
Using Sets of Feature Vectors for Similarity Search on
Voxelized CAD Objects

Hans-Peter Kriegel, Stefan Brecheisen, Peer Kröger, Martin Pfeifle, Matthias Schubert
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ABSTRACT
In modern application domains such as multimedia, molecu-
lar biology and medical imaging, similarity search in database
systems is becoming an increasingly important task. Espe-
cially for CAD applications, suitable similarity models can
help to reduce the cost of developing and producing new
parts by maximizing the reuse of existing parts. Most of the
existing similarity models are based on feature vectors. In
this paper, we shortly review three models which pursue this
paradigm. Based on the most promising of these three mod-
els, we explain how sets of feature vectors can be used for
more effective and still efficient similarity search. We first
introduce an intuitive distance measure on sets of feature
vectors together with an algorithm for its efficient compu-
tation. Furthermore, we present a method for accelerating
the processing of similarity queries on vector set data. The
experimental evaluation is based on two real world test data
sets and points out that our new similarity approach yields
more meaningful results in comparatively short time.

1. INTRODUCTION
In the last ten years, an increasing number of database ap-
plications has emerged for which efficient and effective sup-
port for similarity search is substantial. The importance of
similarity search grows in application areas such as multi-
media, medical imaging, molecular biology, computer aided
engineering, marketing and purchasing assistance, etc. [15,
1, 24, 13, 14, 2, 7, 9, 18]. Particularly, the task of find-
ing similar shapes in 2-D and 3-D becomes more and more
important. Examples for new applications that require the
retrieval of similar 3-D objects include databases for molec-
ular biology, medical imaging and computer aided design.

Especially, the development, design, manufacturing and main-
tenance of modern engineering products is a very expensive
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and complex task. Effective similarity models are required
for two- and three-dimensional CAD applications to cope
with rapidly growing amounts of data. Shorter product cy-
cles and a greater diversity of models are becoming decisive
competitive factors in the hard-fought automobile and air-
craft market. These demands can only be met if the engi-
neers have an overview of already existing CAD parts. In
this paper, we introduce an effective and flexible similarity
model for complex 3-D CAD data, which helps to find and
group similar parts. This model is particularly suitable for
voxelized data, which often occur in CAD applications. It
is not based on the traditional approach of describing one
object by a single feature vector but instead we map an ob-
ject onto a set of feature vectors, i.e. an object is described
by a point set.

The remainder of the paper is organized as follows: In Sec-
tion 2 we shortly review already existing spatial similarity
models and provide a classification of the techniques into
feature-based models and direct geometric models. Section
3 provides the basis for similarity models based on voxelized
CAD objects. We address the issues of translation, rotation,
reflection and scaling invariances. Furthermore we adapt
three known similarity models to voxelized 3-D data. Based
on the most promising of these three models, we explain in
Section 4 our new approach based on sets of feature vectors.
In Section 5, we analyze the different similarity models by
means of hierarchical clustering. We show that our new sim-
ilarity approach efficiently generates more significant results
compared to the traditional approaches based on single fea-
ture vectors. The experiments are based on two real-world
test data sets of our industrial partners, a German car man-
ufacturer and an American aircraft producer. The paper
concludes in Section 6 with a short summary and a few re-
marks on future work.

2. RELATED WORK
In recent years, considerable work on similarity search in
database systems has been published. Many of the previous
approaches, however, deal with 1-D or 2-D data, such as
time series, digital images or polygonal data. Most of them
do not support 3-D objects or are not suitable for voxelized
data. In this section, we shortly list different approaches
to establish similarity measures. We provide a classifica-
tion of the techniques into feature-based models and direct
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Figure 1: Space partitioning with 4 cells. The fea-
ture vector generated by the volume model is de-
picted on the right hand side.

geometric models.

2.1 Feature-Based Similarity
A widely used class of similarity models is based on the
paradigm of feature vectors. The basic idea is as follows:
Using a feature transform, the objects are mapped onto a
feature vector in an appropriate multidimensional feature
space. The similarity of two objects is then defined as the
proximity of their feature vectors in the feature space: The
closer their feature vectors are located, the more similar two
objects are considered.

The paradigm of feature-based similarity has been success-
fully applied to the retrieval of similar spatial objects. Ex-
amples include structural features of 2-D contours [24], an-
gular profiles of polygons [5], rectangular covers of shapes
[15], algebraic moment invariants [13], 2-D section coding [9,
7], and 3-D shape histograms for biomolecular objects [4].
Non-geometric applications include similarity search on time
series [1, 14, 2], and on color histograms in image databases
[26, 13], among several others.

2.2 Geometry-Based Similarity
A class of models that is to be distinguished from the feature-
based techniques are the similarity models that are defined
by directly using the geometry of the objects. Two ob-
jects are considered similar if they minimize a distance cri-
terion that is purely defined by the geometry of the ob-
jects. Examples include the similarity retrieval of mechani-
cal parts [28], the difference volume approach [19, 18], and
the approximation-based similarity model for 3-D surface
segments [21].

3. SIMILARITY MODELS FOR
VOXELIZED CAD OBJECTS

In this section, we describe three established similarity mod-
els. The first two models (the volume and the solid-angle
approach) are based on an axis parallel, equi-sized space
partitioning. The voxel approximations of the objects are
then transformed into shape histograms. These histograms
are used as intuitive feature vectors. In the third model
(the cover sequence approach), we do not need this space
partitioning but obtain our feature vectors directly from the
rectangular covers which approximate our object by mini-
mizing the symmetric volume difference. This third model
forms the starting point for our new approach based on vec-
tor sets which is introduced in Section 4.

