
Visually Mining Through Cluster Hierarchies

Stefan Brecheisen Hans-Peter Kriegel Peer Kröger Martin Pfeifle

Institute for Computer Science
University of Munich

Oettingenstr. 67, 80538 Munich, Germany
{brecheis,kriegel,kroegerp,pfeifle}@dbs.informatik.uni-muenchen.de

Abstract

Similarity search in database systems is becoming an increas-

ingly important task in modern application domains such as

multimedia, molecular biology, medical imaging, computer

aided engineering, marketing and purchasing assistance as

well as many others. In this paper, we show how visualizing

the hierarchical clustering structure of a database of objects

can aid the user in his time consuming task to find similar ob-

jects. We present related work and explain its shortcomings

which led to the development of our new methods. Based

on reachability plots, we introduce approaches which auto-

matically extract the significant clusters in a hierarchical

cluster representation along with suitable cluster represen-

tatives. These techniques can be used as a basis for visual

data mining. We implemented our algorithms resulting in

an industrial prototype which we used for the experimental

evaluation. This evaluation is based on real world test data

sets and points out that our new approaches to automatic

cluster recognition and extraction of cluster representatives

create meaningful and useful results in comparatively short

time.

Keywords
similarity search, visual data mining, clustering

1 Introduction
In the last ten years, an increasing number of database
applications has emerged for which efficient and effective
support for similarity search is substantial. The importance
of similarity search grows in application areas such as
multi-media, medical imaging, molecular biology, computer
aided engineering, marketing and purchasing assistance, etc.
[12, 1, 10, 11, 2, 5, 6, 13]

Hierarchical clustering was shown to be effective for
evaluating similarity models [16, 14]. Especially, the reacha-
bility plot generated by OPTICS [4] is suitable for assessing
the quality of a similarity model. Furthermore, visually ana-
lyzing cluster hierarchies helps the user, e.g. an engineer, to
find and group similar objects. Solid cluster extraction and
meaningful cluster representatives form the foundation for

providing the user with significant and quick information.
In this paper, we introduce algorithms for automatically

detecting hierarchical clusters along with their correspond-
ing representatives. In order to evaluate our ideas, we de-
veloped a prototype called BOSS (Browsing OPTICS Plots
for S imilarity Search). BOSS is based on techniques related
to visual data mining. It helps to visually analyze cluster
hierarchies by providing meaningful cluster representatives.

To sum up, the main contributions of this paper are as
follows:

• We explain how different important application ranges
would benefit from a tool which allows visually mining
through cluster hierarchies.

• We reason why the hierarchical clustering algorithm
OPTICS forms a suitable foundation for such a brows-
ing tool.

• We introduce a new cluster recognition algorithm for
the reachability plots generated by OPTICS. This al-
gorithm generalizes all the other known cluster recog-
nition algorithms for reachability plots. Although our
new algorithm does not need a sophisticated and exten-
sive parameter setting, it outperforms the other cluster
recognition algorithms wrt. the quality and number of
recognized clusters and subclusters.

• We tackle the complex problem of finding suitable clus-
ter representatives. We introduce two new approaches
and show that they yield more intuitive representatives
than the known medoid-approach.

• We describe a new browsing tool which comprises
algorithms for cluster recognition and representation.
This tool, called BOSS, is based on a client-server
architecture which allows the user to get a quick and
meaningful overview over large data sets.

The remainder of the paper is organized as follows: Af-
ter briefly introducing reachability plots, we present in Sec-
tion 2 the application areas of hierachical clustering along
with the corresponding requirements in the industrial and
in the scientific community which motivated the develop-
ment of BOSS. In Sections 3 and 4, we introduce suitable
algorithms for cluster recognition and cluster representatives
respectively. In Section 5, we describe the actual industrial

dbs dbs
In Proc. 4th SIAM Int. Conf. on Data Mining, pp. 400-412, Lake Buena Vista, FL, 2004

Figure 1: Illustration of core-level and reachability-
distance.

prototype we developed and used it, in Section 6, to evaluate
our new cluster recognition and representation algorithms.
The paper concludes in Section 7 with a short summary and
a few remarks on future work.

2 Hierachical Clustering
In this section, we outline the application ranges which
led to the development of our interactive browsing tool,
called BOSS. In order to understand the connection between
BOSS and the application requirements we first introduce
the major concepts of the hierarchical clustering algorithm
OPTICS and its output, the so called reachability plots,
which served as a starting point for BOSS. The technical
aspects related to BOSS are described later in Section 6.

2.1 Major Concepts of OPTICS
The key idea of density-based clustering is that for each

object of a cluster the neighborhood of a given radius ε has to
contain at least a minimum number MinPts of objects. Using
the density-based hierarchical clustering algorithm OPTICS
yields several advantages due to the following reasons.

• OPTICS is – in contrast to most other algorithms –
relatively insensitive to its two input parameters, ε
and MinPts. The authors in [4] state that the input
parameters just have to be large enough to produce
good results.

• OPTICS is a hierarchical clustering method which
yields more information about the cluster structure
than a method that computes a flat partitioning of the
data (e.g. k-means[17]).

• There exists a very efficient variant of the OPTICS al-
gorithm which is based on a sophisticated data com-
pression technique called “Data Bubbles” [8], where we
have to trade only very little quality of the clustering
result for a great increase in performance.

• There exists an efficient incremental version of the
OPTICS algorithm [15].

OPTICS emerges from the algorithm DBSCAN [9]
which computes a flat partitioning of the data. The cluster-

Figure 2: Reachability plot (right) computed by OP-
TICS for a sample 2-D dataset (left).

ing notion underlying DBSCAN is that of density-connected
sets (cf. [9] for more details). It is assumed that there is a
metric distance function on the objects in the database (e.g.
one of the Lp-norms for a database of feature vectors).

