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ABSTRACT
Nearest neighbor (NN) queries in trajectory databases have received
significant attention in the past, due to their applications in spatio-
temporal data analysis. More recent work has considered the realis-
tic case where the trajectories are uncertain; however, only simple
uncertainty models have been proposed, which do not allow for
accurate probabilistic search. In this paper, we fill this gap by ad-
dressing probabilistic nearest neighbor queries in databases with
uncertain trajectories modeled by stochastic processes, specifically
the Markov chain model. We study three nearest neighbor query
semantics that take as input a query state or trajectory q and a time
interval, and theoretically evaluate their runtime complexity. Fur-
thermore we propose a sampling approach which uses Bayesian
inference to guarantee that sampled trajectories conform to the ob-
servation data stored in the database. This sampling approach can
be used in Monte-Carlo based approximation solutions. We include
an extensive experimental study to support our theoretical results.

1. INTRODUCTION
With the wide availability of satellite, RFID, GPS, and sensor

technologies, spatio-temporal data can be collected in a massive
scale. The efficient management of such data is of great interest
in a plethora of application domains: from structural and environ-
mental monitoring and weather forecasting, through disaster/rescue
management and remediation, to Geographic Information Systems
(GIS) and traffic control and information systems. In most current
research however, each acquired trajectory, i.e., the function of a
spatio-temporal object that maps each point in time to a position
in space, is assumed to be known entirely without any uncertainty.
However, the physical limitations of the sensing devices or limita-
tions of the data collection process introduce sources of uncertainty.

Specifically, it is usually not possible to continuously capture the
position of an object for each point of time. In an indoor track-
ing environment where the movement of a person is captured using
static RFID sensors, the position of the people in-between two suc-
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cessive tracking events is not available ([1]). The same holds for
geo-social network (GSN) applications, where users have recently
been enabled to publicly share trajectories, such as bike routes1,
tourist routes2 and GPS trajectories3. In many applications, the fre-
quency of data collection is often decreased to save resources such
as battery power and wireless network traffic. Examples of tra-
jectories with a relatively low frequency can be found on Bikely.
Furthermore, traditional check-in data of GSN users often shows a
frequency high enough to allow inference of a user’s position in be-
tween discrete check-ins. Furthermore, incomplete (location, time)
data is also collected in mobile object tracking applications. For
example, in the T-Drive dataset ([3]) which consists of GPS-logs
of taxis in Beijing, the time between two successive GPS measure-
ments ranges from two seconds up to several minutes. In the Ge-
oLife dataset ([4]), GPS observations of mobile users are logged
frequently, usually every 1-5 seconds per point, while some ob-
servations still have a lower sampling rate. All these datasets cre-
ate a common challenge of interpolating the position of a user in-
between discrete observations. In-between these observations the
exact values are not explicitly stored in the database and are thus
uncertain from the database perspective.

In this work, we consider a database D of uncertain moving ob-
ject trajectories, where for each trajectory there is a set of observa-
tions for only some of the history timestamps. Thus, the entire tra-
jectory of an object is described by a time-dependent random vari-
able, i.e., a stochastic process. Given a reference state or trajectory
q and a time interval T , we define probabilistic nearest-neighbor
(PNN) query semantics, which are extensions of nearest neighbor
queries in trajectory databases [5, 6, 7, 8]. Specifically, a P∃NNQ
(P∀NNQ) query retrieves all objects in D, which have sufficiently
high probability to be the NN of q at one time (at the entire set of
times) in T ; a probabilistic continuous NN (PCNNQ) query finds
for each object o ∈ D the time subsets Ti of T , wherein o has high
enough probability to be the NN of q at the entire set of times in
Ti. Note that to the best of our knowledge this is the first approach
that tackles the PNN query problem correctly in consideration of
possible worlds semantics.

PNN queries find several applications in analyzing historical tra-
jectory data. For example, consider a geo-social network where
users can publish their current spatial position at any time by so-
called check-ins. For a historical event, users might want to find

1http://www.bikely.com/
2http://www.everytrail.com/
3http://www.gpsxchange.com, http://www.gpsshare.com/
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their nearest friends during this event, e.g. to share pictures and ex-
periences. As another application example, consider GPS-tracked
taxi cars as given in the T-Drive dataset [3] where PNN queries can
be used for analysis tasks like the assessment of taxi-client assign-
ment procedures or for search tasks like searching for taxi drivers
that might have observed a certain event like a car accident or a
criminal activity such as a bank robbery. The taxi drivers that have
been closest to the certain event location during the time the event
might happened are potential witnesses. Note that this example ap-
plication is used as our running application throughout this paper.