3.1 Shape Histograms
Histograms are usually based on a complete partitioning of
the data space into disjoint cells which correspond to the
bins of the histograms.

We divide the data space into axis parallel, equi-sized par-
titions (cf. Figure 1). This kind of space partitioning is
especially suitable for voxelized data, as cells and voxels are
of the same shape, i.e. cells can be regarded as coarse voxels.

Each of these partitions is assigned to one or several bins
in a histogram, depending on the specific similarity model.
By scaling the number of partitions, the number of dimen-
sions of the feature vector can be regulated (cf. Figure 1).
Obviously, the more partitions we use, the more smaller dif-
ferences between the objects become decisive.

By means of the resulting feature vectors, the similarity of
two objects can be defined as follows.

Definition 1. (Feature-Based Object Similarity)
Let O be the domain of the objects and F : O → R

d be a
mapping of the objects into the d-dimensional feature space.
Furthermore, let dist : Rd ×Rd → R be a distance function
between two d-dimensional feature vectors. Then simdist:
O ×O → R is defined as follows:

simdist(Obj1, Obj2) = dist(F (Obj1), F (Obj2)).

There exist a lot of distance functions which are suitable for
similarity search. In the literature, often the Lp-distance is
used, as for instance the Manhattan distance (p = 1) or the
Euclidean distance (p = 2). Throughout our experiments
(cf. Section 5), the common Euclidean distance was used.

3.2 Normalization
Similarity models for CAD data should recognize similar
parts, independently of their spatial location. The four, re-
spectively five, tires of a car are similar, although they are
located differently. Furthermore, reflected parts, e.g. the
right and left front door of a car, should be recognized as
similar as far as design is concerned. If we look at the pro-
duction, reflected parts are no longer similar and have to be
treated differently. Likewise, the actual size of the parts may
or may not exert influence on the similarity model. To sum
up, a similarity model for CAD data should take translation
and rotation invariances into account whereas reflection and
scaling invariances have to be tunable.

CAD objects are designed and constructed in a standardized
position, normalized to the center of the coordinate system.
We store each object normalized with respect to translation
and scaling in the database. Furthermore, we store the scal-
ing factors for each of the three dimensions, so that we can
(de)activate scaling invariance depending on the users needs
at runtime. In the case of CAD applications, not all possible
rotations are considered, but only 90◦-rotations. This yields
24 different possible positions for each object. For similar-
ity search, where we are not confined to 90◦-rotations, we
can apply principal axis transformation in order to achieve
invariance with respect to rotation. Taking also reflection
into account, we may obtain 24 · 2 = 48 varying positions.



We could achieve 90◦-rotation and reflection invariance by
storing 48 different feature vectors for each object in the
database or by carrying out 48 different permutations of the
query object at runtime. As we want to decide at runtime
whether we want to consider reflection invariance or not, we
chose the second variant. Throughout our experiments, we
considered invariance with respect to translation, reflection,
scaling and 90◦-rotation.

Taking all these transformations into account, we get the
following extended similarity definition.

Definition 2. (Extended Feature-Based Object Similarity)
Let O be the domain of the objects, F : O → R

d a map-
ping of the objects into the d-dimensional feature space,
and dist : Rd × Rd → R a distance function between
two d-dimensional feature vectors. Furthermore, let T be a
set of all user-dependent combinations of translation, scal-
ing, rotation and reflection transformations. Then simdist:
O ×O → R is defined as follows:

simdist(Obj1, Obj2) = min
T∈T

{dist(F (Obj1), F (T (Obj2)))}.

3.3 Spatial Features
After partitioning the data space, we have to determine the
spatial features of the objects for each grid cell depending
on the chosen model. In order to do that we first have to
introduce some notations:

The data space is partitioned in each dimension into p grid
cells. Thus, our histogram will consist of k · p3 bins where
k ∈ N depends on the model which specifies the kind and
number of features extracted from each cell. For a given
object o, let V o = {V oi | 1 ≤ i ≤ p3} be the set of voxels
that represents o where V oi are the voxels covered by o in
cell i. V̄ o ⊆ V o denotes the set of voxels at the surface of
the objects and V̇ o ⊆ V o denotes the set of the voxels inside
the object, such that V̄ o ∪ V̇ o = V o and V̄ o ∩ V̇ o = ∅ holds.

Let fo be the computed feature vector of an object o. The

i-th value of the feature vector of object o is denoted by f
(i)
o .

Let r be the number of voxels of the dataspace in each di-
mension. In order to ensure a unique assignment of the
voxels to a grid cell, we assume that r

p
∈ N.

3.3.1 The Volume Model
A simple and established approach to compare two objects
is based on the number of the object voxels |V oi | in each cell
i of the partitioning. In the following, this model is referred
to as volume model. Each cell represents one dimension in
the feature vector of the object. The i-th dimension of the
feature vector (1 ≤ i ≤ p3) of object o can be computed by
the normalized number of voxels of o lying in cell i, formally:

f (i)
o =

|V oi |
K

where K = (
r

p
)3

Figure 1 illustrates the volume model for the 2-D case.

Figure 2: A sample object with different shapes at
surface-points p1 and p2.

