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ABSTRACT
Principal component analysis (PCA) has been extensively
applied in data mining, pattern recognition and information
retrieval for unsupervised dimensionality reduction. When
labels of data are available, e.g., in a classification or regres-
sion task, PCA is however not able to use this information.
The problem is more interesting if only part of the input
data are labeled, i.e., in a semi-supervised setting. In this
paper we propose a supervised PCA model called SPPCA
and a semi-supervised PCA model called S2PPCA, both of
which are extensions of a probabilistic PCA model. The pro-
posed models are able to incorporate the label information
into the projection phase, and can naturally handle multi-
ple outputs (i.e., in multi-task learning problems). We de-
rive an efficient EM learning algorithm for both models, and
also provide theoretical justifications of the model behaviors.
SPPCA and S2PPCA are compared with other supervised
projection methods on various learning tasks, and show not
only promising performance but also good scalability.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing—Indexing methods

General Terms
Algorithms, Theory, Measurement, Performance

Keywords
Dimensionality reduction, Principal component analysis, Su-
pervised projection, Semi-supervised projection

1. INTRODUCTION
Data mining problems often suffer from the high dimen-

sionality of the data, for the reason of learnability or com-
putational efficiency. Therefore dimensionality reduction,
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which is also called feature transformation or document in-
dexing, is of great importance and has been extensively stud-
ied (see, e.g., [8, 2]). The most popular method is probably
the principal component analysis (PCA), which performs a
singular value decomposition (SVD) to the data matrix and
obtains the sub-eigenspace with large singular values [10].

Traditional dimensionality reduction methods are unsu-
pervised, i.e., they only focus on observations or input data.
However, in discriminant analysis where the prediction value
or output is available, it would be more helpful to incor-
porate this information into the mapping and derive a su-
pervised projection for input data. Since this projection is
designed for the specific prediction problem, it could be sub-
stantially different from unsupervised projection. A more in-
teresting setting is semi-supervised projection where we have
only part of input data labeled, along with a large number
of unlabeled data. This is often true in real world prob-
lems because labeling is expensive, or unlabeled data are
very easy to obtain. An ideal projection method should be
able to take into account both the observed labeling infor-
mation and the unlabeled inputs. There exist many super-
vised projection algorithms in the literature such as linear
discriminative analysis (LDA), partial least squares (PLS)
and many others (see, e.g., [8] for an overview). However,
these methods cannot incorporate the unlabeled data into
the mapping, which will cause problems when we have only
very few labeled points.

In this paper we propose a supervised PCA model called
SPPCA, which extends the probabilistic PCA model [17] to
incorporate label information into the projection. SPPCA
takes into account not only the inter-covariance between
inputs and outputs, but also the intra-covariance of both.
More interestingly, the model can be further extended to
model unlabeled data as well, which we call semi-supervised
PCA or S2PPCA. This model allows us to elegantly use all
the available information to define the mapping. We derive
an efficient EM learning algorithm for both models, and pro-
vide some theoretical justifications for the model behavior.
Experimental results on various learning tasks show promis-
ing performance for both SPPCA and S2PPCA models.

This paper is organized as follows. After reviewing pre-
vious work in Section 2, we formally introduce SPPCA and
S2PPCA models in Section 3 and derive an EM learning
algorithm in Section 4. We then presents some theoretical
justifications in Section 5 with further discussions. Finally
Section 6 illustrates experimental results and Section 7 con-
cludes the paper.



2. PREVIOUS WORK
In this section we review some previous work on unsu-

pervised and supervised projections. In what follows we
consider a set of N objects (e.g., images), and each object
n is described by an M -dimensional feature vector xn ∈
X ⊂ RM . For dimensionality reduction we aim to derive a
mapping Ψ : X 7→ Z which maps the input features into a
K-dimensional space (K < M).

2.1 Unsupervised Projection
Probably the most popular unsupervised projection is prin-

cipal component analysis (PCA). Let X = [x1, . . . ,xN ]>

denote the input matrix after centralization, i.e., we sub-
tract the sample mean from each input. In PCA we want
to find the principal components which illustrate the direc-
tions with maximal variances of the data. Let X = VDU>

be the singular value decomposition (SVD) of X, where V
and U are N ×N and M ×M column orthogonal matrices,
respectively, and D is N ×M diagonal matrix with singular
values sorted in descending order along the diagonal. Then
it is known that the first K columns of U, which we denote
UK , defines the mapping Ψ. The projections of X onto the
principal component space are given as VKDK , where VK

contains the first K columns of V, and DK is the top left
K ×K sub matrix of D.

Unlike PCA which is maximizing the global covariance
of the data, there also exist “local” projection algorithms
such as locally linear embedding [15], which tries to preserve
the local structure of the data after projecting into a low
dimensional space.

2.2 Supervised Projection
When each data point n is associated with not only low

level features xn but also some outputs yn ∈ Y ⊂ RL

(i.e., classification or regression targets), unsupervised pro-
jection such as PCA may be not able to project the data into
useful directions (see Figure 2). Therefore many supervised
projection methods are introduced to make use of the output
information. Linear discriminant analysis (LDA) focuses on
multi-class classification and finds projection directions that
separate the data best (see [4]). The number of projection
dimensions is however limited by L−1. Partial least squares
(PLS) [18] originates from regression analysis and finds the
directions of maximal covariance between inputs and out-
puts sequentially. It however ignores the intra covariance of
either inputs or outputs, and its generalization performance
on new dimensions of outputs is restricted (see discussions
in [6]). Other related works include [9, 12, 7, 1, 19, 20] which
consider this problem from different perspectives.

In the situations where we have few labeled points and
a large amount of unlabeled data, all these supervised pro-
jection methods are however not able to use the unlabeled
data. This is often the case in computer vision, information
retrieval and bioinformatics, where labeling is expensive and
unlabeled data are sufficient and cheap to obtain. We call
this setting the semi-supervised projection, and in the next
section we will propose a model which can deal with semi-
supervised projection naturally.

3. THE SPPCA MODEL
In this section we first review a probabilistic model for

PCA in Section 3.1, and then present our supervised models.

3.1 Probabilistic PCA (PPCA)
While PCA originates from the analysis of data variances,

in statistics community there exists a probabilistic explana-
tion for PCA, which is called probabilistic PCA or PPCA
in the literature [17, 14]. PPCA is a latent variable model
and defines a generative process for each object x as (see
Figure 1(a) for an illustration)

x = Wxz + µx + εx,

where z ∈ RK are called the latent variables, and Wx is
a M × K matrix called factor loadings. In this probabilis-
tic model, latent variables z are conventionally assumed as
a Gaussian distribution with zero mean and unit variance,
i.e., z ∼ N (0, I), and εx defines a noise process which also
takes an isotropic Gaussian form as εx ∼ N (0, σ2

xI), with σ2
x

the noise level. Additionally, we have parameters µx ∈ RM

which allow non-zero means for the data.
It is shown that PPCA has strong connections to PCA.

