
Using Support Vector Machines for Classifying Large Sets of

Multi-Represented Objects ∗

Hans-Peter Kriegel Peer Kröger Alexey Pryakhin Matthias Schubert

Institute for Computer Science
University of Munich

Oettingenstr. 67, 80538 Munich, Germany
{kriegel,kroegerp,pryahkin,schubert}@dbs.informatik.uni-muenchen.de

Abstract

Databases are a key technology for molecular biology
which is a very data intensive discipline. Since molec-
ular biological databases are rather heterogeneous, uni-
fication and data integration is mandatory to make
use of the huge amount of available information. Cur-
rently, the most promising approach for integration is
the use of ontologies. Since mapping biological entities
into ontologies is usually achieved manually or semi-
automatically, a system for automatic classification of
biological entities into ontologies saves time and effort.
Therefore, we present a support vector machine based
approach that automatically classifies biological enti-
ties into a given ontology. To solve this difficult task,
our method copes with the following aspects. Biolog-
ical entities might belong to more than one class or
may be placed in classes on varying abstraction levels.
An object may be described by several representations.
Thus, the classifier has to be enabled to draw informa-
tion from all of them, but must consider the possibility
that some objects are described incompletely. There-
fore, our method introduces the technique of object-
adjusted weighting which regulates the impact of each
representation dynamically for each object. To signifi-
cantly improve the time performance of the classifier we
exploit the inheritance relations of the given ontology.
Our experimental evaluation on protein data and sev-
eral parts of an established molecular biological ontol-
ogy shows that our prototype offers impressive accuracy
and is efficient enough to cope with the large number of
classes encountered in real world problems.

∗Supported by the German Ministery for Education, Science,
Research and Technology (BMBF) under grant no. 031U112F
within the BFAM (Bioinformatics for the Functional Analysis

of Mammalian Genomes) project which is part of the German
Genome Analysis Network (NGFN).

Keywords

support vector machines, multi-represented objects,
combined classifiers, hierarchical classification, multi-
class SVMs.

1 Introduction

In recent years, the amount of publicly available biolog-
ical information has increased dramatically. As a conse-
quence, many databases have emerged, offering diverse
information on all kinds of biological entities such as
proteins, nucleotides, pathways, etc. Though most of
these information sources are accessible via the web,
the use of the information is strongly limited due to the
heterogeneity of data formats, data models, and access
facilities between these sources [3].

Currently, the most promising approach for over-
coming these problems is the use of ontologies and tax-
onomies for data integration. Several ontologies have
been developed for molecular biology but only a small
fraction of them is widely accepted. One of the most
popular ontologies in molecular biology is Gene Ontol-
ogy (GO) [4] which models the function of genes and
gene products (e.g. proteins). Most of the major pro-
tein databases (such as SWISS-PROT [2]) provide a
mapping of their entries to GO. However, not all of
the entries are already mapped and biologists all over
the world produce new entries every day. To obtain
a mapping of a so-far unlinked protein database entity
into GO, usually some information about the biological
function of the protein, representing this entry, has to
be explored. Since this usually has to be done manu-
ally throughout a series of biological experiments and
tests, it is a very time consuming and costly task. It
would be of great benefit, if the mapping could be done
automatically by computer-supported prediction of the
biological function out of the raw data stored in the ma-
jor protein databases (e.g. the amino acid sequence of

schubert
In Proc. 4th SIAM Int. Conf. on Data Mining, pp. 102-114, Lake Buena Vista, FL, 2004

a protein which can be obtained very easily) without
laborious experiments. More generally, a framework for
the automatic prediction of the function of biological
entities such as proteins is needed that classifies these
entities according to ontologies such as GO.

In this paper, we introduce a classification system
that provides a good mapping for so far unlinked
biological entities and thus gives a prediction of the
biological function of these entities. The fact that
the objects are not linked to classes or other entities
yet, restricts the use of general relationships modelled
in the ontology. Thus, our system exploits the class
inheritance of the ontology for classification, i.e. the
taxonomic part of it.

Due to the nature of biological entities, our system
copes with the following demands: Several instances
may belong to more than one class in the taxonomy.
Different instances might be placed at varying abstrac-
tion levels. At last, biological ontologies may employ
multiple inheritance in order to model their classes.

Another aspect is that the representations of bi-
ological entities usually can be derived from multiple
sources, e.g. for most proteins, amino acid sequence
data and textual descriptions of experimental results are
available from databases such as SWISS-PROT [2]. For
a smaller number of proteins additional data is avail-
able, e.g. the 3-dimensional foldings. Usually such data
can be derived from other public databases such as the
Protein Data Bank (PDB) [1].

Different sources have different views on the enti-
ties depending on their research scope. Since it is desir-
able that our classification system uses as much of the
available information as possible, it should be able to
exploit multiple representations for the same data ob-
ject to improve accuracy. As the quality of each type of
representation may vary for different entries and types
of representations, the classifier should automatically
weight the influence of each representation. For exam-
ple, the textual annotations of proteins are – if existing
– usually more useful for classification than the sequence
data of the proteins. Last but not least, the framework
should be flexible enough to handle missing representa-
tions, i.e. in the case that one of the representations of
an instance is missing, the classifier should still be able
to make a preditcion. Since biological ontologies are
built of large numbers of classes and biological entities
occur in large cardinalities, good efficiency is mandatory
to handle large problems in applicable time.

To take up these challenges, we present a novel
approach to hierarchical classification based on support
vector machines. The main contributions of this paper
are:

• An efficient and accurate method for handling

multi-classified instances employing support vector
machines.