In contrast to DBSCAN, OPTICS does not assign
cluster memberships but computes an ordering in which
the objects are processed and additionally generates the
information which would be used by an extended DBSCAN
algorithm to assign cluster memberships. This information
consists of only two values for each object, the core-distance
and the reachability-distance.

Definition 1. (core-distance) Let o ∈ DB, MinPts ∈ N,
ε ∈ R, and MinPts-dist(o) be the distance from o to its
MinPts-nearest neighbor. The core-distance of o wrt. ε and
MinPts is defined as follows:

Core-Dist(o) :=

{
∞ if |Nε(o)| < MinPts
MinPts-dist(o) otherwise.

Definition 2. (reachability-distance) Let o ∈ DB,
MinPts ∈ N and ε ∈ R. The reachability distance of o wrt.
ε and MinPts from an object p ∈ DB is defined as follows:

Reach-Dist(p, o) := max (Core-Dist(p), distance(p, o)).

Figure 1 illustrates both concepts: The reachability-
distance of p from o equals to the core-distance of o and
the reachability-distance of q from o equals to the distance
between q and o.

The original output of OPTICS is an ordering of the
objects, a so called cluster ordering :

Definition 3. (cluster ordering) Let MinPts ∈ N, ε ∈
R, and CO be a totally ordered permutation of the database
objects. Each o ∈ D has additional attributes o.P , o.C and
o.R, where o.P ∈ {1, . . . , |CO|} symbolizes the position of o
in CO. We call CO a cluster ordering wrt. ε and MinPts if
the following three conditions hold:

(1) ∀p ∈ CO : p.C = Core-Dist(p)

(2) ∀o, x, y ∈ CO : o.P < x.P ∧ x.P < y.P ⇒
Reach-Dist(o, x) ≤ Reach-Dist(o, y)

(3) ∀p, o ∈ CO : R(p) =
min{Reach-Dist(o, p) | o.P < p.P},
where min ∅ =∞.

Intuitively, Condition (2) states that the order is built on
selecting at each position i in CO that object o having the
minimum reachability to any object before i. o.C symbolizes
the core-distance of an object o in CO whereas o.R is
the reachability-distance assigned to object o during the
generation of CO. We call o.R the reachablity of object
o throughout the paper. Note that o.R is only well-defined
in the context of a cluster ordering.

The cluster structure can be visualized through so
called reachability plots which are 2D plots generated as
follows: the clustered objects are ordered along the x-axis
according to the cluster ordering computed by OPTICS and
the reachabilities assigned to each object are plotted along
the abscissa. An example reachability plot is depicted in
Figure 2. Valleys in this plot indicate clusters: objects
having a small reachability value are closer and thus more
similar to their predecessor objects than objects having a
higher reachability value.

The reachability plot generated by OPTICS can be cut
at any level εcut parallel to the abscissa. It represents the
density-based clusters according to the density threshold
εcut: A consecutive subsequence of objects having a smaller
reachability value than εcut belongs to the same cluster. An
example is presented in Figure 2: For a cut at the level ε1

we find two clusters denoted as A and B. Compared to this
clustering, a cut at level ε2 would yield three clusters. The
cluster A is split into two smaller clusters denoted by A1 and
A2 and cluster B decreased its size. Usually, for evaluation
purposes, a good value for εcut would yield as many clusters
as possible.

2.2 Application Ranges
BOSS was designed for three different purposes: visual

data mining, similarity search and evaluation of similarity
models. For the first two applications, the choice of the
representative objects of a cluster is the key step. It helps
the user to get a meaningful and quick overview over a large
existing data set. Furthermore, BOSS helps scientists to
evaluate new similarity models.

2.2.1 Visual Data Mining
As defined in [3], visual data mining is a step in the

KDD process that utilizes visualization as a communication
channel between the computer and the user to produce
novel and interpretable patterns. Based on the balance and
sequence of the automatic and the interactive (visual) part
of the KDD process, three classes of visual data mining can
be identified.

• Visualization of the data mining result:
An algorithm extracts patterns from the data. These
patterns are visualized to make them interpretable.
Based on the visualization, the user may want to return
to the data mining algorithm and run it again with
different input parameters (cf. Figure 3a).

• Visualization of an intermediate result:
An algorithm performs an analysis of the data not
producing the final patterns but an intermediate result

Figure 3: Different approaches to visual data mining [3].

which can be visualized. Then the user retrieves
the interesting patterns in the visualization of the
intermediate result (cf. Figure 3b).

• Visualization of the data:
Data is visualized immediately without running a so-
phisticated algorithm before. Patterns are obtained by
the user by exploring the visualized data (cf. Figure
3c).

The approach presented in this paper belongs to the
second class. A hierarchical clustering algorithm is applied
to the data, which extracts the clustering structure as an
intermediate result. There is no meaning associated with the
generated clusters. However, our approach allows the user to
visually analyze the contents of the clusters. The clustering
algorithm used in the algorithmic part is independent from
an application. It performs the core part of the data mining
process and its result serves as a multi-purpose basis for
further analysis directed by the user. This way the user
may obtain novel information which was not even known to
exist in the data set. This is in contrast to similarity search
where the user is restricted to find similar parts respective
to a query object and a predetermined similarity measure.