In particular when σ2
x → 0, the projections of data x onto

the K-dimensional principal subspace in PCA are identical
to the latent variables z up to a rotation and scaling fac-
tor [17]. We summarize the related results in the following
proposition without proof, since this is simply a corollary of
Theorem 2 in Section 5.

Proposition 1. Let Sx = 1
N

∑N
n=1(xn −µx)(xn −µx)>

be the sample covariance matrix for data {xn}N
n=1, and λ1 ≥

. . . ≥ λM be its eigenvalues with eigenvectors u1, . . . ,uM ,
then if the latent space in PPCA model is K-dimensional,

(i) The maximum likelihood estimate of Wx is given as

Wx = UK(ΛK − σ2
xI)

1
2 R,

where ΛK = diag(λ1, . . . , λK), UK = [u1, . . . ,uK ],
and R is an arbitrary K ×K orthogonal matrix.

(ii) The mean projections z∗ for new input x∗ is given as

z∗ = R> (ΛK − σ2
xI
) 1

2 Λ−1
K U>

K(x∗ − µx).

As a probabilistic framework, PPCA provides additional
benefits over PCA such as a fast EM learning procedure, a
principled way of handling missing entries, and a possibil-
ity of considering mixture of PCA models. PPCA is also
closely related to factor analysis models, but the modeling
perspectives are different (see [17] for more discussions).

3.2 Supervised PPCA (SPPCA)
The key point of PPCA model is that all the M dimen-

sions of x are conditionally independent given the latent vari-
ables z, due to the isotropic property of the noise process.
This indicates that the principal components in PPCA are
the K latent variables which best explain the data covariance.

When supervised information is available, each object x is
associated with an output value y ∈ Y, e.g., y ∈ R for regres-
sion task and y ∈ {+1,−1} for classification task. In general
we believe there are covariances between input space X and
output space Y (since otherwise the supervised learning task
is not learnable), and it is reasonable to extend PPCA to
model this covariance as well. Furthermore, when there are
more than one learning tasks (i.e., in a multi-task learning
setting [5]), the covariances between different tasks can also
be modeled by latent variables.



(a) PPCA (b) SPPCA (c) S2PPCA

Figure 1: Illustrations of the three models PPCA, SPPCA and S2PPCA. X and Y denote respectively the
input and output matrices, where each row is one data point. f1

x , . . . , fM
x are the M input features, and

f1
y , . . . , fL

y are the L outputs. On the top f1
z , . . . , fK

z are the K latent variables in each model. They are all in
circles because they are variables in the probabilistic models. The arrows denote probabilistic dependency.

We now formally describe our proposed model family which
we call the supervised probabilistic principal component anal-
ysis (SPPCA). Let the number of outputs be L, and each ob-
ject x be associated with an output vector y = [y1, . . . , yL]> ∈
Y ⊂ RL. In SPPCA the observed data (x,y) is generated
from a latent variable model as

x = Wxz + µx + εx,

y = f(z,Θ) + εy,

where f(z,Θ) = [f1(z, θ1), . . . , fL(z, θL)]> encode the val-
ues of L deterministic functions f1, . . . , fL with parameters
Θ = {θ1, . . . , θL}. Here z ∼ N (0, I) are the latent variables
shared by both inputs x and outputs y, and the two noise
models are independent to each other and both defined as
isotropic Gaussians: εx ∼ N (0, σ2

xI), εy ∼ N (0, σ2
yI). We

use two noise levels σ2
x and σ2

y for inputs and outputs, re-
spectively, and it is also straightforward to define different
noise levels for different outputs if desired. See Figure 1(b)
for an illustration of the model.

In SPPCA model we keep the nice property of condi-
tional independence, i.e., all the input and output dimen-
sions are conditionally independent to each other given the
latent variables. If we integrate out the latent variables z,
the likelihood of observation (x,y) is obtained as

P (x,y) =

∫
P (x,y|z)P (z) dz =

∫
P (x|z)P (y|z)P (z) dz,

where z ∼ N (0, I), and from the latent variable model,

x|z ∼ N (Wxz + µx, σ2
xI), y|z ∼ N (f(z,Θ), σ2

yI). (1)

After observing N pairs, the likelihood of all the observa-
tions D = {(xn,yn)}N

n=1, with i.i.d. assumption, is simply

P (D) =
∏N

n=1 P (xn,yn).
In the following we consider the simplest model in this

family, i.e., we assume each function f`, ` = 1, . . . , L, is
linear in z:

f`(z, θ`) = w`
y

>
z + µ`

y,

where the parameters θ` = {w`
y, µ`

y} include the linear co-
efficients and intercept. Then we can group all the f`’s and

write

f(z,Θ) = Wyz + µy,

a similar form as the generative model for x where Wy =
[w1

y, . . . ,wL
y ]> and µy = [µ1

y, . . . , µL
y ]>. The reason why

we choose this form for f is that the EM learning is simple
(see the next section), and we have closed form solution (see
Section 5). We will discuss other forms of f in Section 5.3
which may need special approximation techniques.

Let us denote

W =

(
Wx

Wy

)
, µ =

(
µx

µy

)
, Φ =

(
σ2

xI 0
0 σ2

yI

)
,

then based on the model assumption, it is easily seen that
(x,y) are jointly Gaussian distributed, with mean µ and
covariance Φ + WW>. All the parameters for the SPPCA
model are Ω := {Wx,Wy, µx, µy, σ2

x, σ2
y}.

3.3 Semi-Supervised PPCA (S2PPCA)
In SPPCA model, we assume we observe both the in-

puts x and outputs y for every data point. In many real
world problems, however, we may only observe the outputs
for a small portion of data, and have many unlabeled data
in which only inputs x are known. This may be because
some measurements are unobservable, the labeling cost is
too high, or simply we have a large amount of unlabeled
data available. Learning in this situation is in general called
semi-supervised learning. For learning a projection, an ideal
model would incorporate both the unlabeled inputs and the
partially labeled outputs to define the mapping.

This can be easily done under the SPPCA framework. Let
the number of labeled and unlabeled data points be N1 and
N2, respectively, with N = N1 +N2. The whole observation
is now D = D1

⋃
D2 = {(xn,yn)}N1

n=1

⋃
{xn′}N

n′=N1+1. The
likelihood, with the independence assumption of all the data
points, is calculated as

P (D) = P (D1)P (D2) =

N1∏
n=1

P (xn,yn)

N∏
n′=N1+1

P (xn′),



Figure 2: Projection directions for a toy data. They
are fully labeled on the left, and only partially la-
beled on the right.

where P (xn,yn) is calculated as in SPPCA model, and
P (xn′) =

∫
P (xn′ |zn′)P (zn′) dzn′ . Due to its applicabil-

ity to semi-supervised projection, we call it semi-supervised
PPCA or S2PPCA in this paper. Figure 1(c) illustrates this
model.