• A method for classifying objects built of multiple
representations that is able to cope with missing
representations.

• A discussion of methods for hierarchical classifica-
tion under the aspect of large classification prob-
lems and taxonomic directed acyclic graphs instead
of strict taxonomy trees.

• A thorough experimental evaluation demonstrating
effectiveness and efficiency of our prototype on
several subsections of GO.

Our prototype was designed to automatically map
proteins based on their SWISS-PROT entries into GO.
We use sequence data and the text annotations as
different representations for proteins. Let us note that
further data sources such as secondary and tertiary
structures can easily be incorporated into the prototype.
The rest of the paper is organized as follows. In Section
2, we briefly review related work. In Section 3, we
present the major concepts of our approach that cope
with the challenges mentioned above. The proposed
prototype is evaluated based on a realistic experimental
setting in section 4. Section 5 offers a summary of the
presented work and gives perspectives for future work.

2 Related Work

Support Vector Machines. In recent years, sup-
port vector machines (SVMs) [5] have received much
attention offering superior performance in various ap-
plications [13, 8]. Basic SVMs distinguish between two
classes by calculating the maximum margin hyperplane
between the training examples of both given classes.
The use of soft margins and kernel functions enables
them to classify any kind of data. To employ SVMs for
distinguishing more than two classes, several approaches
were introduced [22].

Biological Sequence Classification. Classifying
biological sequences such as nucleotide or protein se-
quences is an active area of research. Common ap-
proaches are based on k-nearest neighbor classifiers
(KNN) and all kinds of Markov models (MM) includ-
ing simple MM, selective MM and higher-order MM.
Examples of KNN and MM approaches are given by
[11, 21]. KNN-methods for biological sequence clas-
sification usually use edit distance as similarity func-
tions. Although being simple and comprehensible to
biologists, these approaches suffer from the expensive
computation. MM are widely used for biological se-
quence classification since they have an inherent ability
to model sequential constraints in the data. Recently,

SVMs have been applied to sequence classification by
[8] and demonstrated excellent accuracy when a suitable
feature extraction method is employed. To be suitable
for sequence classification an extraction method should
model the sequential nature of the data. Since finding
such an adequate extraction is not a trivial task, recent
research addresses this challenge, e.g. [16, 19, 26, 8].

Text Classification. The classification of text
documents has been investigated by the research com-
munity in the areas of information retrieval, machine
learning and data mining. To process a text document,
most algorithms rely on projecting the documents into
the feature space of relevant terms. Thus, documents
are described by a vector of term frequencies (TF) or a
vector of term frequencies weighted by the inverse doc-
ument frequency (TFIDF) [24]. To classify the gained
vectors all established classification methods are appli-
cable, as long as they can handle the large number of fea-
tures common to text applications. Since several thou-
sand dimensions are not uncommon in text applications
and the sparseness of the feature vectors used to repre-
sent documents (most of the dimensions show a zero
count for most of the documents), several approaches
to classify text have been introduced [12, 28, 23]. SVMs
have also demonstrated their high value for making very
accurate predictions in the field of text classification
[13].

Hierarchical Multi-Classification. Employing
class hierarchies to improve large scale classification
problems has predominantly been used in text clas-
sification. Therefore, the used taxonomies are taken
from directory services for HTML documents [20, 10],
structural class systems like the U.S. patent codes or
are constructed to have a proper test bed [18]. The
idea of hierarchical classification is that solving a set
of small problems with less classes can be achieved
faster and more effective than solving one large scale
classification problem distinguishing a large amount of
classes. To do so, several approaches have been intro-
duced [20, 10, 18, 15, 7, 25, 27]. Most of them achieved
a big performance improvement and some gain in clas-
sification accuracy. However, none of these approaches
examined an arbitrary shaped class system of functional
data types employing multiple inheritance so far. Fur-
thermore, only [10] examines the combination of sup-
port vector machines and class hierarchies so far, but
the evaluation is based on a strict two level taxonomy
tree. There have been several approaches to employ
general ontologies for classification via relational learn-
ing like [6]. However, since those approaches rely on
general relations, the problem they try to solve is dis-
similar to the challenge we want to take up.

Classifier Fusion. The task of learning from ob-
jects given by multiple representations has recently
drawn some attention in the pattern recognition com-
munity [14, 9, 17]. In [9] the author describes the
method of classifier fusion to combine the results from
multiple classifiers for one and the same object. Fur-
thermore, [9] surveys the four basic combination meth-
ods and introduces a combined learner to achieve com-
bination rules offering better accuracy. However, the
introduced method is not discussed under a data min-
ing point of view. Thus, the described method does not
treat two major demands of our system, scalability and
the handling of incomplete objects.

3 Classification of Biological Objects

In this paper, we address the problem of classifying
biological objects like genes or proteins into a large class
system like Gene Ontology [4].

The goal of classification is to learn a function
F : O → C that maps as much objects o ∈ O to
their correct class c ∈ C as possible. For training, a
set of tuples (o, c), of objects o and their correct classes
c is given to the classifier – the so-called training set.
A variant of simple classification is multi-classification
Fmulti : O → 2C which maps each object o to a subset of
C. In our application multi-classification is mandatory,
since large parts of the objects are associated with more
than one class.