2.2.2 Similarity Search
The development, design, manufacturing and mainte-

nance of modern engineering products is a very expensive
and complex task. Effective similarity models are required
for two- and three-dimensional CAD applications to cope
with rapidly growing amounts of data. Shorter product cy-
cles and a greater diversity of models are becoming decisive
competitive factors in the hard-fought automobile and air-
craft market. These demands can only be met if the engi-
neers have an overview of already existing CAD parts. It
would be desirable to have an interactive data browsing tool
which depicts the reachability plot computed by OPTICS
in a user friendly way together with appropriate representa-
tives of the clusters. This clear illustration would support

Figure 4: Browsing through reachability plots with
different density thresholds εcut.

the user in his time-consuming task to find similar parts.
From the industrial user’s point of view, this browsing tool
should meet the following two requirements:

• The hierarchical clustering structure of the dataset
is revealed at a glance. The reachability plot is
an intuitive visualization of the clustering hierarchy
which helps to assign each object to its corresponding
cluster or to noise. Furthermore, the hierarchical
representation of the clusters using the reachability
plot helps the user to get a quick overview over all
clusters and their relation to each other. As each entry
in the reachabiltity plot is assigned to one object, we
can easily illustrate some representatives of the clusters
belonging to the current density threshold εcut (cf.
Figure 4).

• The user is not only interested in the shape and the
number of the clusters, but also in the specific objects
building up a cluster. As for large clusters it is rather
difficult to depict all objects, representatives of each
cluster should be displayed. To follow up a first
idea, these representatives could be simply constructed
by superimposing all parts belonging to the regarded
cluster (cf. Figure 5). We can browse through the
hierarchy of the representatives in the same way as
through the OPTICS plots.

This way, the cost of developing and producing new
parts could be reduced by maximizing the reuse of existing
parts, because the user can browse through the hierarchical
structure of the clusters in a top-down way. Thus the
engineers get an overview of already existing parts and are
able to navigate their way through the diversity of existing
variants of products, such as cars.

2.2.3 Evaluation of Similarity Models
In general, similarity models can be evaluated by com-

puting k-nearest neighbour queries (k-nn queries). As shown
in [16], this evaluation approach is subjective and error-
prone because the quality measure of the similarity model
depends on the results of a few similarity queries and, there-
fore, on the choice of the query objects. A model may per-
fectly reflect the intuitive similarity according to the chosen

Figure 5: Hierarchically ordered representatives.

query objects and would be evaluated as “good” although it
produces disastrous results for other query objects.

A better way to evaluate and compare several similarity
models is to apply a clustering algorithm. Clustering groups
a set of objects into classes where objects within one class
are similar and objects of different classes are dissimilar to
each other. The result can be used to evaluate which model
is best suited for which kind of objects. It is more objective
since each object of the data set is taken into account to
evaluate the data models.

3 Cluster Recognition
In this section, we address the first task of automatically
extracting clusters from the reachability plots. After a
brief discussion of recent work in that area, we propose a
new approach for hierarchical cluster recognition based on
reachability plots called Gradient Clustering.

3.1 Recent Work
To the best of our knowledge, there are only two

methods for automatic cluster extraction from hierarchical
representations such as reachability plots or dendrograms –
both are also based on reachability plots. Since clusters are
represented as valleys (or dents) in the reachability plot, the
task of automatic cluster extraction is to identify significant
valleys.

The first approach proposed in [4] called ξ-clustering is
based on the steepness of the valleys in the reachability plot.
The steepness is defined by means of an input parameter ξ.
The method suffers from the fact that this input parameter
is difficult to understand and hard to determine. Rather
small variations of the value ξ often lead to drastic changes
of the resulting clustering hierarchy. As a consequence, this
method is unsuitable for our purpose of automatic cluster
extraction.

The second approach was proposed recently by Sander
et al. [18]. The authors describe an algorithm called
cluster tree that automatically extracts a hierarchical
clustering from a reachability plot and computes a cluster
tree. It is based on the idea that significant local maxima in

Figure 6: Sample narrowing clusters: data space (left);
reachability plot (midle); cluster hierarchy (right)

the reachability plot separate clusters. Two parameters are
introduced to decide whether a local maximum is significant:
The first parameter specifies the minimum cluster size, i.e.
how many objects must be located between two significant
local maxima. The second parameter specifies the ratio
between the reachability of a significant local maximum m
and the average reachabilities of the regions to the left and
to the right of m. The authors in [18] propose to set the
minimum cluster size to 0.5% of the data set size and the
second parameter to 0.75. They empirically show, that this
default setting approximately represents the requirements of
a typical user.

Although the second method is rather suitable for
automatic cluster extraction from reachability plots, it has
one major drawback. Many real-world data sets consist of
narrowing clusters, i.e. clusters each consisting of exactly one
smaller sub-cluster (cf. Figure 6).

Since the algorithm cluster tree runs through a list of
all local maxima (sorted in descending order of reachability)
and decides at each local maximum m, whether m is
significant to split the objects to the left of m and to the
right of m into two clusters, the algorithm cannot detect
such narrowing clusters. These clusters cannot be split
by a significant maximum. Figure 6 illustrates this fact.
The narrowing cluster A consists of one cluster B which is
itself narrowing consisting of one cluster C (the clusters are
indicated by dashed lines). The algorithm cluster tree will
only find cluster A since there are no local maxima to split
clusters B and C. The ξ-clustering will detect only one of
the clusters A, B or C depending on the ξ-parameter but
also fails to detect the cluster hierarchy.

A new cluster recognition algorithm should meet the
following requirements:

• It should detect all kinds of subclusters, including
narrowing subclusters.

• It should create a clustering structure which is close
to the one which an experienced user would manually
extract from a given reachability plot.