Under the additional assumptions that all the f`’s are
linear, it can be easily checked that all the likelihood terms
in this product are Gaussians. This makes the model easy
to learn. Other forms of f will be discussed in Section 5.3.

When N2 = 0, S2PPCA degrades to SPPCA which is
purely supervised. This means one can view SPPCA as a
special case of S2PPCA model with no unlabeled data. From
the perspective of probabilistic modeling, S2PPCA can also
be viewed as an SPPCA model where all the y’s for the N2

unlabeled points are missing. Due to this close relationship,
in the following we use SPPCA to denote both models unless
clearly specified.

3.4 Projections in SPPCA Models
Analogous to the PPCA model, in SPPCA models the

projection of data point x is directly given in the latent
variables z. If we know all the parameters Ω, calculating this
projection is simply an inference problem. To do this we can
apply Bayes’ rule and calculate the a posteriori distribution
of z. Therefore we can obtain not only the mean projection
vector, but also the uncertainty of the projection.

3.4.1 Projection for Fully Observed Data
When both inputs x and outputs y are observed, we can

calculate the a posteriori distribution of z given (x,y) as

P (z|x,y) ∝ P (x,y|z)P (z) = P (x|z)P (y|z)P (z). (2)

Since all the three terms on the right hand side are Gaus-
sians, this distribution is also a Gaussian N (µz,Σz), with

µz = A−1

[
1

σ2
x

W>
x (x− µx) +

1

σ2
y

W>
y (y − µy)

]
, Σz = A−1,

where A is a K ×K matrix defined as

A =
1

σ2
x

W>
x Wx +

1

σ2
y

W>
y Wy + I. (3)

This means that the projection is µz with uncertainty Σz.

3.4.2 Projection for Pure Input Data
For a test data x∗ that has no output information, what

are the most likely latent variables z∗? This can also be

done using Bayes’ rule

P (z∗|x∗) ∝ P (x∗|z∗)P (z∗). (4)

This turns out again to be a Gaussian N (µz|x,Σz|x), with

µz|x = (W>
x Wx + σ2

xI)
−1W>

x (x∗ − µx),

Σz|x = σ2
x(W>

x Wx + σ2
xI)

−1.

This result looks similar as that in PPCA model, but the
projection is now supervised because the learning of Wx is
influenced by those observed outputs. This is clarified in the
next section and will be theoretically justified in Section 5.

4. LEARNING IN SPPCA MODELS
Learning in probabilistic models reduces to maximizing

the data (log) likelihood with respect to all the model pa-
rameters. In case of SPPCA model, the log likelihood of the
whole observation D is

L =

N∑
n=1

log

∫
P (xn|zn)P (yn|zn)P (zn) dzn.

For SPPCA analytical solution exists, and we summarize
it later in Theorem 2. For S2PPCA model, however, there
is no analytical solution since all the outputs for the unla-
beled data are missing. Fortunately we can derive an EM
algorithm [3] which is applicable to both models.

The EM algorithm iterates the two steps expectation (E-
step) and maximization (M-step) until convergence, and it
is guaranteed to find a local minima of the data likelihood.
In the E-step, we fix the model parameters (Ω for SPPCA
models) and calculate the expected distributions of latent
variables (all the zn’s for SPPCA models), and in the M-
step we fix this distribution and maximize the complete data
likelihood with respect to the model parameters. As will be
discussed later, EM learning for SPPCA models is important
because it can deal with very large data sets, and it has, in
particular for SPPCA model with no unlabeled points, no
local minima problem up to a rotation factor (see Section 5).
For simplicity we only outline the update equations in the
following and omit details (see [17] for a similar derivation).

4.1 EM Learning for SPPCA
We first consider the SPPCA model without unlabeled

data. In the E-step, for each data point n we estimate the
distribution of zn given observation (xn,yn). This is done
using (2), and we calculate the sufficient statistics as

〈zn〉 = A−1

[
1

σ2
x

W>
x (xn − µx) +

1

σ2
y

W>
y (yn − µy)

]
, (5)

〈znz>n 〉 = A−1 + 〈zn〉〈zn〉>, (6)

where 〈·〉 denotes the expectation with respect to the pos-
terior distribution P (zn|xn,yn) given in (2).

In the M-step, we maximize the complete log-likelihood

L̃ =

N∑
n=1

∫
P (zn|xn,yn) log

(
P (xn|zn)P (yn|zn)P (zn)

)
dzn

with respect to the model parameters, holding P (zn|xn,yn)
fixed from the E-step. This can be done by setting the
partial derivatives with respect to each parameter to be zero.



Algorithm 1 Learning in SPPCA Model - Primal Form

Require: N data points {(xn,yn)}N
n=1 with inputs xn ∈

RM and outputs yn ∈ RL. A desired dimension K < M .
1: Calculate the sample means (7) and center the data via

xn ⇐ xn − µx, yn ⇐ yn − µy.
2: Initialize model parameters Ω randomly.
3: repeat
4: {E-step}
5: for n = 1 to N do
6: Calculate sufficient statistics (5) and (6);
7: end for
8: {M-step}
9: Update Wx and Wy via (8);

10: Update σ2
x and σ2

y via (9) and (10);
11: until the change of Ω is smaller than a threshold.
Output: Parameters Ω and projection vectors {zn}N

n=1

which are obtained from E-step. For test data x∗, the
mean projection z∗ = (W>

x Wx + σ2
xI)

−1W>
x (x∗ −µx).

For means of x and y we have

µ̃x =
1

N

N∑
n=1

xn, µ̃y =
1

N

N∑
n=1

yn, (7)

which are just the sample means. Since they are always
the same in all EM iterations, we can center the data by
subtracting these means in the beginning and ignore these
parameters in the learning process. So for simplicity we
change the notations xn and yn to be the centered vectors
in the following.

The mapping matrices Wx and Wy are updated as

W̃x = X>ZC−1, W̃y = Y>ZC−1, (8)

where for clarity we use matrix notations X = [x1, . . . ,xN ]>,
Y = [y1, . . . ,yN ]> and Z = [〈z1〉, . . . , 〈zN 〉]>. Matrix C is
defined to be the sum of all second-order sufficient statistics
of the data, i.e., C =

∑N
n=1〈znz>n 〉. Finally the noise levels

are updated as

σ̃2
x =

1

MN

[
N∑

n=1

‖xn‖2 + tr(W̃
>
x W̃xC)− 2 tr(XW̃xZ>)

]
(9)

σ̃2
y =

1

LN

[
N∑

n=1

‖yn‖2 + tr(W̃
>
y W̃yC)− 2 tr(YW̃yZ

>)

]
(10)

where ‖ · ‖ denotes vector 2-norm, and tr(·) denotes matrix
trace. The whole algorithm is summarized in Algorithm 1.