In most application domains, the objects are rep-
resented by one (possibly complex) data type. Thus,
the established way to process the objects o ∈ O is
to extract a set of meaningful features from the object
representation. For most kinds of data representations,
e.g. text, there already exist several approaches of fea-
ture extraction. The derived features span the so-called
feature space. Each dimension of the feature space rep-
resents a feature. Thus, an object o is represented by
a feature vector. A classifier is trained on the set of
feature vectors derived from the training set.

As stated above, biological entities are often built of
multiple data types (representations), such as sequence
data, text, etc. Thus, the input space O of our clas-
sifier F (analogously for Fmulti) is structured, i.e. the
structure of O is determined by the set of different repre-
sentations an object in O might have. Though building
one joined feature space for all different representations
like texts or sequences is principally applicable, the cor-
responding feature vectors might mirror the properties
of the data object only poorly. We argue that classifi-
cation benefits from incorporating the knowledge about
the structure of the input space – i.e. the knowledge
about the representation a feature is extracted from –
into the classifier. In other words, features from the

same representation should be treated in a more similar
way than those from different representations.

A second property of biological entities could be
utilized to enhance the performance of our prototype.
Not only the input space O but also the output space
C of F (analogously for Fmulti) is structured. In fact,
the classes in C are usually organized in a sophisticated
class system like a taxonomy or an ontology (in our
case the GO). To solve a classification problem it is not
necessary to consider any relations between the classes
ci ∈ C. But the fact that the classes in C are structured
can be exploited for dealing with large cardinalities of
C more efficiently.

In the following, we will first introduce an approach
for multi-classification based on Support Vector Ma-
chines. Afterwards, we will integrate the knowledge
about varying object representations (i.e. the structure
of the input space) to enable the accurate incorporation
of as much information about the objects as possible
into the classification process. Finally, we will discuss
hierarchical classification utilizing the structure of the
output space in order to enhance the performance of our
framework.

3.1 Using Support Vector Machines for Mak-
ing Set Valued Predictions
Support Vector Machines (SVMs) are capable of provid-
ing superior accuracy compared to other classification
methods for most representations of biological objects
[13, 8]. Standard SVMs (or binary SVMs) classifiy ob-
jects into two classes by finding a hyperplane that sepa-
rates a given training set according to these classes in a
best possible way. Since SVMs are only capable of mak-
ing binary decisions, it is necessary to enhance them to
distinguish between more than two classes and to make
set-valued predictions. In [22] three methods for im-
plementing SVMs are compared that distinguish more
than two classes. The first, the so-called one-versus-
rest approach employs one binary SVM for each class to
decide, if an object belongs to that class or not. Thus,
this approach is capable to predict any class combina-
tions possible. For example, an object could be mapped
to all classes, if all binary SVMs decide for the class
they distinguish from the rest of the classes. The sec-
ond approach, the so-called one-versus-one approach
uses N ·(N−1)

2 many binary SVMs for distinguishing be-
tween each pair of the given N = |C| classes. When
classifying an object, the results are aggregated into a
so-called voting vector. This vector provides a di-
mension for each class and its components correspond
to the number of binary SVMs that have predicted this
class. Thus, there are N ·(N−1)

2 votes. Since there are
only N −1 binary SVMs distinguishing a class from the

other classes, a class can attain a maximum of N − 1
votes. A single class decision is accomplished by return-
ing the class having the maximum number of votes in
the vector. Note that this maximum vote is not nec-
essarily N − 1. The third described approach uses de-
cision directed acyclic graphs to reduce the number of
binary SVMs considered for classification to N−1 out of
N ·(N−1)

2 trained SVMs. The approach trains the same
number of SVMs, but does employ only a fraction of
them for classification.

We choose the one-versus-one approach for our sys-
tem, since voting vectors provide a meaningful interme-
diate result. To enable the approach to predict a set
of class combinations, we exploit a characteristic of our
application. Since there are several class combinations
that do not make sense, we can limit the set of valid class
combinations. For example, an object that is predicted
to be a dog is unlikely to be a cat at the same time.
Therefore, we collect the set of combinations that occur
within the training data. For classification we extend
the set of original classes by those class combinations.
Thus, all valid combinations are predictable. Let us
note that the one-versus-rest approach also solves the
problem of set-valued predictions, but offered inferior
results due to the prediction of invalid class combina-
tions (see Section 4 for experimental results).

A drawback of all of the mentioned approaches of
multi-class SVMs is that the extra effort for introducing
another class leads to the use of additional binary SVMs
distinguishing the new class. To avoid this additional
overhead, we do not extend the class set at once. Instead
we refine the post processing of the voting vectors
gained from the one-versus-one approach. Thus our
classification function has the following form:

Let O be the set of objects, let C be the set of
classes, let C∗ be the extended class set including all
valid class combinations and let V with dim(V) = |C|
be the vector space of voting vectors, then our classifier
has the following form:

Cl : O → C∗

Cl(o) = F2(F1(o))

where F1 : O → V and F2 : V → C∗ are classifiers.
For F1 and F2 our prototype employs a one-versus-one
multi-class support vector machine.

The vector space of voting vectors is well suited for
describing the results of the first classifier. A one-versus-
one multi-class SVM partitions the feature space along
each of its binary SVMs. A voting vector corresponds
to a partition of the feature space (Figure 1). Note that
those partitions might not be continuous, but are placed
between a certain set of classes. Since the partitions are

Figure 1: 3 binary SVMs distinguish the classes A,
B and C. For each partition the corresponding voting
vector is given. Note that voting vector (2,0,1) describes
a partition where the majority of objects belongs to
both classes A and C.

made to separate the objects with respect to their class,
it is very likely that the majority of objects belonging
to a partition belong to the same class combination.