• It should allow an easy integration into the OPTICS al-
gorithm. We do not want to apply an additional cluster
recognition step after the OPTICS run is completed.
In contrast, the hierarchical clustering structure should
be created on-the-fly during the OPTICS run without

g (x,y)

x y

x.R

y.R

w

−y.R x.R

Figure 7: Gradient vector ~g(x, y) of two objects x and
y adjacent in the cluster ordering.

causing any noteworthy additional cost.

• It should be integrable into the incremental version
of OPTICS [15], as most of the discussed application
ranges benefit from such a incremental version.

3.2 Gradient Clustering
In this section, we introduce our new gradient-clustering al-
gorithm which fulfills all of the above mentioned require-
ments. The idea behind our new cluster extraction algorithm
is based on the concept of inflexion points. During the OP-
TICS run, we decide for each point added to the result set,
i.e. the reachability plot, whether it is an inflexion point or
not. If it is an inflexion point we might be at the start or
at the end of a new subcluster. We store the possible start-
ing points of the sublcusters in a list, called startP ts. This
stack consists of pairs (o.P, o.R). Our gradient-clustering
algorithm can easily be intergrated into OPTICS and is de-
scribed in full detail, after we have formally introduced the
new concept of inflexion points.

In the following, we assume that CO is a cluster ordering
as defined in Definition 3. We call two objects o1, o2 ∈ CO
adjacent in CO if o2.P = o1.P + 1. Let us recall, that o.R
is the reachability of o ∈ CO assigned by OPTICS while
generating CO. For any two objects o1, o2 ∈ CO adjacent
in the cluster ordering, we can determine the gradient of the
reachability values o1.R and o2.R. The gradient can easily
be modelled as a 2D vector where the y-axis measures the
reachability values (o1.R and o2.R) in the ordering, and the
x-axis represent the ordering of the objects. If we assume
that each object in the ordering is seperated by width w, the
gradient of o1 and o2 is the vector

~g(o1, o2) =

(
w

o2.R− o1.R

)
.

An example for a gradient vector of two objects x and y
adjacent in a cluster ordering is depicted in Figure 7.

Intuitively, an inflexion point should be an object in
the cluster ordering where the gradient of the reachabilities
changes significantly. This significant change indicates a
starting or an end point of a cluster.

Let x, y, z ∈ CO be adjacent, i.e. x.P + 1 = y.P =
z.P − 1. We can now measure the differences between the
gradient vector ~g(x, y) and ~g(y, z) be computing the cosinus
function of the angle between these two vectors. The cosinus
of this angle is equal to −1 if the angle is 180◦, i.e. the vectors
have the same direction. On the other hand, if the gradient
vectors differ a lot, the angle between them will be clearly
smaller than 180◦ and thus the cosinus will be significantly
greater than −1. This observation motivates the concepts of
inflection index and inflexion points:

Definition 4. (inflexion index) Let CO be a cluster or-
dering and x, y, z ∈ CO be objects adjacent in CO. The
inflexion index of y, denoted by II(y), is defined as the cosi-
nus of the angle between the gradient vector of x, y (~g(x, y))
and the gradient vector of y, z (~g(y, z)), formally:

II(y) = cosϕ(~g(x,y),~g(y,z)) =
−w2 + (x.R− y.R)(z.R− y.R)

‖~g(x, y)‖ ‖~g(y, z)‖ ,

where ‖~v‖ :=
√
v2

1 + v2
2 is the length of the vector ~v.

Definition 5. (inflexion point) Let CO be a cluster or-
dering and x, y, z ∈ CO be objects adjacent in CO and let
t ∈ R. Object y is an inflexion point iff

II(y) > t.

The concept of inflexion points is suitable to detect
objects in CO which are interesting for extracting clusters.

Definition 6. (gradient determinant) Let CO be a
cluster ordering and x, y, z ∈ CO be objects adjacent in CO.
The gradient determinant of the gradients ~g(x, y) and ~g(y, z)
is defined as

gd(~g(x, y), ~g(y, z)) :=

∣∣∣∣ w w
y.R− x.R z.R− y.R

∣∣∣∣
If x, y, z are clear from the context, we use the short

form gd(y) for the gradient determinant gd(~g(x, y), ~g(y, z)).
The sign of gd(y) indicates whether y ∈ CO is a starting

point or end point of a cluster. In fact, we can distinguish
the following two cases which are visualized in Figure 8:

• II(y) > t and gd(y) > 0:
Object y is either a starting point of a cluster (e.g.
object a in Figure 8) or the first object outside of a
cluster (e.g. object z in Figure 8).

• II(y) > t and gd(y) < 0:
Object y is either an end point of a cluster (e.g. object
n in Figure 8) or the second object inside a cluster (e.g.
object b in Figure 8).

Let us note that a local maximum m ∈ CO which is the
cluster seperation point in [18] is a special form of the first
case (i.e. II(m) > t and gd(m) > 0).

The threshold t is independent from the absolut reach-
ability values of the objects in CO. The influence of t is also
very comprehensible because if we know which values for the

n o p
.

a c d x y zwb

cluster ordering

reachability

cluster Dcluster C

cluster B

cluster A

Figure 8: Illustration of inflexion points measuring the
angle between the gradient vectors of objects adjacent
in the ordering.

angles between gradients are interesting, we can easily com-
pute t. For example, if we are interested in angles < 120◦

and > 240◦ we set t = cos 120◦ = −0.5.
Obviously, the gradient clustering algorithm is able to

extract narrowing clusters. First experimental comparisons
with the methods in [18] and [4] are presented in Section 6.