4.2 EM Learning for S2PPCA
The log likelihood of the observations in S2PPCA model

is a sum of two parts: L1 = log P (D1) which contains all
the labeled points, and L2 = log P (D2) which includes all
unlabeled points. Therefore in E-step we need to deal with
them differently. For a labeled points (xn,yn) ∈ D1, the
latent variables zn are estimated via (5) and (6), the same
as in SPPCA model. For an unlabeled point xn′ ∈ D2, the
distribution of zn′ is only conditioned on input xn′ , which
can be calculated via (4), with sufficient statistics (the data
are assumed centered already):

〈zn′〉 = (W>
x Wx + σ2

xI)
−1W>

x xn′ , (11)

〈zn′z>n′〉 = (W>
x Wx + σ2

xI)
−1 + 〈zn′〉〈zn′〉>, (12)

Algorithm 2 Learning in S2PPCA Model - Primal Form

Require: N1 labeled data points {(xn,yn)}N1
n=1 and N2 un-

labeled points {xn′}N
n′=N1+1, with inputs x ∈ RM and

observed outputs y ∈ RL. A desired dimension K < M .
1: Calculate the sample means (7) and center the data via

xn ⇐ xn − µx, yn ⇐ yn − µy, xn′ ⇐ xn′ − µx.
2: Initialize model parameters Ω randomly.
3: repeat
4: {E-step}
5: for n = 1 to N1 do
6: Calculate (5) and (6) for labeled data n;
7: end for
8: for n′ = N1 + 1 to N do
9: Calculate (11) and (12) for unlabeled data n′;

10: end for
11: {M-step}
12: Update Wx and Wy via (13) and (14);
13: Update σ2

x and σ2
y via (15) and (16);

14: until the change of Ω is smaller than a threshold.
Output: Parameters Ω and projection vectors {zn}N

n=1

which are obtained from E-step. For test data x∗, the
mean projection z∗ = (W>

x Wx + σ2
xI)

−1W>
x (x∗ −µx).

where here 〈·〉 denotes the expectation with respect to the
posterior distribution P (zn′ |xn′) given in (4).

The M-step is similarly obtained by setting the partial
derivatives of the complete log likelihood with respect to
each parameter to zero. For the two mapping matrices, we
have the updates

W̃x = (X>
1 Z1 + X>

2 Z2)(C1 + C2)
−1, (13)

W̃y = Y>Z1C
−1
1 , (14)

where X1, Z1, C1 are defined for labeled data, i.e., X1 =
[x1, . . . ,xN1 ]

>, Z1 = [〈z1〉, . . . , 〈zN1〉]>, C1 =
∑N1

n=1〈znz>n 〉,
and X2, Z2, C2 are similarly defined for unlabeled data. It
is seen that the update for Wx depends on both labeled data
and unlabeled data, while Wy only depends on the labeled
data. Updates for the noise levels are similar to those in
SPPCA model, except that for σ2

x we need to consider both
labeled data and unlabeled data:

σ̃2
x =

1

MN

[
N∑

n=1

‖xn‖2 + tr
(
W̃

>
x W̃x(C1 + C2)

)
−2 tr

(
W̃x(Z>1 X1 + Z>2 X2)

)]
, (15)

σ̃2
y =

1

LN1

[
N1∑

n=1

‖yn‖2 + tr(W̃
>
y W̃yC1)− 2 tr(YW̃yZ

>
1 )

]
.

(16)

The whole algorithm is summarized in Algorithm 2. When
N2 = 0, i.e., we have no unlabeled data, the learning algo-
rithm reduces to SPPCA learning.

4.3 EM Learning in Dual Form
It is known that when the number of data points is less

than the number of features, i.e., N < M , it is more efficient
to consider the dual solution for PCA in which we perform
SVD to the Gram matrix K = XX>. The canonical PCA is
sometimes called the primal solution. For SPPCA we have a
similar dual solution, and it can be directly derived from the



Algorithm 3 Learning in S2PPCA Model - Dual Form

Require: N1 labeled data points {(xn,yn)}N1
n=1 and N2 un-

labeled points {xn′}N
n′=N1+1, with inputs x ∈ RM and

observed outputs y ∈ RL. A desired dimension K < M .
1: Calculate Gram matrix K with Kij = x>i xj and center

it using (27). Center the outputs via yn ⇐ yn − µy.
2: Initialize Z, C and model parameters Ω randomly.
3: repeat {The EM-step}
4: Calculate Z1 and C1 using (21) and (22);
5: Calculate Z2 and C2 using (23) and (24);
6: Update σ2

x and σ2
y via (25) and (26);

7: until the change of Ω is smaller than a threshold.
Output: Parameters Ω and projection vectors {zn}N

n=1.
The mean projection z∗ for test data x∗ is z∗ =

C
(
Z>KZ + σ2

xC
2
)−1

Z>k(X,x∗) where k(X,x∗) =

[x>1 x∗, . . . ,x>Nx∗]> and is centered via (28).

EM learning in previous subsections. To avoid the tedious
mathematics in the main text, we put the derivation details
into Appendix and summarize the algorithm in Algorithm 3.
Since SPPCA can be viewed as a special case of S2PPCA,
here we only give the algorithm for S2PPCA model.

One important observation in the dual solution is that all
the calculation involving input data X can be done via inner-
product, e.g., in the Gram matrix K we have Kij = x>i xj .
This motivates us to consider non-linear PCA where we first
map the data into a new feature space (via, e.g., basis func-
tions), and then perform PCA in that space with a proper
definition of inner-product. This is the idea behind kernel
PCA [16], and we put detailed discussion into Appendix.

4.4 Computational Issues
In the primal form (i.e., Algorithm 1 and 2), the time

complexity for both algorithms is O
(
m(M + L)NK

)
, with

m the number of iterations.1 It is linear in the number
of data points N and the input dimension M . The space
complexity is O

(
(M + L)N

)
, which is also linear in both N

and M . The projection for a test data point is just a linear
operation and costs O(MK) time.

In the dual form, the time complexity is O(mN2K) plus
O(N2M) which is the one-time calculation of Gram matrix,
and the space complexity is O

(
N2
)
. Both of them are now

quadratic in the number of data points N . The time for
projecting a test data point is now O(NM). Similar to the
case for PCA, in situations where M > N , i.e., we have more
features than the number of data points, the dual form is
more efficient than the primal form.