The reason why the classifier F2 still offers better
efficiency than using just one function F : O → C∗

is that usually the cardinality of the output space C
(and therefore that of V) is much smaller than the
number of features describing an object o. Though F2

might employ many additional SVMs, in most cases the
method offers a performance benefit, due to the much
simpler input space V .

3.2 Structuring the Input Space
An important aspect of the system we propose is that
the classification of a biological object should be based
on all available information about it. Thus, the classifier
should be able to use as much different representations
as possible or if the object is described in more than one
form, it should use all available representations. For
proteins common representations are describing text,
sequence data, secondary structure and 3D foldings.
Our prototype uses text and sequence data, but can
be extended easily to additional representations.

To extract features from each representation, there
are several standard techniques for each kind of rep-
resentation (see Section 2). Thus, the first step is to
extract features from the objects in the training set for
each representation. As mentioned before a simple so-
lution is given by building up one feature space incorpo-
rating the features drawn from all the representations,

but for the following reasons a more sophisticated ap-
proach offers better results. The number of features
best suitable for each representation yields an unbal-
anced weighting of the impact of each representation.
For example, the number of features used for a suitable
text representation might be orders of magnitude higher
than those used for 3D foldings. Thus, most classifiers
will favor the representation providing more features in-
stead of the representation carrying more information.
Furthermore, the techniques proposed to handle differ-
ent representations vary in the parametrization of the
classifiers e.g. the SVM for text and sequence may use
different kernel functions to distinguish the objects. By
using a combined feature space, we are forced to find
a compromise for these tuning decisions that might not
offer optimal results. Last but not least the handling
of missing representations of a data object is difficult,
since the classifier expects at least some values in the
missing dimensions of the input space.

As a consequence our classification system considers
varying representations separately. The idea is that
each data source is handled by some specialized classifier
first. Afterwards the results are combined to build up a
prediction for the object.

Thus our classifier has the following form: Let
O = R1 × ..× Rn be the set of objects o = (r1, . . . , rn)
represented by an n-tuple of feature vectors r1, . . . , rn

drawn from the single representations R1, . . . , Rn, let
C be the set of classes, let C∗ be the extended class set
including all valid class combinations and let V with
dim(V) = |C| be the vector space of voting vectors,
then our classifier has the following form:

Cl : O → C∗

Cl((r1, .., rn)) = F2(comb(F1,1(r1)), .., F1,n(rn))

where F1,j : Rj → V , F2 : V → C∗ and comb :
2V → V .

Each of the feature vectors rj is classified by a
specialized classifier F1,j into a voting vector. The
function comb combines the voting vectors of each
available representation into one common voting vector
which is afterwards mapped into the expanded class
space C∗ by F2.

Due to this design each representation can be classi-
fied in a best possible way by a specially tuned SVM. No
initial weighting is made by the number of features for
one representation. Last but not least, missing repre-
sentations can be handled by a properly designed com-
bination function. Since the combination function is
designed to handle an input of j voting vectors with
1 ≤ j ≤ n and generates an output vector that is in-
dependent from j, missing representations are process-

able. Note that though the missing representations can
be processed, the quality of the prediction is still likely
to suffer depending on the significance of the remaining
descriptions.

Our general combination function has the following
form:

comb : 2V → V, where

comb(o) =

 f1(r1,1, . . . , r1,m)
...

fN (rN,1, . . . , rN,m)

and V is the feature space of voting vectors for N

base classes and f is a normalized function to combine
the components of the m input vectors, where 1 ≤ m ≤
n and n is the number of representations. Common
choices for f are the minimum, the product, the sum
and the maximum, where the sum and the product have
to be normalized by m. [9] offers a survey which of
those 4 strategies is suited best for which kind of object.
Furthermore, [9] introduces the idea of employing an
additional learner to improve predictions. This idea
is kept up by our second classifier as long as it does
not collide with the requirement of handling objects
with missing representations. As a result, we loose
the possibility to consider correlations between votes for
different classes drawn from different representations.

Since the results achieved by employing the meth-
ods described in [9] were not capable to improve accu-
racy, we introduce a weighted strategy to achieve much
better results. The main problem of the basic strategies
is that each data source always has the same impact
on the result. To model the influence of different data
sources, we introduce weight factors for each represen-
tation j and each object o. These weight factors should
reflect the following aspect: how confident is a special-
ized classifier F1,j about the voting vector it produced
for a special feature vector rj . Our rule for calculating
the components of the general voting vector is:

fi(ri,1, . . . , ri,m) =

∑m
j=1 wrj

· (F1,j(rj)i)
m

where wrj is a weight describing the confidence of
the prediction derived from F1,j for rj and F1,j(rj)i is
the i-th component of the voting vector derived from
the j-th data source. Note that we choose the sum-
function as base combination strategy, since all data
sources should contribute to the result.

To derive meaningful weights, we use an established
method for deriving confidence values for binary SVMs.
This method calculates the distance of the feature
vector to the separating hyperplane. The idea is that

the closer the feature vector is, the less confident is the
prediction. This is based on the characteristic of SVMs
that objects which are difficult to decide are placed in
the surrounding of the hyperplane. To derive confidence
values and to model that after a certain distance to
the separating hyperplane the decision is considered
as secure, a sigmoid function is usually applied to the
distance. Furthermore, the closer surrounding of the
hyperplane is treated in a more sensitive way. Thus the
confidence conf of a SVM svm is given by:

confsvm(o) =
1

1− eα·svmdist(o)

for object o, svmdist(o) the distance of o to the
separating hyperplane of svm and α a parameter for
regulating the sensitivity.