The pseudo code of the Gradient Clustering algorithm
is depicted in Figure 9, which works like this. Initially,
the first object of the cluster ordering CO is pushed to
the stack of starting points startP ts. Whenever a new
starting point is found, it is pushed to the stack. If the
current object is an end point, a new cluster is created
containing all objects between the starting point on top of
the stack and the current end point. Starting points are
removed from the stack if their reachablity is lower than the
reachability of the current object. Clusters are created as
described above for all removed starting points as well as
for the starting point which remains in the stack. The input
parameter MinPts determines the minimum cluster size and
the parameter t was discussed above. Finally the parameter
w influences the gradient vectors and proportionally depends
on the reachability values of the objects in CO.

4 Cluster Representatives
In this section, we present three different approaches to
determine representative objects for clusters computed by
OPTICS. A simple approach could be to superimpose all
objects of a cluster to build the representative as it is
depicted in Figure 5. However, this approach has the huge
drawback that the representatives on a higher level of the
cluster hierarchy become rather unclear. Therefore, we
choose real objects of the data set as cluster representatives.

In the following, CO denotes the cluster ordering from
which we want to extract clusters. A cluster C ⊆ CO will
be represented by a set of k objects of the cluster, denoted
as Rep(C). The number of representatives k can be a user
defined number or a number which depends on the size and
data distribution of the cluster C.

algorithm gradient_clustering(ClusterOrdering CO, Integer MinPts, Real t)

startPts := emptyStack;
setOfClusters := emptySet;
currCluster := emptySet;

o := CO.getFirst(); // first object is a starting point
startPts.push(o);

WHILE o.hasNext() DO // for all remaining objects
o := o.next;

IF o.hasNext() THEN
IF II(o) > t THEN // inflexion point

IF gd(o) > 0 THEN
IF currCluster.size() >= MinPts THEN

setOfClusters.add(currCluster);
ENDIF
currCluster := emptySet;
IF startPts.top().R <= o.R THEN

startPts.pop();
ENDIF
WHILE startPts.top().R < o.R DO

setOfClusters.add(set of objects from startPts.top() to last end point);
startPts.pop();

ENDDO
setOfClusters.add(set of objects from startPts.top() to last end point);
IF o.next.R < o.R THEN // o is a starting point

startPts.push(o);
ENDIF

ELSE
IF o.next.R > o.R THEN // o is an end point

currCluster := set of objects from startPts.top() to o;
ENDIF

ENDIF
ENDIF

ELSE // add clusters at end of plot
WHILE NOT startPts.isEmpty() DO

currCluster := set of objects from startPts.top() to o;
IF (startPts.top().R > o.R) AND (currCluster.size() >= MinPts) THEN

setOfClusters.add(currCluster);
ENDIF
startPts.pop();

ENDDO
ENDIF

ENDDO

RETURN setOfClusters;
END. // gradient_clustering

Figure 9: Pseudo code of the Gradient Clustering algorithm.

4.1 The Extended Medoid Approach
Many partitioning clustering algorithms are known to

use medoids as cluster representatives. The medoid of a
cluster C is the closest object to the mean of all objects in
C.

The mean of C is also called centroid. For k > 1 we
could choose the k closest objects to the centroid of C as
representatives.

The choice of medoids as cluster representative is some-
how questionable. Obviously, if C is not of convex shape,
the medoid is not really meaningful.

An extension of this approach coping with the problems
of clusters with non-convex shape is the computation of k
medoids by applying a k-medoid clustering algorithm to the
objects in C. The clustering using a k-medoid algorithm is
rather efficient due to the expectation that the clusters are
much smaller than the whole data set. This approach can

also be easily extended to cluster hierarchies. At any level we
can apply the k-medoid clustering algorithm to the merged
set of objects from the child clusters or – due to performance
reasons – merge the medoids of child clusters and apply k-
medoid clustering on this merged set of medoids.

4.2 Minimizing the Core-Distance
The second approach to choose representative objects of

hierarchical clusters uses the density-based clustering notion
of OPTICS. The core-distance o.C = Core-Dist(o) of an
object o ∈ CO (cf. Definition 1) indicates the density of the
surrounding region. The smaller the core-distance of o, the
denser the region surrounding o. This observation led us to
the choice of the object having the minimum core-distance
as representative of the respective cluster. Formally, Rep(C)

SIR
C

(C) = 0.303

SIR
C

(A) = 0.385

SIR
C

(B) = 1.067

SIR
C

(D) = 0

C

D

E

F

G

B
A

2.1

1.9 2.3

1.5

1.7

1.6

Figure 10: Sample successor graph for a cluster of seven
objects. Some of the according Sir-values are depicted.

can be computed as:

Rep(C) := {o ∈ C | ∀x ∈ C : o.C ≤ x.C}.

We choose the k objects with the minimum core-
distances of the cluster as representatives.

The straightforward extension for cluster hierarchies is
to choose the k objects from the merged child clusters having
the minimum core-distances.

4.3 Maximizing the Successors
The third approach to choose representative objects of

hierarchical clusters also uses the density-based clustering
notion of OPTICS but in a more sophisticated way. In
fact, it makes use of the density-connected relationships
underlying the OPTICS algorithm.

As mentoined above, the result of OPTICS is an order-
ing of the database minimizing the reachability relation. At
each step of the ordering, the object o having the minimum
reachability wrt. the already processed objects occurring be-
fore o in the ordering is choosen. Thus, if the reachability
of object o is not ∞, it is determined by Reach-Dist(p, o)
where p is an unique object located before o in the cluster
ordering. We call p the predecessor of o, formally:

Definition 7. (predecessor) Let CO be a cluster order-
ing. For each entry o ∈ CO the predecessor is defined as

Pre(o) =

{
p if o.R = Reach-Dist(p, o)
UNDEFINED if p.R =∞.