5. THEORETICAL JUSTIFICATION
In this section we provide some theoretical analysis for

SPPCA model and show how the supervised information
influences the projection. The proofs are given in Appendix.

5.1 Primal Form Solution
Recall that matrix Φ is a (M + L) × (M + L) diago-

nal matrix with all the noise levels in diagonal, i.e., Φ =
diag(σ2

x, . . . , σ2
x, σ2

y, . . . , σ2
y). For SPPCA model we obtain

the following analytical solutions for mapping matrix Wx

1Note that we only need to calculate the diagonal entries for
matrix trace in the updates for noise levels.

and Wy. This makes it easier to compare SPPCA with
related models such as PCA.

Theorem 2. Let S denote the normalized sample covari-
ance matrix for centered observations {(xn,yn)}N

n=1, i.e.,

S =
1

N

N∑
n=1

Φ− 1
2

(
xn

yn

)(
xn

yn

)>

Φ− 1
2 =

(
1

σ2
x
Sx

1
σxσy

Sxy

1
σxσy

Syx
1

σ2
y
Sy

)
,

and λ1 ≥ . . . ≥ λ(M+L) be its eigenvalues with eigenvectors
u1, . . . ,u(M+L), then if the latent space in SPPCA model is
K-dimensional, the following results hold:

(i) The maximum likelihood estimates of Wx and Wy are

Wx = σxUx(ΛK − I)
1
2 R, (17)

Wy = σyUy(ΛK − I)
1
2 R, (18)

where ΛK = diag(λ1, . . . , λK), Ux (Uy) contains the
first M (last L) rows of [u1, . . . ,uK ], and R is an ar-
bitrary K ×K orthogonal rotation matrix.

(ii) Projection z∗ for centered new input x∗ is given as

z∗ =
1

σx
R> (ΛK − I)−

1
2

[
U>

x Ux + (ΛK − I)−1
]−1

U>
x x∗.

In the special case that L = 0, the model is unsupervised and

S = 1
σ2

x
Sx holds. Then (17) degrades to σxUx(ΛK − I)

1
2 R,

which recovers the PPCA solution. Ux is seen to be column
orthogonal in this case, and the mapping z∗ of x∗ is (scaled)
standard PCA mapping when σ2

x → 0 and R = I. This
proves Proposition 1 which is a corollary of this theorem.

When L > 0, SPPCA solutions explain not only the sam-
ple covariance of inputs Sx, but also the intra-covariance of
outputs Sy (if L > 1) and the inter-correlations between
inputs and outputs, Sxy and Syx. Therefore, one column
of Wx is the direction that best explains the whole system
from the perspective of inputs, and thus are biased by the
outputs. Unlike the case of PCA, the learned Wx in SP-
PCA needs not to be column orthogonal. This means we
are only learning an affine mapping for x. If necessary, it is
straightforward to find the orthogonal basis by performing
SVD to matrix Wx.

In both SPPCA and PPCA the learned Wx has an arbi-
trary rotation factor R. This means the mapping is invari-
ant under a rotation of latent space, as can be seen from the
equation for z∗. Therefore the SPPCA model can only find
the latent principal subspace, which has been mentioned in
[17] for PPCA. Thus the EM algorithm in Section 4 can find
different mappings with different initializations, but they de-
fine the same subspace and do not change the structure of
projected data. If necessary, this ambiguity can be removed
by eigen-decomposing

W>
x Wx + W>

y Wy = R>(ΛK − I)R

and uncovering the rotation factor R.
A final comment is that Theorem 2 may be not applicable

to large-scale problems since we have to form a big square
matrix of size M + L. This is however not necessary for the
EM algorithm.

5.2 Dual Form Solution
In the dual form, we do not obtain the mapping matrix

Wx, but the projected vectors directly. The following theo-
rem gives the analytical solution in the dual form.



Theorem 3. Let K̂ = 1
σ2

x
K + 1

σ2
y
YY>, and λ1 ≥ . . . ≥

λN be its eigenvalues with eigenvectors v1, . . . ,vN , then if
the latent space in SPPCA model is K-dimensional, the fol-
lowing results hold:2

(i) The projection vectors of training data, which are en-
coded in rows of matrix Z, are calculated as

Z =
√

NVKD
1
2 R, (19)

where D := I−NΛ−1
K , ΛK = diag(λ1, . . . , λK), VK =

[v1, . . . ,vK ], and R is an arbitrary K ×K orthogonal
rotation matrix.

(ii) Projection z∗ for new input x∗ is given as

z∗ =
√

NR>D− 1
2

(
V>

KKVK + D
)−1

V>
Kk(X,x∗),

with k(X,x∗) centered via (28).

It is seen from this theorem that when there is no output in

SPPCA, i.e., K̂ = 1
σ2

x
K, SPPCA reduces to the dual form of

PCA as desired. This theorem directly applies for non-linear
mappings if the inner-product is defined in a reproducing
kernel Hilbert space (RKHS) [16], and leads to the kernel
PCA solution when L = 0.

Theorem 3 presents a nice explanation for SPPCA model:
we just use the outputs to modify the Gram matrix of input
data, and control the trade-off via the ratio of noise levels.
The model complexity remains the same (i.e., quadratic in
N) no matter how many output dimensions we have. Our
previous work [20] shares this same property and derives
the supervised projection via an eigenvalue problem. But
it cannot be elegantly extended to semi-supervised projec-
tions, and has problems to deal with large-scale data sets.

5.3 Discussions
Previous two subsections give some theoretical results for

SPPCA model. There exists however no such a closed-form
solution for S2PPCA. One can only empirically analyze the
behavior of this model.

In the EM learning algorithm we are learning the maxi-
mum likelihood (ML) estimates for the two mapping matri-
ces Wx and Wy. In the probabilistic framework we can also
assign a prior to them to reduce overfitting. For instance,
we can assign an isotropic Gaussian prior for each column of
Wx, and if we consider the maximum a posteriori (MAP)
estimate this prior corresponds to a smooth term in the up-
date equations. For simplicity we do not consider this prior
here.

6. EXPERIMENTS
In this section we empirically investigate the performance

of SPPCA models. The supervised tasks here are multi-
class classification and multi-label classification. Our basic
setting is that we train a supervised projection model using
the input features and label information, and then test the
classification performance for test data using the projected
features. Since the test data are assumed known in the
training phase, for S2PPCA we will be able to use these
unlabeled data to train the mapping.

2We use the same notation for eigenvalues as in Theorem 2
because it can be proved that they are identical up to a
scaling factor of N .