Since our systems employ multi-class SVMs that
usually employ more than just one binary SVM, the
process of deriving a proper weight has to consider
several distances. Therefore, we determine the class
having the maximum vote in the voting vector derived
from one data source. For this class, we determine the
minimum confidence value belonging to the SVMs that
characterize the predicted class (cf. Figure 2).

Let F1,j be the multi-class SVM treating the repre-
sentation j. Then F1,j is built from the following matrix
of binary SVMs:

F1,j =

− svm1,2 . . . svm1,N

svm2,1 − svm2,3 . . .

.
.

svmN,1 . . . svmN,N−1 −

Note that this matrix of SVMs is symmetric, since

the classifier distinguishing i from j is the same as the
one distinguishing j from i. Then we determine the
weight in the following way:

wrj
= min

svmi,maxdim(vj)∈F1,j

confsvmi,maxdim(vj)(rj)

where vj is the voting vector derived by F1,j for rj

and maxdim(vj) is the class in vj having the maximum
number of votes.

The idea is that the class having the maximum
count is most likely part of the prediction. If the
feature vector is predicted with a high confidence value,
it needs to have a sufficient distance from any of the
other classes. Afterwards the weights are normalized
and used in comb as described above. Thus, classifiers
offering highly reliable results have significantly more
impact on the resulting voting vector. Since the weights
are calculated for every single instance to be classified,
our combination function adjusts to the current object

Figure 2: Illustration of the class confidence estimation
(see text for details).

and does not prejudge complete representations. Thus
each object is predicted on the representation that is
most significant for the current task. Therefore, we call
this new method object-adjusted weighting.

3.3 Structuring the Output Space
Classification into large class sets providing over 100
classes is a very time consuming task. Remember that
a one-versus-one multi class SVM needs 4950 binary
SVMs for 100 classes. Thus, to make the system
scalable, it is necessary to find an efficient way for
classification of large class problems. One way to speed
up classification is to employ additional knowledge
about the class set. Considering a class system like an
ontology or a taxonomy not just a set of classes, opens
the possibility to split the large classification problem
into several smaller ones that are faster to process. Let
us note that the accuracy achieved on smaller systems
also tends to be significantly higher, due to the easier
problem.

Ontologies are a common approach to model class
information in molecular biology. Though an ontology
usually models all kinds of relations, most of them
are not useable for classification in our system. The
problem is that the objects we want to classify, do not
have any link to any other object, yet. Thus, exploiting
general relations to determine the class of an object is
very difficult in our application. On the other hand,
we can use the inheritance relations of the ontology,
because knowing that an object is part of a super-type
opens up the possibility that it is part of a sub-type,
too. Thus, we use the taxonomy part of the given
ontology. This taxonomy varies from the majority of
class hierarchies used in other projects regarding the
following 3 aspects:

• Instances can be placed at varying abstraction
levels. It is common to biological ontologies to
collect entities not further specified in non-leaf
nodes of the ontology though there might be several

Figure 3: A sample TDAG.

refinements of the class.

• It is possible that database entries may link to
varying classes in the class system. Thus, we have
to treat multi-classified objects belonging to one or
more classes.

• A class hierarchy of an ontology might use multiple
inheritance for some of its classes. This characteris-
tic leaves us without a taxonomy tree and demands
a taxonomic graph.

According to these characteristics we restrict a
given ontology to a taxonomic directed acyclic graph.
A directed acyclic graph (DAG) is a connected directed
graph that does not contain any cycles. An entry node
to a DAG is a node without any incoming edge. If there
is only one entry point the node is called root and we
have a rooted DAG. A taxonomic directed acyclic graph
(TDAG) is a rooted DAG where each node is connected
to a class of objects. The class of a predecessor node is
a super-type to all classes of the nodes the predecessor
node has edges to. Furthermore, we require that the
entries belonging to the super-type are exactly the union
of the entries belonging to its sub-types. Though this
requirement is not fulfilled in the first place, we can
easily fix it by introducing additional leaf nodes for the
super-types having instances that do not belong to any
of the sub-types. Thus, we get a TDAG which is our
choice of class system providing a more general setting.
A sample TDAG is depicted in Figure 3.

To find out which method of hierarchical classifica-
tion is best suited for exploiting TDAGs, we will discuss
two basic approaches and their ability to support our
setting.

The basic approach of hierarchical classification
is to decompose a flat N class problem to several
smaller problems of sizes ni << N . Thus, common

hierarchical classifiers are class hierarchies where each
super-type provides a classifier that predicts the sub-
types a given object belongs to. The idea is that these
smaller problems are easier and faster to decide than
one big problem. The differences between the majority
of introduced methods for hierarchical classification are
mostly within the part of the class system that is
traversed during classification. Principally, there are
two strategies to tackle the problem:

• The probabilities (or a combination of classifier
outputs) are considered for each leaf in the class
hierarchy. Thus, the whole class hierarchy is visited
and leaves getting smaller confidence values by the
top-level classifiers, might still be considered, if the
classifiers are confident on the rest of their decision
paths.

• Step by step, at each level the sub-classes that are
considered unlikely are pruned. Thus, only a small
portion of the classifiers in the system is employed
for classification.