3.3.2 The Solid-Angle Model
The solid-angle method [11] measures the concavity and the
convexity of geometric surfaces. Let Kc be a set of voxels
that describes a 3-D voxelized sphere with central voxel c.
For each surface-voxel v̄ of an object o the so called solid-
angle value is computed as follows. The voxels of o which
are inside Kv̄ are counted and divided by the size of Kv̄, i.e.
the number of voxels of Kv̄. The resulting measure is called
the solid-angle value Sa(v̄) and can be computed as follows:

Sa(v̄) =
|Kv̄ ∩ V o |
|Kv̄ |

, where:

Kv̄ ∩ V o =

{w ∈ Kv̄ | ∃v ∈ V o : w.x = v.x ∧ w.y = v.y ∧ w.z = v.z}

A small solid-angle value Sa(v̄) indicates that an object is
convex at voxel v̄. Otherwise, a high value of Sa(v̄) denotes
a concave shape of an object at voxel v̄. Figure 2 illustrates
this behavior.

The solid-angle values of the cells are transferred into the
according histogram bins as described in the following. We
distinguish between three different types of cells:

1. Cell i contains surface-voxels of object o, i.e. V̄ oi 6=
∅. The mean of all Sa-values of the surface-voxels is
computed as the feature value of this cell:

f (i)
o =

1

m

m∑
j=1

Sa(v̄ij )

where V̄ oi = {v̄i1 , . . . , v̄im}.

2. Cell i contains only inside-voxels of object o, i.e. V̄ oi =
∅ and V oi 6= ∅. The feature value of this cell is set to 1

(i.e. f
(i)
o = 1).

3. Cell i contains no voxels of object o (i.e. V oi = ∅). The
value of the according bin of the histogram is 0 (i.e.

f
(i)
o = 0).

3.3.3 The Cover Sequence Model
The two models described above are based on a complete
partitioning of the data space into disjoint cells. In this
section, we adapt a known model [15, 16] to voxelized 3-D
data which is not restricted to this rigid space partitioning
but rather uses a more flexible object-oriented partitioning
approach. This model is in the following referred to as cover
sequence model.



Figure 3: Cover sequence model.

As depicted in Figure 3 each edge of an object can be ex-
tended infinitely in either direction, to obtain a grid of lines.
Each rectangle in this grid is called a grid primitive, and is
located either entirely inside the object, or entirely outside
of the object. Furthermore, any pair of adjacent grid primi-
tives must also form a rectangle, respectively a cuboid in the
3-D data space. The basic idea of this model is to find large
clusters of grid primitives, called covers, which approximate
the object as good as possible [16].

The quality of such a cover sequence Sk is measured by
the symmetric volume difference Errk between the object
O and the sequence Sk (cf. Figure 3). Formally, let the
covers be drawn from the set C of all possible rectangular
covers. Then each unit i of the cover sequence comprises a
pair (Ci ∈ C, σi ∈ {+,−}), where “+” represents set union
and “−” represents set difference. The sequence after k units
is:

Sk = (((C0σ1C1)σ2C2) . . . σkCk),

where C0 is an initial empty cover at the zero point.

The symmetric volume difference after k units is:

Errk = |O XOR Sk | , where O is the approximated object.

Jagadish and Bruckstein [16] suggest two algorithms for the
retrieval of Sk: a branch and bound algorithm with exponen-
tial runtime complexity, and a greedy algorithm with poly-
nomial runtime complexity which tries to minimize Erri in
each step i ≤ k. Throughout our experiments we used this
second algorithm.

In [15], Jagadish sketches how a 3-D cover sequence Sk =
(((C0σ1C1)σ2C2) . . . σkCk) of an object O, can be trans-
formed into a 6·k-dimensional feature vector. Thereby, each
cover Ci+1 with 0 ≤ i ≤ k − 1 is mapped onto 6 values in
the feature vector fo in the following way:

f6i+1
o = x-position of Ci+1

f6i+2
o = y-position of Ci+1

f6i+3
o = z-position of Ci+1

f6i+4
o = x-extension of Ci+1

f6i+5
o = y-extension of Ci+1

f6i+6
o = z-extension of Ci+1

If an object O can be described by a sequence Sj with j < k

covers and Errj = 0, we assign ((Sjσj+1C0) . . . σkC0) to Sk.
These dummy-covers C0 do not distort our similarity notion
(cf. Definition 2), but guarantee that all feature vectors are
of the same dimensionality. Thus we can use common spatial
index-structures [8, 23, 6] in order to accelerate similarity
queries.

4. USING SETS OF FEATURE VECTORS
FOR SIMILARITY QUERIES

As proposed in [15] a data object is now represented as a
feature vector. For similarity queries this method yields a
major problem. Always comparing the two covers having
the same ranking according to the symmetric volume dif-
ference, does not make sense in all cases. Two objects can
be considered very different, because of the order of their
covers, although they are very similar by intuition. The
reason for this effect is that the order of the covers does
not guarantee that the most similar covers due to size and
position will be stored in the same dimensions. Especially
for objects generating two or more covers having almost the
same volume, the intuitive notion of similarity can be se-
riously disturbed. Thus, the possibility to match the cov-
ers of two compared objects with more degrees of freedom,
might offer a better similarity measure. Figure 4 displays a
2-dimensional example of a comparison between a query ob-
ject and a very similar database object. The first sequence
(cf. Figure 4(a)) represents the covers of the query object
in the order given by the symmetric volume difference. Let
us note that cover 2, 3 and 4 are not very similar to the cor-
responding covers of the database object and therefore, the
calculated similarity is relatively weak. By rearranging the
order of these covers the total distance between the query
object and the database object is considerably decreasing,
which is displayed in Figure 4(b). Thus, the new order pre-
serves the similarity between the objects much better.