Table 1: Statistics of the multi-class data sets (top)
and multi-label data sets (bottom)

Category # Data # Dim # Class
Yale Face 165 1024 15
ORL Face 400 1024 40
PIE Face 11554 1024 68

YaleB Face 2414 1024 38
11 Tumors Gene 174 12533 11
14 Tumors Gene 308 15009 26

Lung Cancer Gene 203 12600 5
20Newsgroup Text 19928 25284 20

TDT2 Text 8692 35452 20

Category # Data # Dim # Class
Yeast Gene 2417 103 14
RCV1 Text 23149 15500 103

6.1 Data Sets
We test the proposed model on 9 multi-class and 2 multi-

label classification problems. These problems include face
recognition, gene classification and text categorization. Some
statistics of these data sets are shown in Table 1.

For face recognition we use four data sets Yale, ORL, PIE
and YaleB (the extended Yale Face Database B).3 The Yale
data set contains 165 gray-scale images in GIF format of 15
individuals. There are 11 images per subject, one per dif-
ferent facial expression or configuration such as center-light,
left-light, happy or surprised. The ORL database contains
10 different images of each of 40 distinct subjects. For some
subjects, the images were taken at different times with vary-
ing lighting and facial details. The PIE databases we use
contains 170 images for each of 68 people. These images are
the five near frontal poses under different illuminations and
expressions. For YaleB we have 38 individuals and around
64 near frontal images under different illuminations per in-
dividual. All the face images are manually aligned, cropped
and resized to 32×32 pixels. We then normalize each image
to have Euclidean distance 1.

We consider three gene expression data sets 11 Tumors,
14 Tumors and Lung Cancer for gene classification.4 The
11 Tumors describes 11 various human tumor types, and
14 Tumors describes 14 tumor types with 12 normal tissue
types. For Lung Cancer we need to classify 4 lung cancer
types and normal tissues. The characteristic of these data
is that the number of data points is small, but the input
dimensionality is very high.

The two textual data sets we use are taken from 20News-
group and TDT2. 20Newsgroup contains 20,000 news arti-
cles posted in 20 news groups. We remove the words that
occur less than 5 times, and obtain 19,928 documents with
25,284 words. The TDT2 corpus we use consists of the doc-
uments collected during the first half of 1998 and taken from
6 sources, including 2 newswires (APW, NYT), 2 radio pro-
grams (VOA, PRI) and 2 television programs (CNN, ABC).
It consists of 11,021 documents which are classified into 96
semantic categories. In our experiments, we keep the largest
20 categories and remove those documents that are assigned
to more than one categories. This leaves us 8,692 documents
with totally 35,452 words. For both of these data sets we

3See http://www.ews.uiuc.edu/∼dengcai2/Data/data.html.
4They are available at http://www.gems-system.org.



Table 2: Results for Multi-class Classification Tasks. Bold face indicates lowest error rate. Symbols ? indicate
that the best method is significantly better than the competitors (p-value 0.01 in Wilcoxon rank sum test).

Task Full PCA LDA PLS SPPCA S2PPCA
Yale 0.5656± 0.0394 0.6690± 0.0333 0.6133± 0.0471 0.6440± 0.0383 0.7007± 0.0402 0.7121± 0.0393
ORL 0.3308± 0.0347 0.5593± 0.0263 0.5302± 0.0444 0.5505± 0.0294 0.5459± 0.0305 0.5287± 0.0286
PIE 0.6988± 0.0085 0.9325± 0.0032 0.7066± 0.0177 0.8781± 0.0058 0.8780± 0.0116 0.8452± 0.0037

YaleB 0.6360± 0.0160 0.9895± 0.0023 ?0.5328± 0.0251 0.9546± 0.0066 0.9701± 0.0088 0.9800± 0.0034
11 Tumors 0.3161± 0.0566 0.5409± 0.0490 0.4505± 0.0755 N/A 0.5226± 0.0636 0.5130± 0.0491
14 Tumors 0.6084± 0.0360 0.7363± 0.0286 0.7161± 0.0481 N/A 0.7312± 0.0371 0.7138± 0.0296

Lung Cancer 0.3680± 0.1148 0.3768± 0.0939 0.3225± 0.1658 N/A 0.4287± 0.1338 0.3896± 0.0923
20Newsgroup 0.6135± 0.0155 0.9070± 0.0177 0.9140± 0.0208 N/A 0.9030± 0.0162 0.9126± 0.0116

TDT2 0.1875± 0.0233 0.6664± 0.0657 0.7834± 0.0782 N/A 0.6236± 0.0739 ?0.3686± 0.0349

(a) Projection dimension K = 5.

Task Full PCA LDA PLS SPPCA S2PPCA
Yale 0.5656± 0.0394 0.5993± 0.0312 0.5279± 0.0460 0.5698± 0.0386 0.6101± 0.0447 0.5916± 0.0433
ORL 0.3308± 0.0347 0.4049± 0.0293 0.3625± 0.0468 0.4048± 0.0349 0.3832± 0.0409 0.3509± 0.0287
PIE 0.6988± 0.0085 0.8573± 0.0051 0.5496± 0.0185 0.8062± 0.0068 0.7105± 0.0161 0.6942± 0.0047

YaleB 0.6360± 0.0160 0.9308± 0.0046 ?0.3846± 0.0282 0.8762± 0.0108 0.7976± 0.0242 0.7986± 0.0117
11 Tumors 0.3161± 0.0566 0.3682± 0.0655 0.3926± 0.0667 N/A 0.3801± 0.0624 ?0.3297± 0.0664
14 Tumors 0.6084± 0.0360 0.6868± 0.0288 0.6212± 0.0430 N/A 0.6322± 0.0363 0.6120± 0.0331

Lung Cancer 0.3680± 0.1148 0.3493± 0.0996 0.3225± 0.1658 N/A 0.6235± 0.1520 0.3517± 0.1063
20Newsgroup 0.6135± 0.0155 0.9039± 0.0172 0.8943± 0.0292 N/A 0.8931± 0.0242 0.8548± 0.0138

TDT2 0.1875± 0.0233 0.5531± 0.0742 0.6878± 0.1068 N/A 0.5346± 0.0885 ?0.2794± 0.0327

(b) Projection dimension K = 10.