The first approach tries to achieve the best pos-
sible accuracy while the second approach offers better
efficiency, but might loose accuracy due to its restric-
tiveness. Thus, the second approach is favorable for
our target to employ large TDAGs providing over 100
classes, if accuracy does not suffer too much. Further
reasons for employing the second approach to achieve
classification into large TDAGs are:

• The occurrence of multiple inheritance and leaves
on varying abstraction levels makes it computation-
ally demanding to calculate comparable probabili-
ties for all leaves. To achieve such a calculation im-
plies knowledge about all pathes leading to a leaf.
Furthermore, the fact that leaves are placed at dif-
ferent abstraction levels requires proper normaliza-
tion of the probabilities.

• Employing classifiers that do not consider the pos-
sibility that the object belongs to none of its classes,
might generate confidence values that do not reflect
a realistic estimation. Figure 4 shows an example
of a hierarchical classifier based on SVMs employ-
ing the distance to the hyperplane as confidence
value. In the described case, an object is misclassi-
fied due to an unrealisticly high second level confi-
dence value.

• The possibility of multiple pathes leading to a class
is able to compensate a wrong decision in the
second approach. If one path to reach a class is
pruned, it still might be reachable via another path
in the TDAG.

Figure 4: Example for a wrong decision due to a very
high 2nd level confidence value.

Thus, we choose the second approach for building a
classifier that employs TDAGs as a class system. Our
System now consists of a TDAG organizing the classes
we want to predict. At each node a classifier designed
as described in the previous subsection is trained to
decide the correct sub-types under the precondition that
the object already belongs to the class the node is
attached to. Hierarchical classification is now achieved
by giving any object to the classifier at the root node
and following all predicted paths until every branch of
the process reaches a leaf. The set of reached leaf nodes
is the prediction of the class set made by the system.

4 Experimental Evaluation

4.1 Test Bed
In order to demonstrate the advantages of our system,
we carried out a versatile experimental evaluation. The
experiments were performed on 5 different classification
problems. The test beds consist of 17 to 107 Gene
Ontology[4] classes and their “is-a“ relationships. The
corresponding objects were taken from the SWISS-
PROT[2] protein database and consist of a describing
text and the amino acid sequence of the described
protein. The properties of each test bed is shown in
Table 1. In order to obtain a TDAG with sufficient
training objects per class, the original environment was
pruned. The result of the pruning is a TDAG that
fulfills the following conditions:

1. Every leaf class refers to at least MinSupport pro-
teins.

2. Every inner node in the TDAG has at least Min-
SonNumber direct son classes.

3. The pruning process contains as much training

Set 1 Set 2 Set 3 Set 4 Set 5
Name Response to ex-

ternal stimulus
Protein binding
activity

Receptor bind-
ing activity

Oxidoreductase Biosynthesis

Number of Goal
Classes

17 19 26 94 107

References to pro-
teins

1832 1166 1857 9907 1811

Multi-class Pro-
teins (%)

5.36 13.63 14.29 17.97 20.58

Table 1: Details of the test environments

objects as possible. This condition is fulfilled by
moving proteins from pruned classes to their direct
parent.

The details of the classification problems are listed in
Table 1.

All algorithms are implemented in Java and were
tested on a work station that is equipped with a 1.4
GHz Pentium IV processor and 2 GB main memory.
To measure the accuracy for multi-classified objects we
used the following definition of classification accuracy:

Accuracy = 1−
∑

o∈T (|(A(o) ∪B(o))− (A(o) ∩B(o))|)∑
o∈T |A(o)|+ |B(o)|

where o is a test object, T is the set of test objects,
A(o) is the correct class set for object o and B(o) is
the predicted class set of object o. In order to avoid
overfitting, the evaluation used 10-fold cross-validation.

To classify protein sequences, we employed the
approach described in [8]. The basic idea is to use
local (20 amino acids) and global (6 exchange groups)
characteristics of a protein sequence. To construct a
meaningful feature space, we formed all possible 2-
grams for each kind of characteristic, which provided
us the 436 dimensions of our sequence feature space.
For text descriptions, we employed a TFIDF vector
for each description that was built of 100 extracted
terms. Both representations were classified employing
a degree 2 polynomial kernel. Due to the superior
results of the described hierarchical approach, all of
the following experiments use a structured output space
with the exception of the flat classifier approach. The
feature selections were applied to each node separately
as described in [15].

4.2 Experimental Results
To show that the one-versus-rest approach is not suit-
able for our application, we compared its accuracy on
the text descriptions to the one-versus-one approach.
Since it offered significantly inferior results to the set-
tings employing an extended class set and the one-

Figure 5: Classification accuracy (in %) of our method
compared to the one-versus-rest approach.

versus-one approach (4.49% - 12.01% less accuracy), we
did not follow this approach any further (cf. Figure
5). For example the classification accuracy achieved
for the Set 4 test bed by the one-versus-one strategy
was 82.12% , whereas the one-versus-rest approach only
reached 70.11%.

Our second experiment demonstrates that a two-
step classifier offers better results compared to a single
classifier using a direct extension of the class set (cf.
Section 3). The two-step approach achieved comparable
accuracy and superior efficiency for all test sets (cf.
Figure 6). In particular, our approach showed for
Set 5 with 107 goal classes the classification accuracy
of 81.37% and took an average of 1.75 seconds as
classification time per object. The competing method
using only one classifier and a direct extension of the
class set achieved ca. 1 % less classification accuracy
and was evidently slower - 2.66 seconds as average
classification time per object. According to our results
the two-step approach improved both efficiency and
effectiveness of the classifier.