To overcome the problem, the author in [15] proposes to gen-
erate several good representations of the query object and
then process a query for each of the representations. After-
wards the union of the returned database objects is taken
as a result. We can obtain different representations by per-
muting the order of the found covers and choose the most
“promising” orderings to create the query vectors. Though,
the method may offer reasonable results in many cases, there
is no guarantee that the ordering offering the minimum dis-
tance is included within this selection. Thus, the whole sim-
ilarity measure is dependent on the criteria used to select
the most “promising” orderings. Since there is no well de-
fined selection criterion known so far, the solution does not
necessarily offer a precisely defined similarity measure.

Another solution for the problem is to consider all possible
permutations. Since the distance between two objects can
now be considered as the minimum distance over all possible
orderings, the distance is defined precisely this way.

Definition 3.
Let exch : N × N × R(d·k) → R

(d·k) be a function, where
exch(i, j, ~x) exchanges the d successive components begin-
ning with dimension i · d+ 1 (0 ≤ i ≤ k− 1) with the d suc-
cessive components beginning with dimension j · d + 1(0 ≤
j ≤ k − 1) of a vector ~x ∈ R(k·d).



Figure 4: Examples demonstrating the advantage of
free permutations.

Exch : R(k·d) → 2R
(k·d)

is the function, that generates
the set of all vectors that can be generated by applying
exch(i, j, ~x) arbitrary many times to a vector ~x using any
combination for i and j.

Definition 4.
(minimum Euclidian distance under permutation)

Let O be the domain of the objects, let F : O → R
(k·d) be

a mapping of the objects into the k · d-dimensional feature
space, and let dist : R(k·d) × R(k·d) → R be a distance
function between two k ·d-dimensional feature vectors. Then
distπ−eucl.: O ×O → R is defined as follows:

distπ−eucl.(Obj1, Obj2) = min
~y∈Exch(F (Obj2))

{dist(F (Obj1), ~y)}

With a growing number of describing covers k, the process-
ing time of considering all possible permutations increases
exponentially, since there are k! many permutations. With
computation cost rising this rapidly, it is obvious that the
description length k has to be kept low, which is not accept-
able for all applications.

To guarantee that the permutation with the minimal dis-
tance is used, our approach does not work with one single
feature vector, but with a set of feature vectors in lower di-
mensions. By treating the data objects as sets of d-dimen-
sional feature vectors with a maximum cardinality of k, we
introduce a new model for representing data objects in sim-
ilarity search systems, the so called vector set model. In
the following sections, we will discuss the concept of vector
set representation in detail, with the goal of high quality
distance measures and efficient query processing.

4.1 Reasons for the Use of
Vector Set Representation

The representation of extracted features as a set of vectors
is a generalization of the use of just one large feature vector.
It is always possible to restrict the model to a feature space,
in which a data object will be completely represented by
just one feature vector. But in some applications the pos-
sibilities of vector set representation allow us to model the
dependencies between the extracted features more precisely.
As the development of conventional database systems in the
recent two decades has shown, the use of more sophisticated
ways to model data can enhance both the effectiveness and
efficiency for applications using large amounts of data. In
our application the vector set representation is able to avoid
the problems that occur by storing a set of covers according
to a strict order. Therefore, it is possible to compare two
objects more intuitively, causing a relatively small rise of
calculation cost compared to the distance calculation in the
one-vector model. Another advantage of our new approach
is the better storage utilization. It is not necessary to force
objects into a common size, if they are represented by sets
of different cardinality. For our current application there is
no need for dummy covers to fill up the feature vectors. If
the quality of the approximation is optimal with less than
the maximum number of covers, only this smaller number
of vectors has to be stored and loaded. In the case of a
one-vector representation avoiding dummies is not possible
without further modifications of the access structures used.
Furthermore, we are able to distinguish between the dis-
tance measure used on the feature vectors of a set and the
way we combine the resulting distances between the single
feature vectors. For example, this possibility might be useful
when defining partial similarity, where it is only necessary
to compare the closest i < k vectors of a set.

4.2 Distance Measures on Vector Sets
There are already several distance measures proposed on
sets of objects. In [12] the authors survey the following
three, which are computable in polynomial time: the Haus-
dorff distance, the sum of minimum distances and the (fair-)
surjection distance. Furthermore, they introduce the link
distance, which is computable in polynomial time, too. The
Hausdorff distance does not seem to be suitable as a sim-
ilarity measure, because it relies too much on the extreme
positions of the elements of both sets. The last three dis-
tance measures are suitable for modelling similarity, but are
not metric. This circumstance makes them unattractive,
since there are only limited possibilities for processing sim-
ilarity queries efficiently when using a non-metric distance
function. In [12] the authors also introduce a method for
expanding the distance measures into metrics, but as a side
effect the complexity of distance calculation becomes expo-
nential. Furthermore, the possibility to match several ele-
ments in one set to just one element in the compared set,
is questionable when comparing sets of covers like in our
application.

A distance measure on vector sets that demonstrates to be
suitable for defining similarity in our application is based
on the minimum weight perfect matching of sets. This well
known graph problem can be applied here, by building a
complete bipartite graph G = (S1 ∪S2, E) between the vec-



tor sets S1 and S2. The weight of each edge (x, y) ∈ E
with x ∈ S1 and y ∈ S2 in this graph G is defined by their
distance dist(x, y). A perfect matching is a subset M ⊆ E
that connects each x ∈ S1 to exactly one y ∈ S2 and vice
versa. A minimum weight perfect matching is a matching
with a minimum sum of weights of its edges. Since a perfect
match can only be found for sets of equal cardinality, it is
necessary to introduce weights for unmatched nodes when
defining a distance measure.

Definition 5. (enumeration of a set)
Let S be any finite set of arbitrary elements. Then π is a
mapping that assigns s ∈ S a unique number i ∈ {1, .., |S|}.
This is written as π(S) = (s1, .., s|S|). The set of all possible
enumerations of S is named Π(S).

Definition 6. (minimal matching distance)
Let O be the domain of the objects and X be a set with
|X| ≤ k and X ⊆ 2V with V ⊂ R

d. Furthermore, let
F : O → X be a mapping of the objects into X, and dist :
R
d×Rd → R a distance function between two d-dimensional

feature vectors. We assume w.l.o.g. |F (Obj1)| = m ≥ n =
|F (Obj2)|, F (Obj1) = {x1, .., xm} and F (Obj2) = {y1, .., yn}.
Then distw,distmm : O ×O → R is defined as follows:

distw,distmm (Obj1, Obj2) =

min
π∈Π(F (Obj1))

(
n∑
i=1

dist(xπ(i), yi) +

m∑
l=n+1

w(xπ(l))

)

where w : Rd → R
+ is a weight function for the unmatched

elements.

The weight function w provides the penalty given to every
unassigned element of the set having larger cardinality. Let
us note that minimum matching distance is a specialization
of netflow distance which is introduced in [27]. In [27] it
is proven that netflow distance is a metric and that it is
computable in polynomial time. Therefore, we derive the
following lemma without further proof.

Lemma 1. The minimal matching distance is a metric if
dist : Rd × Rd → R is a metric and w : Rd → R

+ meets the
following conditions:

• w(~x) > 0, for each ~x ∈ V

• for ~x, ~y, with ~y, ~x ∈ V the following inequality holds :
w(~x) + w(~y) ≥ dist(~x, ~y)

In our application the minimum Euclidian distance under
permutation can be derived from the minimum matching
distance. By selecting the squared Euclidian distance as dis-
tance measure on V and taking the squared Euclidian norm
as weight function, the distance value calculated by the min-
imum matching distance is the same as the squared value of
the minimum Euclidian distance under permutation. This
follows exactly from the definitions of both distance mea-
sures. Let us note that it is necessary to extract the square

root from this distance value to preserve the metric charac-
ter.

Though it was shown that the netflow distance can be cal-
culated in polynomial time, it is not obvious how to achieve
it. Since we are only interested in the minimum matching
distance, it is enough to calculate a minimum weight per-
fect matching. Therefore, we apply the method proposed
by Kuhn [22] and Munkres [25]. The method is based on
the successive augmentation of an alternating path between
both sets. Since it is guaranteed that this path can be ex-
panded by one further match within each step taking O(k2)
time and there is a maximum of k steps, the all over com-
plexity of a distance calculation using the method of Kuhn
and Munkres is O(k3) in the worst case. Let us note that
for larger numbers of k this is far better than the previously
mentioned method on k! many permutations.

4.3 Answering Similarity Queries on Vector
Set Data Efficiently

Though we discussed the time for a single distance calcula-
tion, the problem of efficiently processing similarity queries
in large databases is still unanswered. Since it is necessary
here, to locate the objects belonging to the result in compa-
rably short time, the use of index structures that avoid com-
paring a query object to the complete database is manda-
tory. For one-vector-represented data objects there exists
a wide variety of index structures that are suitable for an-
swering similarity queries efficiently like the TV-Tree [23],
the X-Tree [8] or the IQ-Tree [6]. But unfortunately, those
index structures cannot be used directly to retrieve vector-
set-represented objects.

To accelerate similarity queries on vector-set-represented ob-
jects, the simplest approach is the use of more general access
structures. Since the minimal matching distance is a metric
for the right choice of distance and weight function, the use
of index structures for metric objects like the M-Tree [10]
offers a good possibility here. Another approach is the use
of the above mentioned high dimensional index structures,
for querying sub tasks of the complete similarity query. In
the following we will introduce a filter step that is based on
the relation between a set of d-dimensional vectors and its
extended centroid.

Definition 7.
Let V ⊂ Rd be a set of d-dimensional vectors. Then w~ω :
V → R denotes a set of weight functions having the following
properties: ~ω ∈ Rd\V and w~ω(~x) = ‖~x−~ω‖2, where ‖~x−~y‖2
denotes the Euclidian distance between ~x, ~y ∈ Rd.

Definition 8. (extended centroid)
Let V ⊂ Rd and X ⊂ 2V with |X| ≤ k be a set. Then the
extended centroid Ck,~ω(X) is defined as follows:

Ck,~ω(X) =

∑|X|
i=1 xi + (k − |X|) · ~ω

k
,

where X = {x1, .., x|X|} and ~ω ∈ Rd\V

Lemma 2. Let V ⊂ R
d be a set and ~ω ∈ Rd\V . Fur-

thermore, let X,Y be two vector sets with ~xi ∈ X,~yi ∈ Y ,



let Ck,~ω(X), Ck,~ω(Y ) be their extended centroids and let

dist
distEucl.,w~ω
mm be the minimal matching distance using w~ω

as weight function defined on V . Then the following inequal-
ity holds:

k · ‖Ck,~ω(X)− Ck,~ω(Y )‖2 ≤ distdistEucl.,w~ωmm (X,Y )

Proof. Let π be the enumeration of the indices of X
that groups the xi to yi according to the minimum weight
perfect matching. w.l.o.g. we assume |X| = n ≥ m = |Y |
and n−m = δ.

k · ‖Ck,~ω(X)− Ck,~ω(Y )‖2 =

k · ‖
∑n
i=1 xπ(i)+

∑k−n
i=1 ~ω

k
−
∑m
i=1 yi+

∑k−m
i=1 ~ω

k
‖2

= ‖
∑m+δ
i=1 xπ(i) +

∑k−m−δ
i=1 ~ω −

∑m
i=1 yi −

∑k−m
i=1 ~ω‖2

= ‖
∑m
i=1 xπ(i) −

∑m
i=1 yi +

∑m+δ
i=m+1 xπ(i) −

∑m+δ
i=m+1 ~ω‖2

tri. ineq.
≤ ‖

∑m
i=1(xπ(i) − yi)‖2 + ‖

∑m+δ
i=m+1(xπ(i) − ~ω)‖2

tri. ineq.
≤

∑m
i=1 ‖xπ(i) − yi‖2 +

∑m+δ
i=m+1 ‖xπ(i) − ~ω‖2

=
∑m
i=1 ‖xπ(i) − yi‖2 +

∑m+δ
i=m+1 w~ω(xπ(i))

= dist
distEucl.,w~ω
mm (X,Y )

The lemma proves that the Euclidian distance between the
extended centroids multiplied with the cardinality of the
larger set is a lower bound for the minimal matching distance
under the named preconditions. Therefore, when comput-
ing e.g. ε-range queries, we do not need to examine objects
whose extended centroids have a distance to the query ob-
ject q that is larger than ε/k. A good choice of ~ω for our

application is ~0, since it has the shortest average distance
within the position and has no volume. Since there are no
covers having no volume in any data object, the conditions
for the metric character of minimum matching distance are
satisfied.

To implement the filter step, we stored the extended cen-
troids in a 6-dimensional X-Tree [8]. Since this index struc-
ture provides high performance for similarity queries, it of-
fers an efficient way to determine the keys of the candidate
sets of feature vectors. Afterwards we loaded the vector sets
itself to determine the membership of the object within the
result. Since there exist established algorithms for ε-range
[19] and knn-queries [29] using filter steps, the method is
able to speed up both kinds of queries.

5. EVALUATION
In this section, we present the results of an exhaustive evalu-
ation based on nearest-neighbor queries and clustering. We
also apply the hierarchical clustering algorithm OPTICS [3]
for a more objective evaluation of similarity models than
sample k-nearest-neighbor queries [20].

5.1 Data Sets
We evaluated the three proposed models on the basis of two
real-world datasets. The first one – in the following referred

to as Car Dataset – contains approximately 200 CAD ob-
jects from a German car manufacturer. The Car Dataset
contains several groups of intuitively similar objects, e.g. a
set of tires, doors, fenders, engine blocks and kinematic en-
velopes of seats.

The second dataset contains 5,000 CAD objects from an
American aircraft producer and in the following is called
Aircraft Dataset. This dataset contains many small objects
(e.g. nuts, bolts, etc.) and a few large ones (e.g. wings).

Using the cover sequence model and the vector set model,
the data space of both datasets contains objects represented
as voxel approximations using a raster resolution of r = 15.
For the volume model and the solid-angle model, we used a
raster resolution of r = 30. These values were optimized to
the quality of the evaluation results.

5.2 Using Hierarchical Clustering for the
Evaluation of Similarity Models

In general, similarity models can be evaluated by computing
nearest-neighbor queries (k-nn queries). The major draw-
back of an evaluation based on k-nn queries is that the qual-
ity measure of the similarity model depends on the results
of few similarity queries and, therefore, on the choice of the
query objects. A model may perfectly reflect the intuitive
similarity according to the chosen query objects and would
be evaluated as “good” although it produces disastrous re-
sults for other query objects. Furthermore, there might be
objects where a nearest-neighbor query does not yield any
intuitively similar parts. Obviously, we should not discard a
similarity model if the chosen query object belongs to noise.
As a consequence, the evaluation of similarity models with
sample k-nn queries is subjective and error-prone, due to
its dependency on the choice of the query objects. In [20]
the disadvantages of this approach were demonstrated in full
detail.

Therefore, hierarchical clustering was introduced in [20] as
an effective way to analyze and compare similarity models.
Clustering groups a set of objects into classes where objects
within one class are similar and objects of different classes
are dissimilar to each other. The result can be used to eval-
uate which model is best suited for which kind of objects.
In addition, using clustering the evaluation of the models is
based on the whole data set and not only on a few arbitrary
sample objects.

For the evaluation of the various similarity models, the den-
sity-based, hierarchical clustering algorithm OPTICS was
used. This algorithm is similar to hierarchical Single-Link
clustering methods [17] and is described in full details in
[3]. The output of OPTICS is a linear ordering of the
database objects minimizing a binary relation called reacha-
bility which is in most cases equal to the minimum distance
of each database object to one of its predecessors in the or-
dering. The reachability values can be plotted for each ob-
ject of the cluster-ordering computed by OPTICS. Valleys
in this plot indicate clusters: objects having a small reach-
ability value are more similar to their predecessor objects
than objects having a higher reachability value.

The reachability plot generated by OPTICS can be cut at



Figure 5: Reachability plot (right) computed by OP-
TICS for a sample 2-D dataset (left).

any level ε parallel to the abscissa. It represents the density-
based clusters according to the density threshold ε: A con-
secutive subsequence of objects having a smaller reachability
value than ε belong to the same cluster. An example is pre-
sented in Figure 5: For a cut at the level ε1 we retrieve two
clusters denoted as A and B. Compared to this clustering,
a cut at level ε2 would yield three clusters. The cluster A
is split into two smaller clusters denoted as A1 and A2 and
cluster B has decreased its size. Usually, for evaluation pur-
poses, a good value for ε would yield as many clusters as
possible.

5.3 Evaluation of the Effectiveness
The reachability plots generated by OPTICS for all models
are depicted in Figure 6, 7, 8 and 9.

Obviously, the volume model performs rather ineffective.
The plots computed by OPTICS when applying the model
on the Car Dataset and the Aircraft Dataset are depicted in
Figure 6(a) and 6(b). Both plots show a minimum of struc-
ture indicating that the volume model cannot satisfyingly
represent the intuitive notion of similarity.

The solid-angle model performs slightly better. On the Car
Dataset, OPTICS found three clusters denoted as A, B, and
C in Figure 6(c). We analyzed these clusters by picking out
some samples of the objects grouped in each cluster. The
result of this evaluation on the Car Dataset is presented in
Figure 10(a). As it can be seen, the objects in clusters A
and C are intuitively similar but the objects in B are not.
Furthermore, there are clusters of intuitively similar objects
(e.g. doors), which are not detected. Evaluating the solid-
angle model using the Aircraft Dataset we made similar ob-
servations. The reachability plot computed by OPTICS (cf.
Figure 6(d)) yields a clustering with a large number of hi-
erarchical classes. But the analysis of the objects within
each cluster displays that intuitively dissimilar objects are
treated as similar. A further observation is the following:
objects, that are intuitively similar, are clustered in differ-
ent groups. This suggests the conclusion that the solid-angle
model is also rather unsuitable as a similarity model for our
real-world test datasets.

The plots computed by OPTICS for the cover sequence
model, the cover sequence model using the minimum Euclid-
ian distance under permutation and the vector set model (cf.
Figure 7,8 and 9) look considerably better. We will confirm
this observation in the following, evaluating the effectiveness
of the different models. We analyzed the cover sequence
model without permutations as well as under full permuta-

tions i.e. using the Euclidian distance under permutation.
Note that the Euclidian distance under permutation is too
time consuming for a straightforward calculation, since the
runtime complexity increases with the faculty of the number
of chosen covers. Therefore, we used the possibility of de-
riving this distance measure from the matching distance by
employing the calculation via the Kuhn-Munkres algorithm
as described in section 4.2. Remember that this is achieved
by using the squared Euclidian distance for comparing single
feature vectors and drawing the square root from the result.
The resulting plots (cf. Figure 8) look quite similar to the
ones we derived from employing the minimal matching dis-
tance based on the normal Euclidian distance, i.e. using
the vector set model (cf. Figure 9(c) and 9(d)). A careful
investigation of the parts contained in the clusters showed
that the cover sequence model using the minimum Euclid-
ian distance under permutation and the vector set model
lead to basically equivalent results. Due to this observation
and the better possibilities for speeding up k-nn queries, we
concentrated on the evaluation of the vector set model. We
first compared the vector set model to the cover sequence
model without permutations (cf. Figure 7). Furthermore,
we used different numbers of covers for the vector set model
(cf. Figure 9) in order to show the benefits of a relatively
high number of covers for complex CAD objects.

Comparing the vector set model with the cover sequence
model on the Car Dataset (cf. Figure 7(a),9(a), and 9(c))
we conclude, that the vector set model is superior. All plots
look similar on the first glance. When evaluating the clus-
ters (cf. Figure 10(b) and 10(c)), it turned out that there are
clusters which are detected by both approaches and thus ap-
pear in both plots, e.g. classes E in Figure 10(b) and 10(c).
Nevertheless, we observed the following three shortcomings
of the cover sequence model:

1. Meaningful hierarchies of clusters detected by the vec-
tor set model, e.g. G1 and G2 in Figure 9(c) which are
visualized in Figure 10(c) are lost in the plot of the
cover sequence model (Class G in Figure 7(a) evalu-
ated in Figure 10(b)).

2. Some clusters found by the vector set model are not
found using the cover sequence model, e.g. cluster F
in Figure 10(c).

3. Using the cover sequence model, objects that are not
intuitively similar are clustered together in one class
(e.g. class X in Figure 7(a) which is evaluated in Fig-
ure 10(b)). This is not the case when using the vector
set model.

A reason for the superior effectiveness of the vector set model
compared to the cover sequence model is the role of permu-
tations of the covers. This is supported by the observations
which are depicted in Table 1. In most of all distance cal-
culations carried out during an OPTICS run there was at
least one permutation necessary to compute the minimal
matching distance.

The plots in Figure 9(a) and 9(c) compare the influence of
the number of covers used to generate the vector sets on the
quality of the similarity model. An evaluation of the clusters



(a) Car Dataset (volume model) (b) Aircraft Dataset (volume model)

(c) Car Dataset (solid angle model) (d) Aircraft Dataset (solid angle model)

Figure 6: Reachability plots computed by OPTICS using the volume (a,b) and solid angle (c,d) model [20].

(a) Car Dataset (b) Aircraft Dataset

Figure 7: Reachability plots computed by OPTICS using the cover sequence model with 7 covers.

Table 1: Percentage of proper permutations.
No. of covers Permutations

3 68.2%
5 95.1%
7 99.0%
9 99.4%

yields the observation, that 7 covers are necessary to model
real-world CAD objects accurately. Using only 3 covers we
observed basically the same three problems already noticed
when applying the cover sequence model.

All the results of the evaluation on the Car Dataset can also
be observed evaluating the models on the Aircraft Dataset.
As a consequence, the evaluation shows that the vector set
model outperforms the other models with respect to effec-
tiveness. Furthermore, we see that we need about 7 covers
to model similarity most accurately.

5.4 Evaluation of the Efficiency
The most effective results on our test datasets were gener-
ated with k = 7 covers, entailing an average permutation
rate of 99.0% (cf. Table 1). This leads to the conclusion,
that the cover sequence model can only compete with the
vector set model with respect to quality, if all permutations
are taken into account. Obviously, the vector set model us-
ing the minimal matching distance approach is much more
efficient than the cover sequence model (one-vector model)
using the minimum Euclidian distance under permutation.

To analyze the performance of the filter step, introduced in
Section 4, we evaluated k-nn queries, which are the most
common query type in similarity search systems. Since the
Car Dataset consists of only some 200 objects, it is not suit-
able for efficiency evaluation. Thus, we ran our efficiency
experiments on the Aircraft Dataset only. We took 100
random query objects from the database and examined 10-
nn queries. Our test machine was equipped with an IN-
TEL XEON 1.7 GHz processor and 2 GByte main memory.
Since data and access structures fitted easily into the main



(a) Car Dataset (b) Aircraft Dataset

Figure 8: Reachability plots computed by OPTICS using the cover sequence model with the minimum
Euclidian distance under permutation with 7 covers.

(a) Car Dataset (3 covers) (b) Aircraft Dataset (3 covers)

(c) Car Dataset (7 covers) (d) Aircraft Dataset (7 covers)

Figure 9: Reachability plots computed by OPTICS using the vector set model with 3 and 7 covers.

memory, we calculated the I/O cost. One page access was
counted as 8 ms and for the costs of reading one byte we
counted 200 ns. The results are shown in Table 2.

It turns out that the filter step yields a speed-up of factor
10 on the CPU time, but suffers from a higher I/O-time.
Nevertheless it provides a speed up factor of about 2 for
total time. Furthermore, Table 2 demonstrates, that the
run time using the vector set model with filter step is in
the same order of magnitude as the one-vector model even
without permutation. In our experiments, the vector set
approach even outperformed the one-vector model in both
CPU time and I/O time. Let us note that in our experiments
we based the implementation of the one-vector model on
the X-Tree [8], which is penalized by the simulation of I/O
time. Since it does not take the idea of page caches into
account, an implementation of the one-vector model using
the sequential scan exhibited slightly better performance for
some combinations of dimensionality and data set size, but
the performance was still in the same order of magnitude.

Table 2: Runtimes for sample 10-nn queries in s.
Model CPU time I/O time total time

1-Vect. 142.82 2632.06 2774.88
Vect. Set w. filter 105.88 932.80 1038.68
Vect. Set seq. scan 1025.32 806.40 1831.72

6. CONCLUSIONS
In this paper, we surveyed three feature transformations
that are suitable for the use on voxelized CAD data: the
volume model, the solid angle model and the cover sequence
model. The cover sequence model generates a set of covers
of a 3-dimensional object that can be stored in a feature vec-
tor. In comparison to the other two models it offers a better
notion of similarity. A major problem of the cover sequence
model is the order in which the covers are stored within the
feature vector. For calculating the similarity of two objects
the order realizing minimum distance offers a better similar-
ity measure, but is prohibitive in calculation cost. Our new



(a) Classes found by OPTICS in
the Car Dataset using the solid-angle
model (cf. Figure 6(c)) [20].

(b) Classes found by OPTICS in the
Car Dataset using the cover sequence
model (cf. Figure 7(a)).

(c) Classes found by OPTICS in the Car Dataset using the
vector set model with 7 covers (cf. Figure 9(c)).

Figure 10: Evaluation of classes found by OPTICS in the Car Dataset.

approach to represent an object as a set of feature vectors
avoids this problem. Furthermore, it offers a more general
approach for applications working with set-valued objects.
In the rest of the paper we described the distance measure on
vector sets we used, called minimal matching distance. Min-
imal matching distance is a metric and computable in O(k3).
To demonstrate how similarity queries can be answered ef-
ficiently, we introduced a highly selective filter step that is
able to speed up similarity queries by the use of spatial index
structures. To evaluate our system we used two CAD data
sets. To demonstrate the good notion of similarity provided
by the combination of the cover sequence model and the vec-
tor set representation, we applied hierarchical clustering as
a more objective way to examine similarity measures. Since
k-nn queries are the most common operation in similarity
search systems, we evaluated the efficiency of the filter step
using 100 sample 10-nn queries. It turned out that our new
approach yields more meaningful results without sacrificing
efficiency.

Since vector set representation provides many advantages for
applications working with set-valued objects, we are devel-
oping a more general system for managing vector-set-repre-
sented objects. With the more general system we plan to ex-
amine various other applications for similarity search, such
as the retrieval of biomolecular data and images. Another
essential goal is the development of fast and flexible algo-
rithms for processing similarity queries on vector set repre-
sentations.
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