Task Full PCA LDA PLS SPPCA S2PPCA
Yale 0.5656± 0.0394 0.5437± 0.0414 0.5793± 0.0438 0.5216± 0.0435 0.5093± 0.0391 0.5001± 0.0589
ORL 0.3308± 0.0347 0.3323± 0.0310 0.2944± 0.0398 0.3366± 0.0331 0.3271± 0.0372 0.2755± 0.0286
PIE 0.6988± 0.0085 0.7999± 0.0060 0.4352± 0.0186 0.7454± 0.0092 0.5912± 0.0146 0.5361± 0.0090

YaleB 0.6360± 0.0160 0.8304± 0.0096 ?0.3004± 0.0227 0.7695± 0.0148 0.5619± 0.0276 0.5652± 0.0172
11 Tumors 0.3161± 0.0566 0.3267± 0.0635 0.3926± 0.0667 N/A 0.4470± 0.0691 0.3012± 0.0582
14 Tumors 0.6084± 0.0360 0.6379± 0.0360 0.5822± 0.0388 N/A 0.5669± 0.0347 0.5674± 0.0372

Lung Cancer 0.3680± 0.1148 0.3584± 0.0953 0.3225± 0.1658 N/A 0.6487± 0.1540 0.4092± 0.1107
20Newsgroup 0.6135± 0.0155 0.9160± 0.0220 0.8001± 0.0425 N/A 0.6254± 0.0420 0.6568± 0.0146

TDT2 0.1875± 0.0233 0.4582± 0.1441 0.1524± 0.0622 N/A 0.1566± 0.0509 0.1520± 0.0210

(c) Projection dimension K = 20.

use TF-IDF features and normalize each document to have
Euclidean distance 1.

For multi-label classification we use Yeast and RCV1. The
Yeast data set is formed by micro-array expression data and
phylogenetic profiles with 2,417 genes in total and 103 input
dimensions. There are 14 groups and each gene can belong
to multiple groups. The other data is a subset of the RCV1-
v2 text data set, provided by Reuters and corrected by Lewis
et al. [11]. We use the training set provided by Lewis, which
contains 103 labels, 23,149 documents with 15,500 words
after we remove words that occur less than 5 times. We also
extract TF-IDF features and normalize each document to
have Euclidean distance 1.

6.2 Experimental Setting
For the multi-class classification tasks, we randomly pick

up a small number of labeled data points for training (2
for those data sets with less than 500 data points, and 5
for the others), and test the classification error rate on the
unlabeled data. We will in general compare the following
six algorithms if applicable:

• PCA: Unsupervised projection. Note that we use both
the training and test data to derive the mapping.

• LDA: Linear discriminant analysis.

• PLS: Partial least squares.

• SPPCA: Supervised probabilistic PCA.

• S2PPCA: Semi-supervised probabilistic PCA. We al-
low S2PPCA to use the test data to train the mapping.

• Full: All the features are used without projection.

For all the projection methods, we project the data into
a space of 5, 10 and 20 dimensions, and train a nearest-
neighbor classifier for the test points using new features with
Euclidean distance. For Full we directly train the nearest-
neighbor classifier using original features. For PLS, SPPCA
and S2PPCA, we translate the one column output to the
“One of C” setting, i.e., each class has one column with
binary labels.

For multi-label classification, we pick up 5 positive exam-
ples from each label to obtain the training data. For all
projection methods we project to 5, 10 and 20 dimensions,
and then train a linear SVM classifier for each label. The
comparison metrics are F1-Macro, F1-Micro and AUC (Area
Under ROC Curve) score. The candidate algorithms are al-
most the same as multi-class setting, except LDA which is
not applicable to this task. The C in SVM is fixed as 100,
and from our experience it is not sensible for all algorithms.

In all these comparisons, the iteration number for SPPCA
and S2PPCA is set to 1000. Both the noise levels σ2

x and σ2
y

are set to 10−5 initially. It turns out that PLS gets memory
problems when applied to large dimensions. We repeat each
experiments 50 times independently,5 and the results are
illustrated in .

6.3 Analysis of Results
The first observation is that in most cases the supervised

5For the four face recognition tasks we use the split versions
available from the web site.



Table 3: Results for Multi-label Classification Tasks. Bold face indicates best performance.

K Model Yeast RCV1
F1-Macro F1-Micro AUC F1-Macro F1-Micro AUC

Full 0.3813± 0.0102 0.5161± 0.0154 0.5571± 0.0094 0.2796± 0.0055 0.5053± 0.0095 0.6030± 0.0063
PCA 0.2318± 0.0354 0.5600± 0.0220 0.5279± 0.0108 0.0467± 0.0063 0.3540± 0.0106 0.5208± 0.0072

5 PLS 0.3432± 0.0231 0.5795± 0.0233 0.5556± 0.0094 N/A N/A N/A
SPPCA 0.3823± 0.0120 0.5332± 0.0188 0.5641± 0.0087 0.1155± 0.0071 0.4433± 0.0089 0.5568± 0.0079
S2PPCA 0.3927± 0.0134 0.5890± 0.0126 0.5842± 0.0104 0.1312± 0.0118 0.4620± 0.0236 0.5762± 0.0162

Full 0.3813± 0.0102 0.5161± 0.0154 0.5571± 0.0094 0.2796± 0.0055 0.5053± 0.0095 0.6030± 0.0063
PCA 0.3113± 0.0304 0.5916± 0.0146 0.5493± 0.0101 0.0843± 0.0124 0.4003± 0.0162 0.5347± 0.0072

10 PLS 0.3756± 0.0154 0.5517± 0.0177 0.5610± 0.0095 N/A N/A N/A
SPPCA 0.3924± 0.0117 0.5459± 0.0180 0.5685± 0.0084 0.1797± 0.0112 0.4474± 0.0124 0.5872± 0.0087
S2PPCA 0.3985± 0.0103 0.5914± 0.0106 0.5896± 0.0107 0.1956± 0.0110 0.4735± 0.0198 0.6012± 0.0098

Full 0.3813± 0.0102 0.5161± 0.0154 0.5571± 0.0094 0.2796± 0.0055 0.5053± 0.0095 0.6030± 0.0063
PCA 0.3723± 0.0171 0.5537± 0.0204 0.5614± 0.0097 0.1320± 0.0086 0.4419± 0.0095 0.5504± 0.0061

20 PLS 0.3799± 0.0123 0.5208± 0.0158 0.5585± 0.0102 N/A N/A N/A
SPPCA 0.3859± 0.0133 0.5517± 0.0151 0.5640± 0.0097 0.2297± 0.0119 0.4690± 0.0126 0.6044± 0.0054
S2PPCA 0.3976± 0.0142 0.6012± 0.0190 0.5921± 0.0119 0.2536± 0.0117 0.4921± 0.0102 0.6090± 0.0076

PCA model is better than unsupervised PCA model. This
means by using the output information, we are able to de-
rive a more meaningful projection for the supervised tasks.
When the dimensionality is larger (e.g., 20), SPPCA and
S2PPCA obtain the best results for most of the tasks.