In order to show the advantages of the hierarchi-
cal approach against an unstructured class system, we
compared both approaches for the introduced classifier

Figure 6: Accuracy and runtime for hierarchical classification employing a 1-versus-1 SVM with an extended
class set (direct extension) and two subsequent 1-versus-1 SVMs (our approach). Additionally, we compare our
approach without using a TDAG (flat classifier).

on both representations. We observed better accuracy
in most cases and an enormous improvement in classi-
fication time, especially when working with large class
systems (cf. Figure 6). In case of Set 4 providing 94 tar-
get classes the flat-classifier achieved 69.92% accuracy
and took an average of 5.97 seconds for the classification
of an object. The hierarchical approach achieved on the
same data significantly higher accuracy (82.65%) and
needed only 0.85 seconds per object. Thus, hierarchical
classification was processed up to 7 times faster than
flat classification. Note that this considerable speed
up was achieved especially in the large TDAGs where
the performance is much more critical than in smaller
problems. Furthermore, the classification accuracy sur-
passed the accuracy observed for the other approaches
in the majority of test sets.

The next experiment compares the use of a struc-
tured input space for classification. Therefore, we com-
pared the accuracy achieved by employing only the text
part, only the sequence part, a combined feature space
that incorporates the features of both representations
and our combined classifier. The combined classifier was
evaluated with and without object-adjusted weights (cf.
Table 2). In all cases, the classification of text was more
accurate than that of sequence data. Furthermore, the
combination without object-adjusted weights and the
variant employing a combined feature space, were not
capable to improve accuracy towards the text descrip-
tion in all cases. Thus, it would be more promising to
restrict the classifier to employ text descriptions only.
The variant that employs the object-adjusted weighting

on the other hand increases accuracy in all 5 test beds
up to 4 %. Thus, it was the only examined method that
was able to dynamically decide which representation is
suited best and draw advantages from all representa-
tions.

Our last experiment examines the capability of the
system to cope with incomplete data objects. There-
fore, we trained the classifiers on both data sources and
tested them by classifying the sequence part of the test
instances only. For the majority of test beds it turned
out that the accuracy approximately reached the level
achieved by classifying the sequence data alone (see last
line of Table 2). In the case of Set 5 the classification
accuracy of 73.41% even exceeded the values observed
for sequences only (71.09%). Thus, the system is able to
handle incomplete data. Let us note that this capability
gets more and more important with an increasing num-
ber of representations, since it is getting very demanding
to train classifiers that can handle the remaining repre-
sentations best possible with increasing numbers of rep-
resentations. Furthermore, when incorporating several
representations, the remaining representations are more
likely to compensate the missing information.

5 Conclusions

In this paper, we proposed a prototype for classifying
data objects into taxonomic directed acyclic graphs and
applied it to biological entities in molecular biological
ontologies. Our method addresses the following prob-
lems: First, biological instances often consist of multiple
representations such as sequence, text, etc. The classifi-

Method Set 1 Set 2 Set 3 Set 4 Set 5

classification on text only 90.82 80.5 80.71 82.12 80.55

classification on sequence only 89.4 80.3 77.96 75.22 71.09

modelling multi-represented objects with one
combined feature space

88.6 80.56 74.76 77.87 77.89

seperate feature spaces combined by average
function

87.92 78.61 72.97 76.68 75.35

object adjusted weighting combination 92.52 84.71 81.65 82.65 81.37

training on text and sequence, classification
on sequence only

89.32 80.66 76.44 69.56 73.41

Table 2: Classification Accuracy (in %) for text descriptions, sequence data and varying combination methods.

cation process within our prototype is able to integrate
all possible representations of an instance and can also
handle the frequently occurring case when one or more
representations are missing. Second, our prototype han-
dles multi-classified objects, the occurrence of multiple
inheritance and leaf nodes on different abstraction lev-
els.

A thorough experimental evaluation of our proto-
type based on a versatile test bed for classifying pro-
teins from SWISS-PROT into Gene Ontology is pre-
sented. Based on this test bed, we demonstrated that
our method is capable to classify new entries with high
accuracy and an efficiency adequate for real world ap-
plications.

For future work, we plan to extend our system
to new data sources and ontologies, employing various
different representations. Since these new data sources
are likely to provide already linked instances, we plan to
extend the system to exploit the general relationships
supported by ontologies. Furthermore, we plan to
develop a method for interleaved calculation of a general
voting vector. For example, after the voting vector of
the first data source is calculated, only those binary
SVMs of other data sources might be used that still
have a chance to change the result. Thus, the efficiency
could be further improved.

References

[1] H. Berman, J. Westbrook, Z. Feng, G. Gilliland,
T. Bhat, H. Weissig, I. Shindyalov, and B. P.E. ”The
Protein Data Bank”. Nucleic Acid Research, 28:235–
242, 2000.

[2] B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter,
A. Estreicher, E. Gasteiger, M. Martin, K. Michoud,
C. O’Donovan, I. Phan, S. Pilbout, and M. Schneider.

”The SWISS-PROT Protein Knowledgebase and its
Supplement TrEMBL in 2003”. Nucleic Acid Research,
31:365–370, 2003.

[3] F. Bry and P. Kröger. ”A Computational Biology
Database Digest: Data, Data Analysis, and Data
Management”. Distributed and Parallel Databases,
13:7–42, 2003.

[4] T. G. O. Consortium. ”Gene Ontology: Tool for the
Unification of Biology”. Nature Genetics, 25:25–29,
2000.

[5] C. Cortes and V. Vapnik. ”Support-Vector Networks”.
Machine Learning, 20(3):273–297, 1995.

[6] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. ”Learning
to Construct Knowledge Bases from the World Wide
Web”. Artificial Intelligence, 118(1/2):69–113, 1999.

[7] S. D’Allesion, K. Murray, and R. Schiaffino. ”The Ef-
fect of Hierarchical Classifiers in Text Categorization”.
In Proc. 3rd Conf. on Empirical Methods in Natural
Language Processing (EMNLP’98), 1998.

[8] M. Deshpande and G. Karypis. ”Evaluation of Tech-
niques for Classifying Biological Sequences”. In Proc.
of Pacific-Asia Conf. on Knowledge Discovery and
Data Mining (PAKDD’02), pages 417–431, 2002.

[9] R. Duin. ”The Combining Classifier: To Train Or
Not To Train?”. In Proc. 16th Int. Conf. on Pattern
Recognition (ICPR’02), Quebec City, Canada), pages
765–770, 2002.

[10] S. Dumais and H. Chen. ”Hierarchical Classification of
Web Content”. In Proc. 23rd Int. Conf. on Research
and Development in Information Retrieval (SIGIR’00),
pages 256–263, 2000.

[11] R. Durbin, S. Eddy, A. Krogh, and G. Mitchinson.
Biological Sequence Analysis. Cambridge University
Press, 1998.

[12] E.-H. Han and G. Karypis. ”Centroid-Based Docu-
ment Classification: Analysis and Experimental Re-
sults”. In Proc. 4th European Conf. on Principles of
Data Mining and Knowledge Discovery (PKDD’00),

Lyon, France, volume 1910 of Lecture Notes in Com-
puter Science, pages 424–431. Springer, 2000.

[13] T. Joachims. ”Text Categorization with Suport Vec-
tor Machines: Learning with Many Relevant Features”.
In Proc. 10th European Conference on Machine Learn-
ing (ECML’98), Chemnitz, Germany, volume 1398 of
Lecture Notes in Computer Science, pages 137–142.
Springer, 1998.

[14] J. Kittler, M. Hatef, R. Duin, and J. Matas. ”On
Combining Classifiers”. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 20(3):226–239,
1998.

[15] D. Koller and M. Sahami. Hierarchically classifying
documents using very few words. In Proc. 14th Int.
Conf. on Machine Learning (ICML’97), Nashville, TN,
pages 170–178, 1997.

[16] D. Kudenko and H. Hirsh. ”Feature Generation for
Sequence Categorization”. In Proc. of the 15th Nat.
Conf. on Artificial Intelligence (AAAI’98), pages 733–
738, 1998.

[17] L. Kuncheva, J. Bezdek, and R. Duin. ”Decision Tem-
plates for Multiple Classifier Fusion: an Experimental
Comparison”. Pattern Recognition, 34:299–314, 2001.

[18] L. Larkey. Some issues in the automatic classification
of u.s. patents. In Learning for Text Categorization.
Papers from the 1998 Workshop, pages 87–90. AAAI
Press, 1998.

[19] N. Lesh, M. Zaki, and M. Ogihara. ”Mining Features
for Sequence Classification”. In Proc. of the 5th
Int. Conf. on Knowledge Discovery and Data Mining
(SIGKDD’99), 1999.

[20] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng.
”Improving Text Classification by Shrinkage in a Hi-
erarchy of Classes ”. In Proc. 15th Int. Conf. on Ma-
chine Learning (ICML’98), Madison, WI, pages 359–
367, 1998.

[21] D. Mount. Bioinformatics: Sequence and Genome
Analysis. CSHL Press, 2001.

[22] J. Platt, N. Cristianini, and J. Shawe-Taylor. ”Large
Margin DAGs for Multiclass Classification”. In Ad-
vances in Neural Information Processing Systems 12
(NIPS Conference, Denver, CO, 1999), pages 547–553.
MIT Press, 2000.

[23] J. Rocchio. Relevance feedback in information re-
trieval. In G. Salton, editor, The SMART Retrieval
System: Experiments in Automatic Document Process-
ing, pages 313–323. Prentice-Hall Inc., 1971.

[24] G. Salton. Automatic Text Processing: The Trans-
formation, Analysis, and Retrieval of Information by
Computer. Addison-Wesley, 1989.

[25] S. Vaithyanathan, J. Mao, and B. Dom. ”Hierarchical
Bayes for Text Classification”. In Proc. of Int. Work-
shop on Text and Web Mining (PRICAI’00), Mel-
bourne, Australia, pages 36–43, 2000.

[26] J. Wang, Q. Ma, D. Shasha, and C. Wu. ”New tech-
niques for extracting features from protein sequences”.
IBM Systems Journal, 40(2), 2001.

[27] K. Wang, S. Zhou, and S. Liew. ”Building Hierarchical

Classifiers Using Class Proximity”. In Proc. 25th Int.
Conf. on Very Large Databases (VLDB’99), Edinburgh,
Scotland, pages 363–374, 1999.

[28] Y. Yang. An evaluation of statistical approaches to
text categorization. Technical Report CMU-CS-97-
127, Carnegie Mellon University, April 1997.

	1 Introduction
	2 Related Work
	3 Classification of Biological Objects
	3.1 Using Support Vector Machines for Making Set Valued Predictions
	3.2 Structuring the Input Space
	3.3 Structuring the Output Space

	4 Experimental Evaluation
	4.1 Test Bed
	4.2 Experimental Results

	5 Conclusions