The main contributions of our work are as follows:
• A thorough theoretical complexity analysis for variants of

probabilistic NN query problems.
• A sampling-based approximate solution for all PNN prob-

lems which is based on Bayesian inference.
• Thorough experimental evaluation of the proposed concepts

on real and synthetic data.
The rest of the paper is structured as follows. Section 2 reviews

related work. Section 3 provides a formal problem definiton. A
complexity analysis, approximate solutions and pruning techniques
of the proposed query semantics are provided in Sections 4-6. An
extensive experimental evaluation of the proposed techniques is
presented in Section 7. Section 8 briefly discusses general kNN
queries. Section 9 concludes this work.

2. RELATED WORK
Within the last decade, a considerable amount of research effort

has been put into query processing in trajectory databases (e.g. [8,
9, 10, 11, 6]). In these works, the trajectories have been assumed
to be certain, by employing linear [8] or more complex [9] types
of interpolation to supplement sparse observational data. How-
ever, employing linear interpolation between consecutive observa-
tions might create impossible patterns of movement, such as cars
travelling through lakes or similar impossible-to-cross terrain. Fur-
thermore, treating the data as uncertain and answering probabilistic
queries over them offers better insights4.

Uncertain Trajectory Modeling. Several models of uncertainty
paired with appropriate query evaluation techniques have been pro-
posed for moving object trajectories (e.g. [12, 13, 14, 15]). Many
of these techniques aim at providing conservative bounds for the
positions of uncertain objects. This can be achieved by employ-
ing geometric objects such as cylinders [13, 14] or beads [16] as
trajectory approximations. While such approaches allow to answer
queries such as “is it possible for object o to intersect a query win-
dow q”, they are not able to assign probabilities to these events
conforming to possible worlds semantics.

Other approaches use independent probability density functions
(pdf) at each point of time to model the uncertain positions of an
object [17, 14, 12]. However, as shown in [15], this may produce
wrong results (not in accordance with possible world semantics)
for queries referring to a time interval because they ignore the tem-
poral dependence between consecutive object positions in time. To
capture such dependencies, recent approaches model the uncertain
movement of objects based on stochastic processes. In particular,
in [18, 15, 1, 19], trajectories are modeled based on Markov chains.
This approach permits correct consideration of possible world se-
mantics in the trajectory domain.

Nearest Neighbor Queries in Trajectory Databases. In the
context of certain trajectory databases there is not a common def-
inition of nearest neighbor queries, but rather a set of different in-
terpretations. In [5], given a query trajectory (or spatial point) q
4http://infoblog.stanford.edu/2008/07/why-uncertainty-in-data-is-
great-posted.html

and a time interval T , a NN query returns either the trajectory from
the database which is closest to q during T or for each t ∈ T the
trajectory which is closest to q. The latter problem has also been
addressed in [6]. Similarly, in [20], all trajectories which are near-
est neighbors to q for at least one point of time t are computed.

Other approaches consider continuous nearest neighbor (CNN)
semantics, definition of this query varies between publications [7,
21, 8]. CNN have also been addressed for objects with uncertain
velocity and direction in [22]; the solutions proposed only find pos-
sible results, but not result probabilities. Solutions for road network
data were also proposed for the case where the velocities of objects
are unknown [23]. Furthermore, [14, 24] extended the problem of
continuous kNN queries (on historical search) to an uncertain set-
ting, serving as important preliminary work, however, based on a
model which is not capable to return answers according to possible
world semantics.

3. PROBLEM DEFINITION
A spatio-temporal database D stores triples (oi, time, location),

where oi is a unique object identifier, time ∈ T is a point in time
and location ∈ S is a position in space. Semantically, each such
triple corresponds to an observation that object oi has been seen at
some location at some time. In D, an object oi can be described by
a function oi(t) : T → S that maps each point in time to a location
in space; this function is called trajectory.

In this work, we assume a discrete time domain T = {0, . . . , n}.
Thus, a trajectory becomes a sequence, i.e., a function on a discrete
and ordinal scaled domain. Furthermore, we assume a discrete state
space of possible locations (states): S = {s1, ..., s|S|} ⊂ Rd, i.e.,
we use a finite alphabet of possible locations in a d-dimensional
space. The way of discretizing space is application-dependent: for
example, in traffic applications we may use road crossings, in in-
door tracking applications we may use the positions of RFID track-
ers and rooms, and for free-space movement we may use a simple
grid for discretization.