Intuitively, Pre(o) is the object in CO from which o has been
reached. Let us note, that an object and its predecessor need
not to be adjacent in the cluster ordering.

Definition 8. (successor) Let DB be a database of ob-
jects. For each object o ∈ DB in a cluster ordering computed
by OPTICS, the set of successors is defined as S(o) := {s ∈
DB | Pre(s) = o}.

Let us note, that objects may have no predecessor,
e.g. each object having a reachability of ∞ does not have
a predecessor, including the first object in the ordering.

On the other hand, some objects may have more than
one successor. In that case, some other objects have no
successors. Again, an object and its successors need not to
be adjacent in the ordering.

We can model this succsessor-relationship within each
cluster as a directed successor graph where the nodes are the
objects of one cluster and a directed edge from object o to
s represents the relationship s ∈ S(o). Each edge (x, y) can
further be labeled by Reach-Dist(x, y) (= y.R). A sample
successor graph is illustrated in Figure 10.

For the purpose of computing representatives of a
cluster, the objects having many successors are interesting.
Roughly speaking, these objects are responsible for the most
density-connections within a cluster. The reachability values
of these “connections” further indicate the distance between
the objects. For example, for the objects in the cluster
visualized in Figure 10, object B is responsible for the most
density-connections since its node in the successor graph has
the most out-going edges.

Our third strategy selects the representatives of clusters
by maximizing the number of successors and minimizing
the according reachabilities. For this purpose, we compute
for each object o of a cluster C, the Sum of the I nvers
Reachability distances of the successors of o within C,
denoted by SirC(o):

SirC(o) :=

0 if S(o) = ∅∑
s∈S(o),
s∈C

1

1+Reach-Dist(o,s)
otherwise.

We add 1 to Reach-Dist(o, s) in the denominator to weight
the impact of the number of successors over the significance
of the reachability values. Based on SirC(o), the represen-
tatives can be computed as follows:

Rep(C) := {o ∈ C | ∀x ∈ C : SirC(o) ≥ SirC(x)}.

In Figure 10, the Sir-values of some objects of the depicted
successor graph for a cluster of seven objects are computed.
Since D has no successors, SirC(D) is zero. In fact object
B has the highest Sir-value indicating the central role of
B in the cluster: B has three successors with relatively low
reachability distance values. Our third strategy would select
object B as representative for the cluster.

Let us note, that there is no additional overhead to com-
pute the reachability distances Reach-Dist(o, S(o)) for each
o ∈ CO since these values have been computed by OPTICS
during the generation of CO and Reach-Dist(o, S(o)) =
S(o).R.

If we want to select k representatives for C we simply
have to choose the k objects with the maximum SirC

values.

5 System Architecture
The development of the industrial prototype BOSS is a
first step towards developing a comprehensive, scalable
and distributed computing solution designed to make the
efficiency of OPTICS and the analytical capabilities of BOSS

OPTICS

Cluster Recognition

Cluster Representation

Similarity Model

BOSS Client

Object Data Visualization Data

VRML JPEG

Browser

DB1 DBn

BOSS Server

Client Side

Data Repository

Server Side

Figure 11: BOSS distributed architecture

available to a broader audience. BOSS is a client/server
system allowing users to provide their own data locally, along
with an appropriate similarity model (cf. Figure 11).

The data provided by the user will be comprised of the
objects to be clustered, as well as a data set to visualize
these objects, e.g. VRML files for CAD data (cf. Figure
12) or JPEG images for multi-media data. Since this data
resides on the user’s local computer and is not transmitted
to the server, heavy network traffic can be avoided. In order
for BOSS to be able to interpret this data, the user must
supply his own similarity model with which the reachability
data can be calculated.

The independence of the data processing and the data
specification enables maximum flexibility. Further flexibility
is introduced through the support of external visual repre-
sentation. As long as the user is capable of displaying the
visualization data in a browser, e.g. by means of a suitable
plug-in, the browser will then load web pages generated by
BOSS displaying the appropriate data. Thus, multimedia
data such as images or VRML files can easily be displayed
(cf. Figure 12). By externalizing the visualization proce-
dure, we can resort to approved software components, which
have been specifically developed for displaying objects which
are of the same type as the objects within our clusters.

6 Evaluation
We evaluated both the effectiveness and efficiency of our
approaches using two real-world test data sets. The first one
contains approximately 200 CAD objects from a German
car manufacturer, and the second one is a sample of the
Protein Databank [7] containing approximately 5000 protein
structures. We tested on a workstation featuring a 1.7 GHz
CPU and 2 GB RAM.

In the following, the three cluster recognition algorithms
will vie among themselves, after which the three approaches
for generating representatives will be evaluated.

Figure 12: BOSS screenshot.

6.1 Cluster Recognition
Automatic cluster recognition is clearly very desirable when
analyzing large sets of data. In this section, we will
first discuss the quality of our three cluster recognition
algorithms. For this evaluation we use the Car and the
Protein dataset. Secondly, we discuss the efficiency by using
the Car and the Plane data set.

6.1.1 Effectivity
Both the Car and the Protein data set exhibit the com-
monly seen quality of unpronounced but nevertheless to the
observer clearly visible clusters. The corresponding reacha-
bility plots of the two data sets are depicted in Figure 13.

Figure 13c shows that the cluster tree-algorithm does
not find any clusters at all in the Car data set, with
the suggested default ratio-parameter of 75% [18]. In
order to detect clusters in the CAR data set, we had to
adjust the ratio-input parameter to 95%. In this case the
cluster tree-algorithm detected some clusters but missed
out on some other important clusters and did not detect any
cluster hierarchies at all. If we have rather high reachability
values, e.g. values between 5-7 as in Figure 13 for the
Car data set, the ratio-parameter for the cluster tree-
algorithm should be higher than for smaller values. In the
case of the Protein data set we detected three clusters with
the default parameter setting, but again missed out on some
important clusters. Generally, in cases where a reachability
graph consists of rather high reachability values or does not
present spikes at all, but clusters are formed by smooth
troughs in the waveform, this cluster recognition algorithm
is unsuitable. Furthermore, it is inherently unable to detect
narrowing clusters where a cluster has one sub-cluster of
increased density (cf. Figure 6).

On the other hand, the ξ-clustering approach success-
fully recognizes some clusters while also missing out on sig-
nificant subclusters (cf. Figure 13b). This algorithm has
some trouble recognizing cluster structures with a significant
differential of ”steepness”. For instance, in Figure 6 it does

Car data

Gradient-
Clustering

Clustering
−−−−

Tree-
Clustering

Protein data

recognized
clusters

a)

b)

c)

o.R

7

6

5

o.R

7

6

5

o.R

7

6

5

o.R

4

3

2

o.R

4

3

2

o.R

4

3

2ξ

Figure 13: Sample cluster of car parts. a) Gradient-Clustering, b) ξ-Clustering, c) Tree-Clustering

not detect the narrowing cluster B inside of cluster A be-
cause it tries to create steep down-areas containing as many
points as possible. Thus, it will merge the two steep edges
if their steepness exceeds the threshold ξ. On the other, it
is able to detect cluster C within A.

Finally, we look at our new gradient-clustering algo-
rithm. Figure 13a shows that the recognized cluster struc-
ture is close to the intuitive one, which an experienced user
would manually derive. Clusters which are clearly distin-
guishable and contain more than MinPts elements are de-
tected by this algorithm. Not only does it detect a lot of
clusters, but it also detects a lot of meaningful cluster hier-
archies, consisting of narrowing subclusters.

To sum up, in all our tests the gradient-clustering al-
gorithm detected much more clusters than the other two
approaches, without producing any redundant and unneces-
sary cluster information.

6.1.2 Efficiency
In all tests, we first created the reachability plots and then
applied the algorithms for cluster recognition and represen-
tation. Let us note that we could also have integrated the
gradient-clustering into the OPTICS run without causing
any noteworthy overhead.

The overall runtimes for the three different cluster
recognition algorithms are depicted in Table 1. Our new

gradient-clustering algorithm does not only produce the
most meaningful results, but also in sufficiently short time.
This is due to its runtime complexity of O(n).

6.2 Cluster Representation
After a cluster recognition algorithm has analyzed the data,
algorithms for cluster representation can help to get a quick
visual overview of the data. With the help of representatives,
large sets of objects may be characterized through a single
object of the data set. We extract sample clusters from both
data sets in order to evaluate the different approaches for
cluster representatives. In our first tests, we set the number
of representatives to k = 1.

The objects of one cluster from the car data set are
displayed in Figure 14 and the objects of one cluster from the
protein data set are displayed in Figure 15. The annotated
objects are the representatives computed by the respective
algorithms. Both the Maximum Successor and the Minimum
Core Distance approaches give good results. Despite the
slight inhomogeneity of the clusters, both representatives
sum up the majority of the elements within both clusters.
This cannot be said of the representatives computed by
the commonly used medoid method, which selects objects
from the trailing end of the cluster. These two clusters and
their corresponding representatives are no isolated cases, but
reflect our general observations. Nevertheless, there have

Car data (200 parts) Protein data (5,000 molecules)
ξ-clustering 0.221 s 5.057 s
cluster tree 0.060 s 1.932 s
Gradient Clustering 0.310 s 3.565 s

Table 1: CPU time for cluster recognition.

Figure 14: A cluster of CAD objects with corresponding
representative objects.

been some rare cases where the medoid approach yielded the
more intuitive representative than the other two approaches.

If we allow a higher number of representatives, for in-
stance k = 3, it might be better to display the represen-
tatives of all three approaches to reflect the content of the
cluster, instead of displaying the three best representatives of
one single approach. If we want to confine ourselves to only
one representative per cluster, the best possible choice is to
use the representative of the Maximum Successor -approach.

6.3 Summary
The results of our experiments show, that our new ap-
proaches for the automatic cluster extraction and for the
determination of representative objects outperform existing
methods. It theoretically and empirically turned out, that
our gradient-clustering algorithm seems to be more practical
than recent work for automatic cluster extraction from hier-
archical cluster representations. We also empirically showed
that our approaches for the determination of cluster repre-
sentatives is in general more suitable than the simple (ex-
tended) medoid approach.

7 Conclusions
In this paper, we proposed hierarchical clustering combined
with automatic cluster recognition and selection of repre-
sentatives as a promising visualization technique. Its areas
of application include visual data mining, similarity search

Figure 15: A cluster of proteins with corresponding
representative objects.

and evaluation of similarity models. We surveyed three
approaches for automatic extraction of clusters. The first
method, ξ-clustering, fails to detect some clusters present
in the clustering structure and suffers from the sensitivity
concerning the choice of its input parameter. The algo-
rithm cluster tree is by design unsuitable in the presence
of narrowing clusters. To overcome these shortcomings, we
proposed a new method, called gradient-clustering. The ex-
perimental evaluation showed that this algorithm is able to
extract narrowing clusters. Furthermore, it can easily be in-
tegrated into the hierarchical clustering algorithm. Thus, it
produces no noteworthy overhead. The cluster hierarchies
produced by the gradient-clustering are similar to the clus-
tering structures which an experienced user would manually
extract.