When we compare SPPCA model with other supervised
projection methods, SPPCA is consistently better than PLS,
but in some tasks worse than LDA (e.g., for YaleB). The rea-
sons may be that SPPCA models are still based on the PCA
assumptions for input features, so the mapping is strongly
biased by PCA. When PCA projection directions are almost
useless for classification, like for YaleB dataset, the SPPCA
projections are also not informative enough. In this case
discriminative methods like LDA can often do a good job.
In other situations where PCA does help, SPPCA can in
general be better than pure discriminative methods.

When we compare SPPCA and S2PPCA, in most cases
S2PPCA gets better results. For some tasks the difference
is very big (e.g., for TDT2). This indicates that by incor-
porating the unlabeled data we can learn a better mapping.
But S2PPCA is in general slower than SPPCA because it
has to consider all the test data in the training phase. In this
case 1000 iterations may be not enough to get the algorithm
converge. This may also be part of the reason why S2PPCA
is inferior to other methods for some tasks like PIE.

Most of the supervised projection methods can get a bet-
ter performance than Full even if they only project the
data into a very low dimensional space. This is important
because we can not only speed up the system, but also im-
prove the performance. PCA in our experiments uses the
input features of both labeled and unlabeled data, thus it
sometimes can get better results than Full method (e.g., for
Yale and Lung Cancer).

The results for multi-label classification show that S2PPCA
is consistently better than other methods. S2PPCA also
shows very good scalability in our experiments, since for
20Newsgroup and RCV1 it need to handle 20,000 docu-
ments with more than 15,000 features. Most of the other
algorithms fail on these large data sets.

7. CONCLUSION
We proposed a supervised PCA and a semi-supervised

PCA in this paper, and derived an efficient EM algorithm for
model learning. Empirical results show that the proposed
model obtains good performance and scales well for large

data sets.
In this paper we mainly focus on the Gaussian noise model

for the outputs y. One can define other likelihood models
for specific tasks, e.g., the probit likelihood for classification,
but then we lose the nice closed-form solutions as described
in Theorem 2 and 3. This is because in E-step of the EM
learning the a posteriori distribution of z is no longer a
Gaussian (see (2)). To solve this problem we can apply the
expectation-propagation (EP) [13] algorithm to sequentially
approximate each likelihood term P (y`|z) as a Gaussian for
z. Then the approximated a posteriori distribution of z is
still a Gaussian, and the EM algorithm can still be applied
to find the optimal projection matrices. Empirically com-
paring this algorithm with the basic ones would be part of
the future work.
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APPENDIX

A. DERIVATION OF DUAL FORM
We only focus on S2PPCA model here. Let C = C1 +C2,

and

X =

(
X1

X2

)
, Z =

(
Z1

Z2

)
, K = XX> =

(
X1X

>

X2X
>

)
=

(
K1

K2

)
then (13) can be written as W̃x = X>ZC−1. This leads to

W̃
>
x W̃x = C−1Z>KZC−1, W̃

>
x x = C−1Z>k(X,x), (20)

which are the building blocks for the dual form. The matrix
K = XX> has each entry the inner-product of data points of
corresponding row and column, Kij = x>i xj , and k(X,x) =
Xx is a N -dimensional column vector with the i-th entry
x>i x.

In the E-step, we first rewrite A as

Ã =
1

σ2
x

C−1Z>KZC−1 +
1

σ2
y

C−1
1 Z>

1 YY>Z1C
−1
1 + I.

Applying (20) in sufficient statistics (5), we get

Z̃1 =

[
1

σ2
x

K1ZC−1 +
1

σ2
y

YY>Z1C
−1
1

]
Ã
−1

, (21)

by collecting 〈zn〉 in columns and transposing it. Sufficient
statistics (6) can be written in terms of C1:

C̃1 =

N1∑
n=1

〈znz>n 〉 = N1Ã
−1

+ Z̃
>
1 Z̃1. (22)

Similarly, we obtain the following two updates for unlabeled
data:

Z̃2 =
1

σ2
x

K2ZC−1

[
1

σ2
x

C−1Z>KZC−1 + I

]−1

, (23)

C̃2 = N2

[
1

σ2
x

C−1Z>KZC−1 + I

]−1

+ Z̃
>
2 Z̃2. (24)

In M-step, we only need to update variances σ2
x and σ2

y as

σ̃2
x =

1

MN

[
tr(K)− tr(Z̃

>
KZ̃C̃

−1
)
]
, (25)

σ̃2
y =

1

LN

[
tr(YY>)− tr(Z̃

>
YY>Z̃C̃

−1
)
]
, (26)

which can be easily verified from (9) and (10).
Therefore, it is seen that all interesting terms in the EM

algorithm take input data into account only via the inner-
product. This nice property allows us to extend the linear
SPPCA model to non-linear mappings by first mapping the
input data into a new feature space (via, e.g., basis func-
tions) and then performing SPPCA in that space. This can
also be done via kernel trick for which we only need to define
a kernel function κ(·, ·) for each pair of input data [16].

Since we are now working on centered data in the feature
space, we can achieve this by modifying K as

K̃ = K− 1

N
11>K− 1

N
K11> +

1

N2
11>K11>, (27)

where 1 denotes the all one column vector of length N [16].
For kernel vector k(X,x∗), it can also be centered by

k̃ = k− 1

N
11>k− 1

N
K1 +

1

N2
11>K1. (28)

B. PROOF OF THEOREM 2
We give a sketch here. The mapping matrices are obtained

by finding a fixed point in the EM algorithm in Section 4.
For this proof we use notation W := ( 1

σx
W>

x , 1
σy

W>
y )>,

and (3) can be rewritten as A = W>W + I. Plugging this
and (5), (6) into (8) yields an update equation only related

to W: W̃ = SW
[
W>SW + W>W + I

]−1 (
W>W + I

)
.

At the fixed point, this simplifies to SW = WW>W + W.
Let W = UDV> be the SVD of W. Then each column u
of U satisfies dSu = (d + d3)u, with d the corresponding
singular value. Therefore solving an eigenvalue problem for
S gives the mapping matrix W, and plugging them into (4)
gives the mapping z∗ for x∗. �

C. PROOF OF THEOREM 3
We give a sketch here. We define B = ZC−1 and rewrite

(21) and (22) using only B. This leads to NB
(
I + B>K̂B

)
=

K̂B. To solve B we denote the SVD of B>K̂B as QDQ>,
then we can obtain B>B = 1

N
QD (I + D)−1 Q> after some

mathematics. Then define U := BQ
√

ND−1/2 (I + D)1/2,

we have U>U = I and U>K̂U = N (I + D). This clearly

defines a SVD for K̂, so by definition we have Λ = N (I + D).
Then we can solve for B from U and Λ, which yields B =

1√
N

U
(
I−NΛ−1

)1/2
Q>. This recovers (19) with R = Q>,

and the update equation for new test data can be easily ob-
tained. �


