ALSS 95] [Kor+ 96] [BK 97]. The last few years of re-

search have produced several results for efficiently support-
ing similarity search, and among them, quadratic form dis-
tance functions have shown their high usefulness. They
were successfully used for color histogram similarity
[Fal+ 94] [Haf+ 95] [SK 97], 3-D shape similarity
[KSS 97] [KS 98], pixel-based similarity [AKS 98], and
several other similarity models [Sei 97]. The reason for us-
ing quadratic forms as distance functions is the observation
that for many applications, the Euclidean distance is not ad-
equate due to its fundamental assumption that all dimen-
sions are independent of each other. Any quadratic form
distance function  is deter-
mined by a similarity matrix A whose components represent
the mutual similarities, or correlations, of the dimensions. If
the matrix A is positive definite, i.e.  for ,
meaningless negative distance values are avoided. Whereas
the Euclidean distance produces spherical query regions,
general quadratic form distance functions represent ellip-
soids as query regions which give the new query type its
name, ellipsoid query. In [SK 97], a novel algorithm for ef-
ficient ellipsoid query processing on multidimensional in-
dex structures was presented which directly uses the exact
representation of an ellipsoid as the query region. However,
we may not rely on the applicability of the exact method for
the following reasons:

Legacy Systems. Imagine that you are bound to a legacy
system that only supports multidimensional window
queries or sphere queries, and which resists an exten-
sion, for example, one which is necessary for the algo-
rithm for exact ellipsoid query processing as proposed in
[SK 97]. In order to provide efficient support for ellip-
soid queries in spite of this restriction, we investigate the
adaptability of standard approximation techniques to el-
lipsoid queries.
Performance Aspects. Since the evaluation time for an
ellipsoid function is quadratic in the general case, it may
bring benefits to use approximations for query process-
ing. Thus we can achieve a reduction of the time com-
plexity for calculations on data pages as well as on direc-
tory pages. In a d-dimensional space, testing whether a
database object is contained in the query ellipsoid re-
quires  time, and testing the intersection of a recti-
linear box from the index and the query ellipsoid takes

 time for a small iteration factor i [SK 97]. By
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using appropriate approximations, these complexities
may be reduced to linear time. In order to meet this ex-
pectation, the selected approximations should be simple
for storage and computational reasons. On the other
hand, the approximation should have a high quality of
approximation to the ellipsoid so as to save as many ex-
act evaluations as possible. The impact of such methods
on the performance has to be evaluated by experiments
which require the availability of approximation tech-
niques that are competitive with the exact ellipsoid que-
ry processing algorithm. The relevance of reducing the
number of distance evaluations in comparison with the
overall runtime will be demonstrated later in this paper.
In the past, the use of approximation techniques for effi-

cient query processing was extensively investigated in the
context of 2-D spatial database systems, in particular to ef-
ficiently support point and range queries [BKS 93]
[KSB 93] as well as spatial joins [BK 94] [Bri 94]. From
the investigated types, conservative approximations in par-
ticular meet the requirements of range query processing.
Since they totally enclose the exact objects, conservative
approximations guarantee no false drops for range query
processing. In this paper, we demonstrate how to adapt con-
servative approximations to ellipsoid range and k-nearest
neighbor query processing in order to keep the number of
false hits as low as possible.

Note that the conservative approximation of a given que-
ry region itself is a query region. This means that it has a
boundary and a defined extension similar to the original
query region. However, this idea does not extend to k-near-
est neighbor queries, which play an important role for simi-
larity search [Sei 97] [SK 98]. This query type does not cor-
respond to defined query regions but is based on similarity
distance functions. We have already become acquainted
with an approximation technique for distance functions
which has a similar importance for similarity query pro-
cessing as the conservative approximations for spatial que-
ry processing, namely the lower-bounding property
[FRM 94] [SK 98].

The paper is organized as follows: In section 2, efficient
processing of similarity queries is described including the
improvements to state-of-the-art algorithms for similarity
search. Section 3 covers three approximation types: The
minimum bounding box, the minimum bounding sphere
and the combination of both. In section 4, we present the re-
sults of our experiments that reveal the performance en-
hancement. Section 5 concludes the paper.

2 Efficient Processing of Similarity Queries
The specific query types that occur in the context of sim-

ilarity search are range queries, nearest neighbor queries
and k-nearest neighbor queries. Since in current databases
strong efficiency requirements have to be met, a fast pro-
cessing of these complex similarity queries is crucial. As
mentioned above, the evaluation time of our adaptable sim-
ilarity distance functions is quadratic and, therefore, con-
sumes a great deal of CPU-time. In order to reduce the num-

ber of expensive exact distance evaluations, we propose
techniques to efficiently process similarity queries by intro-
ducing approximation-based distance evaluation. The pre-
sented algorithms work on access methods which manage
the secondary storage pages by rectilinear hyperboxes, e.g.
minimum bounding boxes (MBBs), in order to form higher
level directory pages.

2.1 Approximation-based Similarity Range Query

The similarity range query is a fundamental query type
which can be defined as follows: Let the symbol O denote
the universe of all objects that may occur as database ob-
jects or query objects. For every type of similarity search, a
distance function  has to be provided such
that  measures the (dis-)similarity of two objects
o1 and o2. By , let us denote an actual database. We
specify similarity range queries by a query object q and a
range value ε, and the answer set is defined to contain all
the objects s from the database that have a distance to the
query object q of less than or equal to ε:

Definition 1 (Similarity range query). For a query object
 and a query range , the similarity range que-

ry returns the set:

From a geometric point of view, the given distance func-
tion and the range value ε define a region around the query
object q. Thus, the similarity range query reports all data
objects which are contained in this region. Processing range
queries on a multidimensional access method is performed
as follows: The search algorithm starts from the root and
then traverses the tree recursively. At each directory node,
the entries (MBBs) which intersect the query region are
identified and the search is directed downwards. At data
nodes, all objects which are contained in the query region
are finally reported. There are two query-dependent compo-
nents in this algorithm: The method intersects(box, region)
returns true if a MBB in a directory node intersects the que-
ry region, and the method contains(object, region) returns
true if a data object is located inside the query region.

In the case of adaptable similarity models based on qua-
dratic form distance functions, both methods have to deter-
mine the expensive exact distance of each considered object
(MBB or data object) to the query region. We observed that
the time for distance calculation highly affects the CPU
time which in turn represents a high percentage of the over-
all runtime. Thus, we are strongly interested in reducing the
number of exact distance evaluations. The basic idea of our
approach is to adapt the concept of conservative approxi-
mations to similarity range queries. Conservative approxi-
mations of query regions totally enclose the complete query
region and can efficiently be used in filter steps to generate
candidates since they guarantee no false drops and ideally
produce only a small number of false hits. Desired models
are approximations that are less complex than the original
region (which is an ellipsoid in our case) and therefore need
considerably less evaluation time, if possible only linear

d: O O× ℜ0
+→

d o1 o2,( )
DB O⊆

q O∈ ε ℜ0
+∈

simq ε( ) o DB∈ | d o q,( ) ε≤{ }=



evaluation time. By introducing conservative approxima-
tions to similarity range queries, we now can exploit the in-
clusion of the query region in the approximation to avoid
unnecessary exact distance evaluations. Thus, the exact dis-
tance is evaluated only if the approximation of the consid-
ered object fulfills the query condition. In figure 1 we show
the code of the improved intersects(box, query, approx) and
contains(object, query, approx) algorithms. Note that in
method intersects the intersection test with the exact query
region could be omitted without affecting correctness. This
defers the evaluation of exact distances to data nodes which
could improve or decrease performance. We analyze this is-
sue later in section 4.2. 

In order to show the correctness of our approximation-
based approach, we prove that the proposed algorithms
guarantee no false drops.

Lemma 1. The algorithms of figure 1 produce no false
drops for conservative approximations.

Proof. Given a data object obj, a MBB box, a query re-
gion query =  and a region approx. If approx is a
conservative approximation of query, then 
is true and the following implication holds:

Furthermore, for data nodes we have:
. ◊

Generally, we define the approximation quality 

by the ratio of the volume of the approximation to the vol-
ume of the original region, e.g.

. Thus, a larger ratio cor-

responds to a worse approximation quality. Obviously, the

higher the quality of the conservative approximation, the
higher is the performance gain in query processing time. In
section 3, we will consider several promising conservative
approximations models.