Furthermore, we presented three different approaches to
determine representative objects for clusters. The commonly
known medoid approach is shown to be questionable for
real-world data, while the approaches minimizing the core-
distance and maximizing the successors both deliver good
results.

Finally, we described our industrial prototype, called
BOSS, that implements the algorithms presented in this
paper.

In our future work we will apply our new prototype to
various application ranges.

References

[1] R. Agrawal, C. Faloutsos, and A. Swami. “Efficient
Similarity Search in Sequence Databases”. In Proc. 4th.
Int. Conf. on Foundations of Data Organization and
Algorithms (FODO’93), Evanston, ILL, volume 730 of
Lecture Notes in Computer Science (LNCS), pages 69–
84. Springer, 1993.

[2] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim.
“Fast Similarity Search in the Presence of Noise,
Scaling, and Translation in Time-Series Databases”.
In Proc. 21th Int. Conf. on Very Large Databases
(VLDB’95), pages 490–501, 1995.

[3] M. Ankerst. Visual Data Mining. PhD thesis, Institute
for Computer Science, University of Munich, 2000.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and
J. Sander. “OPTICS: Ordering Points to Identify
the Clustering Structure”. In Proc. ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’99),
Philadelphia, PA, pages 49–60, 1999.

[5] S. Berchtold, D. A. Keim, and H.-P. Kriegel. “Using
Extended Feature Objects for Partial Similarity Re-
trieval”. VLDB Journal, 6(4):333–348, 1997.

[6] S. Berchtold and H.-P. Kriegel. “S3: Similarity Search
in CAD Database Systems”. In Proc. ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’97),
Tucson, AZ, pages 564–567, 1997.

[7] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland,
T. Bhat, H. Weissig, I. N. Shindyalov, and P. E.
Bourne. “The Protein Data Bank”. Nucleic Acids
Research, 28:235–242, 2000.

[8] M. M. Breunig, H.-P. Kriegel, P. Kröger, and
J. Sander. “Data Bubbles: Quality Preserving Perfor-
mance Boosting for Hierarchical Clustering”. In Proc.
ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD’01), Santa Barbara, CA, pages 79–90, 2001.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise”. In Proc. 2nd
Int. Conf. on Knowledge Discovery and Data Mining
(KDD’96), Portland, OR, pages 291–316. AAAI Press,
1996.

[10] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, et al.
“Efficient and Effective Querying by Image Content”.
Journal of Intelligent Information Systems, 3:231–262,
1994.

[11] C. Faloutsos, M. Ranganathan, and Y. Manolopou-
los. “Fast Subsequence Matching in Time-Series
Databases”. In Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’94), Minneapolis, MN,
pages 419–429, 1994.

[12] H. V. Jagadish. “A Retrieval Technique for Similar
Shapes”. In Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’91), pages 208–217,
1991.

[13] D. A. Keim. “Efficient Geometry-based Similarity
Search of 3D Spatial Databases”. In Proc. ACM

SIGMOD Int. Conf. on Management of Data (SIG-
MOD’99), Philadelphia, PA, pages 419–430, 1999.

[14] H.-P. Kriegel, S. Brecheisen, P. Kröger, M. Pfeifle,
and M. Schubert. “Using Sets of Feature Vectors for
Similarity Search on Voxelized CAD Objects”. In Proc.
ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD’03), San Diego, CA, 2003.

[15] H.-P. Kriegel, P. Kröger, and I. Gotlibovich. “In-
cremental OPTICS: Efficient Computation of Updates
in a Hierarchical Cluster Ordering”. In Proc. Int.
Conf. on Data Warehousing and Knowledge Discovery
(DaWaK’03), Prague, Czech Republic, volume 2737 of
Lecture Notes in Computer Science (LNCS), pages 224–
233. Springer, 2003.

[16] H.-P. Kriegel, P. Kröger, Z. Mashael, M. Pfeifle,
M. Pötke, and T. Seidl. “Effective Similarity Search
on Voxelized CAD Objects”. In Proc. 8th Int. Conf.
on Database Systems for Advanced Applications (DAS-
FAA’03), Kyoto, Japan, 2003.

[17] J. McQueen. “Some Methods for Classification and
Analysis of Multivariate Observations”. In 5th Berkeley
Symp. Math. Statist. Prob., volume 1, pages 281–297,
1967.

[18] J. Sander, X. Qin, Z. Lu, N. Niu, and A. Kovarsky.
“Automatic Extraction of Clusters from Hierarchical
Clustering Representations”. In Proc. 7th Pacific-Asia
Conference on Knowledge Discovery and Data Mining
(PAKDD 2003), Seoul, Korea, 2003.

	1 Introduction
	2 Hierachical Clustering
	2.1 Major Concepts of OPTICS
	2.2 Application Ranges
	2.2.1 Visual Data Mining
	2.2.2 Similarity Search
	2.2.3 Evaluation of Similarity Models

	3 Cluster Recognition
	3.1 Recent Work
	3.2 Gradient Clustering

	4 Cluster Representatives
	4.1 The Extended Medoid Approach
	4.2 Minimizing the Core-Distance
	4.3 Maximizing the Successors

	5 System Architecture
	6 Evaluation
	6.1 Cluster Recognition
	6.1.1 Effectivity
	6.1.2 Efficiency

	6.2 Cluster Representation
	6.3 Summary

	7 Conclusions