2.2 Approximation-based k-Nearest Neighbor Query

Since similarity distance functions are quite abstract, the
user must be experienced with typical similarity distances
in order to specify useful similarity range queries. This is
the reason why k-nearest neighbor queries are becoming
more and more important for similarity search in large data-
bases of complex objects. The k-nearest neighbor query re-
trieves, for any query object, the k most similar objects from
the database and can be defined as follows:

Definition 2 (k-nearest neighbor query). For a query ob-
ject  and a query parameter k ≥ 1, the k-nearest neigh-
bor query returns the set  that exactly con-
tains k objects from the database for which the following
condition holds:

Note that possibly several objects in the database exist
which have the same distance to the query object as the k-th
object in the answer set. In this case, the k-th object in

 is a non-deterministic selection of one of those
equally distanced objects. Several approaches to process k-
nearest neighbor queries are available from the literature
which are suitable for introducing approximation based dis-
tance evaluation, for instance [Hen 94] [RKV 95] [HS 95].
In this paper, we focus on the similarity ranking algorithm
proposed in [HS 95] which is proven to be optimal with re-
spect to the number of accessed index pages [BBKK 97]
and can easily be adapted to process k-nearest neighbor
queries by ranking exactly k data objects. The basic idea of
this algorithm is to visit nodes in the order of their mindist,
e.g. the minimum distance from the query object to any pos-
sible object inside a node. Although the original ranking al-
gorithm employed the Euclidean distance function, the
method works for any arbitrary distance function. The algo-
rithm is generally designed for multidimensional access
methods that hierarchically manage page regions. There-
fore, it can be applied to the R-tree [Gut 84], the R+-tree
[SRF 87], the R*-tree [BKSS 90], the X-tree [BKK 96]
[Ber+ 97] and many others [GG 97].

Considering the k-nearest neighbor algorithm, we en-
counter a similar situation as in the standard range query al-
gorithm: For each considered MBB and data object, the ex-
act distance to the query object has to be evaluated, which
again has a quadratic complexity for adaptable similarity
distance functions. Thus, as in the case of similarity range
queries, our goal is to reduce the number of expensive dis-
tance evaluations. Obviously, we cannot adapt the concept
of conservative approximations to k-nearest neighbor que-
ries, since this query type does not correspond to delimited
query regions. Rather, we introduce approximate distance
functions to the k-nearest neighbor algorithm which are
lower-bounds to the exact quadratic form distance function.

method intersects (DirEntry box, Region query, 
Region approx)  bool;

{
if not intersects (box, approx) then return false;
else if not intersects (box, query) then return false;

else return true;
}

method contains (DataEntry object, Region query, 
Region approx)  bool;

{
if not contains (object, approx) then return false;
else if not contains (object, query) then return false;

else return true;
}

Figure 1: Approximation-based intersection and containment 
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Formally, for any lower-bounding distance function 
of a given object distance function  the following
holds: .

We can then exploit the lower-bounding property in the
following way: When the distance to MBB or a data object
has to be evaluated, we first calculate the minimum distance
to the query object with respect to the lower-bounding dis-
tance function . If this distance is less than or equal
to the distance of the query object to the actual k-th nearest
neighbor, the exact distance to the query object is evaluated
using . If during the search process no k-th data object
has been found yet, the exact distance of the query object to
the k-th nearest neighbor is defined to be some value that is
greater than any possible distance value in the underlying
data space. Additionally, we only insert those nodes into the
priority queue, which have a minimum distance less than or
equal to the distance of the query object to the actual k-th
nearest neighbor. In figure 2 we present the code of our pro-
posed approximation-based k-nearest neighbor algorithm. 

The correctness of our approach is shown by the follow-
ing lemma 2:

Lemma 2. The algorithm of figure 2 produces no false
drops for lower-bounding distance functions.

Proof. Given a data object obj, a directory entry box, a
query object query and two distance functions  and

. Let  be the actual k-th nearest neighbor of the

query object query. If  is a lower-bounding distance
function of , then for all ,

 is true and the following impli-
cation for directory nodes holds:

 ⇒  

 ⇒  

 ⇒  

Additionally, the following implication holds for data
nodes:

 ⇒  

 ⇒  . ◊

Obviously, the efficiency of our approach depends on
the quality of the lower-bounding distance function. Main-
ly, we are interested in approximation models that yield
lower-bounding distance functions which are less complex
to evaluate than the original distance function. Further-
more, the maximum improvement is achieved with the
greatest of all lower-bounding distance functions with re-
spect to the selected approximation model. In the following,
we propose distance functions which exactly meet these re-
quirements.

3 Conservative Approximation Techniques

Various types of conservative approximation techniques
have been investigated in the context of Geographic Infor-
mation Systems and 2-D spatial database systems [BKS 93]
[KSB 93], and we adapted them to our ellipsoid queries in
d-dimensional spaces. Both the Minimum Bounding Box
(MBB) and the Minimum Bounding Sphere (MBS) require
only  space and  time for testing intersections
and containments. The Convex Hull as well as Minimum
Bounding n-Corners mismatch the spherical character of
ellipsoids. In comparison with the MBB, the Rotated Mini-
mum Bounding Box (RMBB) is not restricted to be rectilin-
ear which, in general, yields a better approximation quality.
However, the RMBB requires  space to represent its
orientation in the d-dimensional space, and the computation
of intersections, containments and distances is, at best, per-
formed by linear programming in  [PTVF 92] or

 [Sei 90] time. Thus, the RMBB is not expected to be
beneficial when approximating ellipsoids, and we concen-
trate on the MBB and the MBS as the most promising ap-
proximation techniques. On top of these basic approxima-
tions, we demonstrate how to combine them to exploit the
advantages of both.

Each technique, MBB and MBS as well as the combined
approximation, are applied to both similarity range queries
and k-nearest neighbor queries. For this purpose, we have to
provide two instances for each model: First, the conserva-

method XTree :: k_ranking (Object query, 
DistFunction dexact, DistFunction dapprox, Integer k)

{
PriorityQueue queue; // node queue
SortedList results; // objects and distances

queue.insert(0, root);
while not queue.isempty() do

Element first = queue.pop();
if first.distance > results[k].dist then break;
else case first isa
 DirNode:

foreach child in first do
if dapprox(query, child.box) ≤ results[k].dist then

if dexact(query, child.box) ≤ results[k].dist then
queue.insert(dexact(query, child.box), child);

 DataNode:
foreach obj in first do

if dapprox(query, obj) ≤ results[k].dist then
if dexact(query, obj) ≤ results[k].dist then

results.insert(dexact(query, obj), obj);
end

enddo;
report (results, k);

}

Figure 2: Approximation-based k-nearest neighbor algorithm
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tive approximation itself which represents a geometric re-
gion enclosing the query ellipsoid, and second, an approxi-
mate distance function that lower-bounds the respective
quadratic form distance function. Since both instances are
closely related, we focus mainly on the more general case of
lower-bounding distance functions.

Whereas we already defined the ellipsoid distance func-
tion  to be a quadratic form, we additionally intro-
duce the symbol  to represent an ellipsoid of
level ε around a query point q as query region:

3.1 Minimum Bounding Box Approximation

The Minimum Bounding Box (MBB) of a spatial object
is the smallest rectilinear box that totally encloses the ob-
ject. The MBB is a favorite approximation technique due to
its compact representation which requires only  pa-
rameters in d-dimensional spaces since it suffices to store
the lower and upper bound in each dimension. It is easy to
determine and highly compatible to rectilinearly organized
multidimensional access methods. Figure 3 provides a 2-D
example. 

The  of an ellipsoid  may be
computed by determining the tangential hyperplanes whose
normal vectors are parallel to the coordinate axes. Thus, we
obtain for the i-th component of :

We defer the formal derivation of this formula since the
same result is immediately obtained from the correspond-
ing lower-bounding box distance function which we derive
in the following.

Lower-Bounding Box Distance Function. The generali-
zation of boxes to distance functions involves a weighted
maximum norm  which corresponds to rectilinear rect-
angular query regions (cf. figure 4). The common case of
non-square rectangles is represented by involving weight-
ing factors for the individual dimensions. The following
definition formalizes the minimum bounding box distance
function as required for our purpose. 

Definition 3 (MBB distance function). Let A be a simi-
larity matrix, and  its inverse. The minimum bounding
box distance function  of A is defined as follows:

Note that  is well-defined since  exists for
every positive definite matrix A. The following theorem in-
dicates that the MBB distance function represents a lower
bound of the original ellipsoid distance function.

Theorem. For every similarity matrix A and every
, the MBB distance function  is a lower

bound of the ellipsoid distance function :

Proof. We show that for every , an intermedi-
ate point  exists such that the following formula is true
which immediately implies the proposition:

 

Figure 5 demonstrates the existence of such an auxiliary
point , given as the tangential point of the box and the el-

lipsoid of which the box is the MBB. This definition implies

. Obviously,  is located on

the same box as p, i.e. , and

the ellipsoid of  is smaller than the ellipsoid on which p

is located, i.e. . From these consider-

ations, the proposition follows immediately. A formal proof
is provided in the appendix of this paper. ◊ 

The fact that p itself may be the tangential point 
shows that  can reach . This case in-
dicates that  represents the greatest of all box-
shaped lower-bounding distance functions. As a conse-
quence,  guarantees the best filtering quality that
can be achieved for lower-bounding distance functions that
are based on a weighted maximum norm.

dA
2 p q,( )

ellip A q ε, ,( )

ellip A q ε, ,( ) p ℜd∈ :  dA
2

p q,( ) ε≤{ }=

2 d⋅

Figure 3: Minimum Bounding Box (MBB) of a 2-D ellipsoid 
of level ε.
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Geometry of the Minimum Bounding Box. Concluding
the introduction of MBB approximations, we demonstrate
how the MBB of an ε-ellipsoid is obtained from the MBB
distance function. Lemma 3 shows that an ε-range of the
MBB distance function actually represents the minimum
bounding box  of the corresponding ellip-
soid.

Lemma 3. For every similarity matrix A, query point q,
and range parameter ε, the MBB distance range

 exactly represents the minimum
bounding box  of the ellipsoid .

Proof. For all p, the following equivalences are true:

  ⇔  

 ⇔    ⇔    ⇔ 

 ⇔    ⇔ 

 ⇔  . ◊

3.2 Minimum Bounding Sphere Approximation

The Minimum Bounding Sphere (MBS) of a spatial ob-
ject is the smallest sphere that totally encloses the object.
The MBS requires only  parameters in d-dimensional
spaces to store the radius and the d coordinates of the center
point. For ellipsoids, the center of the MBS coincides with
the center of the ellipsoid. Figure 6 provides an example in
the 2-D. 

Lower-Bounding Sphere Distance Function. Also for the
MBS approximation model, we provide a distance function

 that lower-bounds the ellipsoid distance function
. An appropriate generalization of spheres to distance

functions leads to the Euclidean distance which is scaled by
a factor that corresponds to the radius of the sphere.

Definition 4 (MBS distance function). Let A be a simi-
larity matrix, and  the minimum eigenvalue of A. The
minimum bounding sphere distance function  of A

is defined to be the scaled and squared Euclidean distance
function:

Theorem. For every similarity matrix A, the MBS dis-
tance function  of A is a lower bound of the ellipsoid
distance function , i.e. for all  the following
holds:

Proof. Since the matrix A is positive definite, the diago-
nalization  exists where , and
the diagonal matrix  consists of the
eigenvalues  of A. When considering the mini-
mum  of these eigenvalues, we obtain:

 =   = 

 =    ≥   = 

 =    =  . ◊

Note that for a certain p,  reaches 
and, therefore,  represents the greatest lower-
bounding distance function of the spherical type. This opti-
mality criterion ensures the best approximation quality that
could be achieved for the type of scaled Euclidean distance
functions.

Geometry of the Minimum Bounding Sphere. For a giv-
en center point c and radius r, the sphere is represented by the
function , and the inequality:

  ⇔  

It remains to determine the radius of the minimum cir-
cumscribing sphere. Observe that the minimum bounding
sphere in particular touches the ellipsoid, i.e. the ellipsoid
and its MBS have some points in common. A necessary
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condition which holds for all touching and smooth surfaces
is that the normal vectors of the objects at any tangential
point are linearly dependent, i.e. parallel. The normal vector
of a surface is equal to the gradient of the corresponding
surface function. We set the gradient of the centered sphere
function, , in relation to the gradient of the centered
ellipsoid function, , in order to state the linear de-
pendency:

By means of linear algebra, this statement says that
 is one of the eigenvalues  of the matrix A,

and the tangential point p corresponds to an eigenvector.
Since we are not yet aware of the value of λ, we assume the
equality of the spherical function and the ellipsoid function
for every tangential point  that fulfills the above gradient
equation:

 ⇔  ⇔ 

 ⇔ .

Thus, every eigenvalue of the matrix A directly repre-
sents the reciprocal square of a radius  that belongs to
the corresponding tangential point. Vice versa, the candi-
date values for the radius are given by the reciprocal square
roots of the eigenvalues of A, that is .
Since we have to determine the bounding sphere as a con-
servative approximation of a given ellipsoid region, that is:

, we have to select the maximum radius 
that occurs over all tangential points to obtain the sphere

 ⇔ . This requirement immediately
implies that we have to choose the minimum eigenvalue of
A for the computation of the desired radius r of the mini-
mum bounding sphere:

3.3 Combined Conservative Approximations

Both the MBB and MBS approximation have specific
characteristics with respect to their approximation quality
and their potential of improving query processing efficien-
cy. In order to exploit the advantages of both techniques, it
is near at hand to look for combinations of these basic ap-
proximations. In the following, we demonstrate how basic
conservative approximations are combined to complex ap-
proximations, and how to combine basic lower-bounding
distance functions to complex ones.

Combination of Approximations. Given an ellipsoid
ellip(A, q, ε), let  be a set of conserva-
tive approximations of ellip, e.g.

. By the following
lemma 4 we show that the intersection of the approxima-

tions of C again is a conservative approximation. For the
proof, we exploit the property that each of the conservative
approximations totally encloses the original object, and
hence, their intersection also encloses the object:

Lemma 4. Given an ellipsoid ellip(A, q, ε), let
 be a set of conservative approxima-

tions of ellip. Then, the intersection of all APP(A, q, ε) is
again a conservative approximation of ellip:

Proof. Since every  is a conservative approxi-
mation of ellip, it fulfills the relationship

 which is equivalent to the im-
plication

: 

This implication is true for all  and, hence, also
for the intersection of the APPs. Overall, we obtain the fol-
lowing implication which is equivalent to the proposition as
it holds for every :

 ◊

Figure 7 shows a 2-D example for a conservative ap-
proximation that combines the minimum bounding box
(MBB) and the minimum bounding sphere (MBS) approxi-
mation of an ellipsoid. Obviously, the volume of the inter-
section is smaller than the volumes of the individual com-
ponents which results in an improved approximation
quality in comparison with the basic approximations. 

Combination of Lower-Bounding Distance Functions.
Analogously to the approximation techniques mentioned
above, we present a combination of lower-bounding dis-
tance functions that again lower-bounds the exact similarity
distance function. By the subsequent formal proposition,
we show that the maximum of the component distance
functions fulfills this requirement.

Definition 5 (Combined distance function). Let
 be a set of distance functions. Then, the com-
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Figure 7: Combined approximation (here: MBB and MBS) of
an ellipsoid of level ε.
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bined distance function  is defined to be the maximum of
the component functions:

Theorem. For every similarity matrix A and every set of
lower-bounding distance functions , i.e.

 for all , the combined
distance function  is a lower bound of the ellipsoid dis-
tance function , and, for all  it holds that:

Proof. For all , the following equivalences are

true:  ⇔ 

 ⇔  . The final inequali-

ty represents the precondition. ◊
In particular, the maximum distance function is the

greatest lower-bounding distance function that can be de-
rived from a set of distance functions since it always returns
the greatest value of all component functions. This maxi-
mum property guarantees an optimal selectivity and, there-
fore, yields the best performance improvement for k-nearest
neighbor query processing.

4 Experimental Evaluation

In the experimental evaluation, we applied our approxi-
mation techniques to a large image database, containing
8-D color histograms of 112,000 images as well as to a da-
tabase of 1,000,000 objects that are uniformly distributed in
the 8-D. The experiments were performed on an HP-735
under HP-UX 10.20. The approximation techniques will be
denoted by BOX for box approximation, SPHERE for
sphere approximation, and COMB for the combination of
BOX and SPHERE. The symbol NONE stands for the pure
exact ellipsoid evaluation without using any approxima-
tion.

All similarity matrices we applied were derived from our
color similarity search system. In the context of this system,
the user can specify the four parameters σ, wr, wg, and wb
from which the components aij of the similarity matrix A are
determined by the following formula from [Haf+ 95]:

Thus, σ is a positive constant that affects the overall
shape of the query ellipsoid, and  represents the
weighted Euclidean distance of the basic colors ci and cj.
The weighting factors  denote the rela-
tive weight of the red, green, and blue component in the
RGB color space. In the following, we specify our similari-
ty matrices by these four parameters.

Since the performance aspect is a basic motivation for
our approach, we first show the high impact of the quadratic
evaluation time for an ellipsoid function on the total query
time (cf. figure 8). For this experiment, we used different

matrices (cf. table 1) to perform 100 different range queries
as well as 100 different 5-nearest neighbor queries. The
measured average percentage of the evaluation time for the
corresponding ellipsoid function compared with the total
query time was as high as 74%. Such a high percentage of
the evaluation time clearly underlines the relevance for ef-
ficiency improvements. 

4.1 Approximation Quality 

In our further experiments, we measured the perfor-
mance of our approximation algorithms with respect to
their dependency on different similarity matrices. Since the
effects and performance of an approximation is mainly in-
fluenced by the shape of the corresponding ellipsoid, we
characterize the corresponding ellipsoid through a geomet-
ric measure instead of user-defined parameters.

For explaining the quality of the sphere approximation,
we denote sphericity as the ratio of the volume of the sphere
divided by the volume of the ellipsoid, which complies with
the definition of the approximation quality in section 2.
This means a sphericity of about 1 characterizes a similarity
matrix almost representing a sphere, whereas a high sphe-
ricity value indicates that the minimum bounding sphere is
considerably larger than the ellipsoid.

To demonstrate the quality of the box approximation,
two measures seem to be adequate. First, the approximation
quality of the minimum bounding box can be used for our
purposes. The disadvantage of this measure is that it does
not consider the obliqueness of the ellipsoid which obvious-
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dw ci cj,( )

w wr wg wb, ,( )=

Matrix σ wr wg wb

ZT11 10 1,000 1 1

Z711 10 700 1 1

Z411 10 400 1 1

ZZ11 10 10 1 1

Z111 10 1 1 1

Table 1: User-defined parameters for the matrices used in 
our experiments

Figure 8: For adaptable similarity search, CPU time is a high
percentage of the overall runtime. a) Range queries on Im-
ageDB, b) k-nn queries (k=5) on ImageDB.
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ly affects the approximation quality. Therefore, a second
possible measure is the volume ratio of the minimum
bounding box and the rotated minimum bounding box.

The influence of all these matrices on the parameters is
reflected in Figure 9. We can ascertain for our different ma-
trices that matrices with high values of sphericity also have
high values in the two measures for the minimum bound
box quality. Similarly, matrices with low values of spheric-
ity have low values in each measure. In the following, we
will use the parameter sphericity for describing the matrices
used in our experiments. 

4.2 Approximations and Exact Evaluations in the 
Directory

Considering the algorithms of section 2, the question
emerges if evaluating exact distances solely in data nodes
but not in directory nodes could be more efficient than our
approach. Obviously, deferring exact evaluations to data
nodes results in a reduced evaluation time per directory
node. However, as directory nodes are not exactly evaluat-
ed, the effect of this approach is that a larger number of data
nodes have to be tested. Thus, the decision to evaluate exact
distances only in data nodes is a trade off between a reduc-
tion of computation time in the index and an increased num-
ber of data nodes that are evaluated. To analyze this effect,
we performed a test of range queries for various query rang-
es, and the similarity matrix corresponds to an ellipsoid
with sphericity 1.035. As figure 10 depicts, evaluating the
exact distance in both directory nodes and data nodes yields
a better overall time in comparison with restricting the exact
distance evaluation to data nodes. 

4.3 Dependency on the Similarity Matrix

For our next experiments, we performed a sample of
range queries for different similarity matrices correspond-
ing to ellipsoids having a sphericity of 1.035 up to 2,200.
On both databases, the image database as well as the uni-
formly distributed data, the range queries returned between
1 and 10 results on the average. Figure 11 depicts the per-

centage of exact ellipsoid evaluations that were saved by
using the approximation techniques, due to approximation
based exclusions. For the image database, more than 90%
of the ellipsoid evaluations are avoided in all of our experi-
ments. In case of uniformly distributed data, 90% of ellip-
soid evaluations are avoided only for ellipsoids that are
quite similar to spheres, and for less spherical ellipsoids,
still 20% to 60% of the expensive ellipsoid evaluations are
avoided. Obviously, the combined approximation yields the
most savings. So we have found out that our approximation
yields a very high percentage of saved exact evaluations.
Next, we investigated the result of the savings.

In figure 12, the impact of avoiding exact ellipsoid eval-
uations on the elapsed time is illustrated for the same sam-
ple of range queries as above. For the image database, the
factor of performance improvement ranges from 2.8 to 6.3,
depending on the sphericity of the ellipsoid. For the uni-
formly distributed data, we observed the same improve-
ment factor of 6 only for almost spherical ellipsoids. For

Figure 9: The relative volume of the approximations (approx-
imation quality) are used as shape parameters of ellipsoids.
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higher sphericity values, the approximation quality is worse
and in some cases, it would be better off to directly test the
exact ellipsoid tests without using approximations. An opti-
mizer could use this information in order to decide which
approximation should be used, if any, depending on the
shape of the query ellipsoid. 

4.4 Dependency on Query Parameters

For our next series of experiments, we show the robust-
ness of our approximation approach concerning different
query types. Therefore, we performed samples of range
queries and k-nearest neighbor queries for various query
ranges and query parameters k. The similarity matrix corre-
sponds to an ellipsoid with sphericity 1.035. Figure 13 de-
picts the elapsed time for query processing depending on
the average number of results that are returned by the range
queries. On average, the used query ranges return 2.8 to 19
results from the image database and 5.2 to 50.6 results from
the uniformly distributed data. In these experiments, the ap-
proximations outperform the pure ellipsoid evaluation by a
factor of 2.7 (image database) and 4.2 to 6.3 (uniform distri-
bution). 

In figure 14, we demonstrate the improvement that we
achieved for k-nearest neighbor queries for a varying value
of k. For the image database, we achieved a performance
gain of approximately 40% for the MBS approximation,
and for the uniform distribution an acceleration of 35% to
40%. 

5 Conclusions

In this paper, we investigated the efficiency of adaptable
similarity search as it occurs in a variety of modern database
applications including multimedia, molecular biology,
medical imaging, and CAD/CAM. Based on the observa-
tion that the exact evaluation of the underlying quadratic
form distance functions consumes a high percentage of the
overall search time, we developed an approximation-based
approach for improving the performance of similarity query
processing. We adapted the concept of conservative ap-
proximations in order to accelerate similarity range queries,
and, in particular, investigated the Minimum Bounding Box
(MBB), the Minimum Bounding Sphere (MBS), and the
combination of these two approximations. Additionally, we
extended the concepts of these approximation types to

Figure 12: Elapsed time for range queries depending on the 
sphericity of the query ellipsoid.
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Figure 13: Elapsed time for range queries depending on the 
query range.
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k-nearest neighbor queries. These queries are directly based
on similarity distance functions rather than on geometric
query regions. For this purpose, we developed greatest low-
er-bounding distance functions for each of the considered
approximation types. In a detailed analysis, we proved the
correctness of our techniques. For our experiments, we used
an image database containing 112,000 color histograms,
and a synthetic database containing 1,000,000 uniformly
distributed 8-D points. The results demonstrate that by us-
ing the approximation techniques, a high percentage of the
expensive exact evaluations can be avoided, depending on
the data, on the similarity matrix, and on the query parame-
ters. We observed an improvement of the CPU time by fac-
tors between 2 and 6 for range queries, and between 1.4 and
1.7 for k-nearest neighbor queries.

In our future work, we plan to investigate the impact of
the similarity matrix, i.e. the geometry of the query ellip-
soid, on the performance of similarity query processing.
Provided with this knowledge, a query optimizer can be de-
veloped that is able to select the most efficient execution
plan that may or may not include approximations for simi-
larity search.
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Appendix

Formal Proof of the MBB Theorem in Section 3.1:

For every , we show the existence of an auxil-
iary point  for which the following formula is true:

  (*)

Let j be the index of the component of the difference vec-
tor  that has the maximum value. Then, the MBB dis-
tance function appears as:

Now we introduce the desired intermediate point  by
the following definition where  denotes the j-th unit vector:

At this point, we are prepared to establish the left hand
side equation of (*) that we proposed at the beginning of the
proof:

(i)    =    = 

 =    = 

 =    =    =  

 =  .

In order to prove the estimation on the right hand side of
(*), let us represent the vector p by , and expand the
ellipsoid distance function as follows:

(ii)   =    = 

 =   .

Note that the last term of the sum, , is great-
er or equal to zero since A is positive definite. In order to

prove that the overall sum is greater or equal to , it

suffices to show that the second term of the sum vanishes:

  =  

=    =  0  since

  =    =    =  0

From (i) and (ii), we obtain the overall proposition
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