3.1 Uncertain Trajectory Model
Let D be a database containing the trajectories of |D| uncertain

moving objects {o1, ..., o|D|}. For each object o in D we store
a set of observations Θo = {〈to1, θo1〉, 〈to2, θo2〉, . . . , 〈to|Θo|, θ

o
|Θo|〉}

where toi ∈ T denotes the time and θoi ∈ S the location of observa-
tion Θo

i . W.l.o.g. let to1 < to2 < . . . < to|Θo|. Note that the location
of an observation is assumed to be certain, while the location of an
object between two observations is uncertain.

According to [15], we can interpret the location of an uncertain
moving object o at time t as a realization of a random variable
o(t). Given a time interval [ts, te], the sequence of uncertain loca-
tions of an object is a family of correlated random variables, i.e., a
stochastic process. This definition allows us to assess the probabil-
ity of a possible trajectory, i.e., the realization of the corresponding
stochastic process. In this work we follow the approaches from [15,
25, 19] and employ the first-order Markov chain model as a spe-
cific instance of a stochastic process. The state space of the model
is the spatial domain S. State transitions are defined over the time
domain T . In addition, the Markov chain model is based on the
assumption that the position o(t + 1) of an uncertain object o at
time t+ 1 only depends on the position o(t) of o at time t. Clearly,
this assumption is overly restrictive, as for example vehicles on a
road network will never follow a first-order Markov chain. Such
vehicles generally follow a best path (e.g. the shortest path or the
path having the most beautiful landscape, etc.). Nevertheless, such
a simplified model can, as we will see in our experimental evalua-
tion, accurately model the set of possible trajectories that a vehicle
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may have taken between two discrete observations. Theoretically,
this high accuracy can be explained by combining both observation
information and the Markov model into a new model.

The probability Mo
ij(t) := P (o(t + 1) = sj |o(t) = si) is

the transition probability of a given object o from state si to state
sj at a given time t. Transition probabilities are stored in a ma-
trix Mo(t), called transition matrix of object o at time t. In gen-
eral, every object o might have a different transition matrix, and
the transition matrix of an object might vary over time. Further, let
~so(t) = (s1, . . . , s|S|)

T be the distribution vector of a given single
object o at time t, where ~soi (t) = P (o(t) = si), i.e. each element
of the vector describes o’s probability of visiting the state si at time
t. Without any further knowledge (from observations) the distribu-
tion vector ~so(t + 1) can be inferred from ~so(t) by applying the
following formula: ~so(t+ 1) = Mo(t)T · ~so(t).

The traditional Markov model [15] uses forward probabilities
only. In Section 5, we propose a Bayesian inference approach,
to condition this a-priori Markov chain to an adapted a-posteriori
Markov chain which also considers all observations of an object.

3.2 Nearest Neighbor Queries
In this work we consider three types of time-parameterized NN

queries that take as input a certain reference state or trajectory q and
a set of timesteps T . Note that q can be both a state or a trajectory,
since a query state is simply a trivial query trajectory.

DEFINITION 1 (P∃NN QUERY). A probabil. ∃ nearest neigh-
bor query retrieves all objects o ∈ D which have a sufficiently high
probability to be the nearest neighbor of q for at least one point of
time t ∈ T , formally:

P∃NNQ(q,D, T, τ) = {o ∈ D : P∃NN(o, q,D, T ) ≥ τ}
where P∃NN(o, q,D, T ) =

P (∃t ∈ T : ∀o′ ∈ D \ o : d(q(t), o(t)) ≤ d(q(t), o′(t)))

and d(x, y) is a distance function defined on spatial points, typi-
cally the Euclidean distance.

This definition is a extension of the spatio-temporal query pro-
posed in [5] to the case of uncertainty. In the running taxi-tracking
application mentioned in the introduction, the parameter T may
correspond to the duration of a bank robbery, and q may corre-
spond to the (constant) location of the bank, or the observed tra-
jectory of the vehicle of the escaping robbers. In this application,
a P∃NNQ(q,D, T, τ) query returns all taxis having a probability
of at least τ of having been the closest cab at any time during the
robbery, and thus, of possibly having observed something relevant.

In addition, we consider NN queries with the ∀ quantifier, which
have also been proposed in [5] for crisp trajectory data.

DEFINITION 2 (P∀NN QUERY). A probabil. ∀ nearest neigh-
bor query retrieves all objects o ∈ D which have a sufficiently high
probability (P∀NN ) to be the nearest neighbor of q for the entire
set of timestamps T , formally:

P∀NNQ(q,D, T, τ) = {o ∈ D : P∀NN(o, q,D, T ) ≥ τ}
where P∀NN(o, q,D, T ) =

P (∀t ∈ T : ∀o′ ∈ D \ o : d(q(t), o(t)) ≤ d(q(t), o′(t)))

In the running taxi-tracking application P∀NNQ(q,D, T, τ) re-
turns all taxis having a probability of at least τ of having been the
closest cab during the whole robbery, and thus, of possibly having
observed the whole crime scene. The main difference between Def-
inition 1 and Definition 2 is that a P∃NNQ(q,D, T, τ) requires

s) bj t t j t P(t )

s

s3

s4

di
st
(q
) object trajectory P(tr)

o1 tr1,1 = s2, s1, s1 0.5

o1 tr1 2 = s2 s3 s1 0.25

q

s1

s2
o1 tr1,2  s2, s3, s1 0.25

o1 tr1,3 = s2, s3, s3 0.25

o2 tr2,1 = s3, s2, s2 0.5
q

t1 2 3

o2 tr2,2 = s3, s4, s4 0.5

Figure 1: Example uncertain trajectories

a candidate object to be the nearest-neighbor of q for at least one
point of time in T to qualify as a result, whileP∀NNQ(o, q,D, T )
requires a candidate object to remain the nearest-neighbor for the
whole duration of T . In addition to these semantics for probabilistic
nearest neighbor queries we now introduce a continuous query type
which intuitively extends the spatio-temporal continuous nearest-
neighbor query [21, 8] to apply on uncertain trajectories.

DEFINITION 3 (PCNN QUERY). A probabilistic continuous
nearest neighbor query retrieves all objects o ∈ D together with
the set of timesets {Ti} where in each Ti the object has a suffi-
ciently high probability to be always the nearest neighbor of q(t),
formally:

PCNNQ(q,D, T, τ) =

{(o, Ti) : o ∈ D, Ti ⊆ T, P∀NN(o, q,D, Ti) ≥ τ}.

Analogously to the CNN query definition [21, 8], in order to re-
duce redundant answers it makes sense to redefine the PCNN Query
where we focus on results that maximize |Ti|, formally:

PCNNQ(q,D, T, τ) =

{(o, Ti) : o ∈ D,Ti ⊆ T, P∀NN(o, q,D, Ti) ≥ τ
∧ ∀Tj ⊃ Ti : P∀NN(o, q,D, Tj) < τ}.

Note that according to this definition result sets Ti ⊆ T do not
have to be connected. In the taxi-tracking application, a PCNNQ
allows to find the set of time intervals in T where a taxi has a suf-
ficiently high probability of being a witness. Such results allow
to find groups of taxi drivers having a high probability of hav-
ing witnessed the same part of the crime scene, in order to syn-
chronize the evidence of multiple witnesses. To summarize, we
have defined three nearest-neighbor semantics for uncertain spatio-
temporal data. All these semantics are inspired by corresponding
nearest-neighbor semantics on certain trajectories, as defined in [5,
21, 8].

EXAMPLE 1. To illustrate the three query types, consider the
scenario shown in Figure 1 consisting of a query trajectory and two
uncertain database objects D = {o1, o2} in a discretized space
and time domain. For simplicity, whenever an object has two al-
ternatives for choosing a possible state transition, each transition
is assumed to have a probability of 0.5. These probabilities de-
fine the Markov chains of o1 and o2. Thus o1 has three possible
trajectories and o2 has two possible trajectories, the probabili-
ties of which are also shown in Figure 1. Using possible worlds
semantics, any PNN query can naively be computed by consid-
ering all six possible combinations (tr1,i, tr2,j), i ∈ {1, 2, 3},
j ∈ {1, 2}, called possible worlds, of possible trajectories of ob-
jects o1 and o2. The total probability of all possible worlds where
o2 is closer to q than o1 at any time, by definition, equals the prob-
ability P∃NN(o2, q,D, {1, 2, 3}). For this example these possi-
ble worlds are (tr1,2, tr2,1) and (tr1,3, tr2,1). Assuming object
independence, P (tr1,i, tr2,j) of a possible world is given by the
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product P (tr1,i) ·P (tr2,j) yielding P∃NN(o2, q,D, {1, 2, 3}) =
P (tr1,2) ·P (tr2,1)+ P (tr1,3) ·P (tr2,1) = 0.25 ·0.5+0.25 ·0.5 =
0.25. Accordingly the probability P∀NN(o1, q,D, {1, 2, 3}) =
0.75 can be computed by the sum of the probabilitiesP (tr1,1, tr2,1),
P (tr1,1, tr2,2), P (tr1,2, tr2,2) andP (tr1,3, tr2,2) of worlds where
o1 is always closer to q than o2. A PCNNQ(q,D, {1, 2, 3}, 0.1)
will return the object o1 together with the interval {1,2,3} and o2

together with the interval {2,3}, as in these intervals, the respective
objects have a probability of at least 0.1 to be closest to q.

In this example, exact probabilities are computed by explicit con-
sideration of all possible worlds. However, since the number of
possible trajectories grows exponentially large in the number of
time transitions, and the total number of possible worlds is fur-
thermore exponential in the number of objects, the challenge of
this work is to find a more efficient approach to compute the same
nearest-neighbor probabilities without enumeration of all possible
worlds.

3.3 Query Evaluation Framework, Roadmap
An intuitive way to evaluate a PNN query is to compute for every

o ∈ D the probability P∃NN or P∀NN. However, to speed up query
evaluation, in Section 6, we show that it is possible to prune some
objects from consideration using an index over D. Then, for each
remaining object o, we have to compute a probability (i.e., P∃NN
or P∀NN) and compare it to the threshold τ . In Section 4, we show
that computing the P∃NN query and P∀NN query is prohibitively
expensive. To solve this problem, in Section 5, we present a general
sampling-based approximate but efficient solution to solve all types
of PNN queries. As discussed in this section, P∃NN and P∀NN can
be approximated by Monte-Carlo simulation: for each object o′ ∈
D a trajectory is generated which conforms to both the Markov
chain modelMo′ and the observations Θo′ and all these trajectories
are used to model a possible world. By performing the NN query
in all these possible worlds and averaging the results, we are able
to derive an approximate result probability.

4. THEORETICAL ANALYSIS
This section theoretically studies the runtime complexity of the

P∃NNQ, P∀NNQ and PCNNQ queries.

4.1 The P∃NN Query
In a P∃NNQ query, for any candidate object o ∈ D, Definition 1

requires the probability P∃NN(o, q,D, T ). However, the follow-
ing lemma shows that this probability is hard to compute.

LEMMA 1. The computation ofP∃NN(o, q,D, T ) is NP-hard.

PROOF. P∃NN(o, q,D, T ) is equal to 1− P (¬∃t ∈ T,∀o′ ∈
D\o : d(q(t), o(t)) ≤ d(q(t), o′(t))). We will show that deciding
if there exists a possible world for which the expression:

¬∃t ∈ T,∀o′ ∈ D \ o : d(q(t), o(t)) ≤ d(q(t), o′(t)) (1)

is satisfied is an NP-hard problem. (Note that this is a much easier
problem than computing the actual probability.) Specifically, we
will reduce the well-known NP-hard k-SAT problem to the prob-
lem of deciding on the existence of a possible world for which Ex-
pression 1 holds.

For this purpose, we provide a mapping to convert a boolean
formula in conjunctive normal form to a Markov chain modeling
the decision problem of Expression 1 in polynomial time. Thus,
if the decision problem could be computed in PTIME, then k-SAT
could also be solved in PTIME, which would only be possible if

P=NP. A k-SAT expressionE is based on a set of boolean variables
X = {x1, x2, . . . , xn}. The literal li of a variable xi is either xi
or ¬xi and a clause c =

∨
xi∈C

li is a disjunction of literals where

C ⊆ X and |C| < k. ThenE is defined as a conjunction of clauses:
E = c1 ∧ c2 ∧ . . . ∧ cm.

For our mapping, we will consider a simplified version of the
P∃NN problem, specifically (1) q is a certain point, (2) o is a certain
point and (3) the state space S of possible locations only includes
4 states. As illustrated in Figure 2, compared to o, states s1 and s2

are closer to q and states s3 and s4 are further from q.5 Therefore,
if an uncertain object is at states s1 or s2 then o is not the NN of q.

In our mapping, each variable xi ∈ X is equivalent to one un-
certain object o′i ∈ D \ o. Furthermore each disjunctive clause cj
is interpreted as an event happening at time t = j, i.e., the event c1
happens at time t = 1, c2 happens at time t = 2 etc. Each clause
cj can be seen as a disjunctive event that at least one object o′i at
time t = j is closer to q than o (in this case, cj is true). Therefore,
the conjunction of all these events, i.e. expression E =

∧
1≤j≤m

cj ,

becomes true if the set of variables is chosen in a way that at each
point in time, compared to o, at least one object is closer to q; this
directly represents Expression 1. However, in k-SAT, not every
variable xi (corresponding to o′i) is contained in each term cj which
does not correspond to our setting, since an uncertain object has to
be somewhere at each point in time. To solve this problem, we ex-
tend each clause cj , such that each variable xi is contained in cj ,
without varying the semantics of cj . Let us assume that xi is not
contained in cj . Then c′j = cj ∨ false = cj ∨ (xi ∧ ¬xi). This
means that we can assume that object o′i is definitely not closer to
q than o at time t.

Let lji be the literal of variable xi in clause cj . Based on the
above discussion, we are able to construct for each object o′i two
possible trajectories (worlds). The first one, based on the assump-
tion that xi is true, transitions between states s2 (if lji = true) and
s4 (if lji = false). The second one, based on the assumption that
xi is set to false, transitions between states s1 (if lji = true) and
s3 (if lji = false). Since these two trajectories can never be in the
same state it is straightforward to construct a time-inhomogeneous
Markov chain Mo(t) for each object o′i and each timestamp j.

After the Markov chains for each uncertain object o′i in D have
been determined, we would just have to traverse them and compute
the probability P∃NN(o, q,D, T ). If this probability is< 1, there
would exist a solution to the corresponding k-SAT formula. How-
ever it is not possible to achieve this efficiently in the general case
as long as P 6= NP . Therefore computing P∃NN in subexpo-
nential time is impossible.

Example: Consider a set of boolean variablesX = {x1, . . . , x4}
and the following formula:

E = (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2)

Therefore, we have

c1 = (¬x1∨x2∨x3), c2 = (x2∨¬x3∨x4) and c3 = (x1∨¬x2)

By employing the mapping discussed above, we get the four in-
homogeneous Markov chains illustrated in Figure 2. For instance,
under the condition that x1 is set to true, the value of the literal
¬x1 is false at t = 1 (in clause c1) such that o′1 starts in the state
s4. On the other hand, if x1 is set to false, then o′1 starts in the
state s1.

5The states of o and q are omitted for the sake of simplicity.
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s2

q

t1 2 3
x3 x4

Figure 2: An example instance of our mapping of the 3-SAT
problem to a set of Markov chains.

In the second clause c2, since x1 6∈ C2, the position of o′1 must
not affect the result. Therefore, for both cases x1 = false and
x1 = true, o′1 must be behind o. In the last clause c3, if x1 = true
the object moves to state s2. On the other hand, if x1 = false, the
object moves to state s3.

4.2 The P∀NN Query
Theoretically showing the complexity of the P∀NNQ is more dif-

ficult than the analysis of the P∃NN query; the actual complexity
of this type remains unknown. In the following we provide insights
why P∀NN probabilities can not be computed efficiently. Let o ≺Tq
oa denote the random predicate that is true iff object o is closer to
q than object oa ∈ D during the query time T = [tstart, tend],
i.e. ∀t ∈ T : d(o(t), q(t)) ≤ d(oa(t), q(t)). If o ≺Tq oa holds,
we say that o dominates oa with respect to q during T . If the pa-
rameters q and T are clear from the context, we simply say that o
dominates oa. Again we start our analysis by considering the sin-
gle object probability P∀NN(o, q, {oa}, T ). This probability can
be computed correctly and efficiently.

LEMMA 2. The probability P (o ≺Tq oa) that o dominates oa
can be computed in PTIME.

PROOF. We here provide just a basic proof sketch. In a nutshell,
the idea of this proof is to treat objects o and oa as a single joint
random variable having the joint transition matrix J(t) defined on
the state space S × S. Starting at t = tstart, time transitions of
J(t) are performed iteratively. In each iteration, any entry of J(t)
corresponding to a possible world where o does not dominate oa
are set to zero. At time tend, the total probability of remaining
worlds in J(tend) equals the probability that o dominates oa over
the whole duration of T .

Since this probability can be computed efficiently, we now ad-
dress how to compute P∀NN(o, q,D, T ) for a whole database ef-
ficiently, given that we can adapt the model of o to the domination
relation o ≺Tq oa.

LEMMA 3. Given that a model (Mpost.
i,j (t)) = P (o(t + 1) =

si|o(t) = sj , o ≺Tq oa) can be computed in PTIME, the probability
P∀NN(o, q,D, T ) can be computed in PTIME.

PROOF. Again, a formal proof of this theorem can be found in
the extended version of this paper [26]. Here we will provide the
main idea of the proof. By definition of predicate (o ≺Tq oa), we
can rewrite the probability that o is the nearest neighbor of q during
T as the following conjunctive formula: P∀NN(o, q,D, T ) =

P (∀oa ∈ D : o ≺Tq oa) = P (
∧
oa∈D

o ≺Tq oa). (2)

Clearly, Equation 2 follows from the fact that o is the NN of q if
and only if o is closer to q than all other objects in D during time
T . Using the chain rule of probability, which iteratively uses the
rule P (A∧B) = P (A) ·P (B|A) for conditional probabilities, we
obtain

P (
∧
oa∈D

o ≺Tq oa) =
∏

1≤a≤D

P (o ≺Tq oa|
∧
j<a

o ≺Tq oj). (3)

The first factor P (o ≺Tq o1) is given by Lemma 2. Now, by
employing the precondition of Lemma 3, we obtain an adapted
model of o given o ≺Tq o1. These two steps start the induc-
tion. Now, given an adapted model of o given o ≺Tq o1, ..., o ≺Tq
ok, we can reapply Lemma 2 to compute P (o ≺Tq ok+1|o ≺Tq
o1, ..., o ≺Tq ok) that the model of o, which has been adapted to
dominate o1, ..., ok, dominates ok+1. Next, we apply the precon-
dition of Lemma 3 to take the current model of o, which has al-
ready been adapted to o ≺Tq o1, ..., o ≺Tq ok, and further adapt
this model to o ≺Tq ok+1. Since both Lemma 2 and the precondi-
tion of Lemma 3 can be computed in PTIME, P (

∧
oa∈D o ≺

T
q oi),

which requires to apply Lemma 2 and the precondition of Lemma 3
exactly |D| times, Lemma 3 can be computed in PTIME.

We still have to condition the a-priori model Mprior
k,i (t − 1) =

P (o(t) = si|o(t − 1) = sk) of an object o to the event that o
dominates another object oa ∈ D, yielding modelMpost.

k,i (t−1) =

P (o(t) = si|o(t− 1) = sk, o ≺Tq oa). The problem here is, as we
will see, that the adapted model does not fulfil the Markov property,
resulting in either exponential runtime or incorrect solutions.

To compute P (o(t) = si|o(t − 1) = sk, o ≺Tq oa), si, sk ∈
S, the idea is to treat the positions of o and oa as a single joint
stochastic process, having possible alternatives in S2. Then, the
joint a-priori transition matrixMo×oa(t) is conditioned to the event
o ≺Tq oa following the forward-backward paradigm similar to the
forward-backward approach used for sampling in Section 5. As a
result, we get a joint probability matrix Mo×oa(t− 1) =

P (o(t) = si, oa(t) = sj |o(t−1) = sk, oa(t−1) = sl, o ≺Tq oa)

Finally, in order to keep the complexity of this algorithm sub-
exponential, we have to reduce this joint transition matrix to an
adapted transition matrix Mpost.

k,i (t − 1) = P (o(t) = si|o(t −
1) = sk, o ≺Tq oa) of object o. By applying the law of conditional
probability, it can be shown that:

Mpost.
k,i (t−1) =

∑
sj

∑
sl

P (oa(t−1) = sl|o(t−1) = sk, o ≺Tq oa)∗

P (o(t) = si, oa(t) = sj |o(t−1) = sk, oa(t−1) = sl, o ≺Tq oa)

Assuming that the Markov property still holds, we should get the
same results for

P (o(t) = si|o(t− 1) = sk, . . ., o(t− n) = st−n, o ≺Tq oa) =∑
sj

∑
sl

P (oa(t−1) = sl|o(t−1) = sk, . . ., o(t−n) = st−n, o ≺Tq oa)∗

P (o(t) = si, oa(t) = sj |o(t−1) = sk, oa(t−1) = sl, o ≺Tq oa)

which is clearly not equivalent, i.e. the Markov property does not
hold on the reduced transition matrices and hence the algorithm
has exponential complexity. Therefore, in Section 5, we will pro-
pose to use sampling to compute P∀NN(o, q,D, T ) probabilities
efficiently.
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4.3 The PCNN Query
The traditional CNN query [21, 8], retrieves the nearest neigh-

bor of every point on a given query trajectory in a time interval
T . This basic definition usually returns m << |T | time intervals
together having the same nearest neighbor. The main issue when
considering uncertain trajectories and extending the query defini-
tion is the possibly large number of results due to highly over-
lapping and alternating result intervals. In particular, considering
Definition 3, a PCNN result may have an exponential number of
elements when τ becomes small. This is because in the worst case
each Ti ⊆ T can be associated with an object o for which the prob-
ability P∀NN(o, q,D, Ti) ≥ τ , i.e., 2T different Ti’s occur in the
result set.

To alleviate (but not solve) this issue, in the following we pro-
pose a technique based on Apriori pattern mining to return the sub-
sets of T that have a probability greater than τ . This algorithm
requires to compute a P∀NN probability in each validation step;
we assume that this is achieved by employing the sampling ap-
proach proposed in Section 5. Since each subset of T may have a
probability greater than τ (especially when τ is chosen too small),
a worst-case of O(2n) validations may have to be performed.

Algorithm. Algorithm 1 shows how to compute, for a query
trajectory q, a time interval T , a probability threshold τ , and an
uncertain trajectory o ∈ D all Ti ⊆ T for which o is the nearest
neighbor to q at all timestamps in Ti with probability of at least τ ,
and the corresponding probabilities.

Algorithm 1 PCτNN (q, o, D, T, τ )
1: L1 = {({t}, P )|t ∈ T ∧ P = P∀NN(o, q,D \ {o}, {t}) ≥ τ}
2: for k = 2;Lk−1 6= ∅; k + + do
3: Xk = {Tk ⊆ T ||Tk| = k∧∀T ′k−1 ⊂ Tk∃(T

′
k−1, P ) ∈ Lk−1}

4: Lk = {(Tk, P )|Tk ∈ Xk∧P = P∀NN(o, q,D\{o}, Tk) ≥ τ}
5: end for
6: return

⋃
k Lk

We take advantage of the anti-monotonicity property that for a
Ti to qualify as a result of the PCNNQ query, all proper subsets of
Ti must also satisfy this query. In other words if o is the P∀NN of q
in Ti with probability at least τ , then for all Tj ⊂ Ti o must be the
P∀NN of q in Tj with probability at least τ . Exploiting this prop-
erty, we adapt the Apriori pattern-mining approach from [27] to
solve the problem as follows. We start by computing the probabili-
ties of all single points of time to be query results (line 1). Then, we
iteratively consider the set Xk of all timestamp sets with k points
of time by extending timestamp sets Tk−1 with an additional point
of time t ∈ T \Tk−1, such that all T ′k−1 ⊂ Tk have qualified at the
previous iteration, i.e., we have P∀NN(o, q,D\{o}, T ′k−1)) ≥ τ
(line 3).

The P∀NN probability is monotonically decreasing with the num-
ber of points in time considered, i.e., P∀NN(o, q,D \ {o}, Tk) ≥
P∀NN(q,D, Tk+1) where Tk ⊂ Tk+1. Therefore we do not have
to further consider the set of points of time Tk that do not qualify
for the next iterations during the iterative construction of sets of
time points. Based on the sets of timesteps Tk constructed in each
iteration we compute P∀NN(o, q,D \ {o}, Tk) to build the set of
results of length k (line 4) that are finally collected and reported as
result in line 6. The basic algorithm can be sped up by employing
the property that given P∀NN(o, q,D\{o}, T1) = 1 the probability
of P∀NN(o, q,D \ {o}, T1 ∪ T2) = P∀NN(o, q,D \ {o}, T2).

Based on Algorithm 1 it is possible to define a straightforward
algorithm for processing PCNNQ queries (by considering each ob-
ject o′ from the database). Again this approach can be improved by
the use of an appropriate index-structure (cf. Section 6).

Figure 3: Traditional MC-Sampling.

Figure 4: An overview over our forward-backward-algorithm.

5. SAMPLING POSSIBLE TRAJECTORIES
Based on the discussion in the previous sections, it is clear that

answering probabilistic queries over uncertain trajectory databases
has high run-time cost. Therefore, like previous work [28], we
now study sampling-based approximate solutions to improve query
efficiency.

5.1 Traditional Sampling
To sample possible trajectories of an object, a traditional Monte-

Carlo approach would start by taking the first observation of the
object, and then perform forward transitions using the a-priori tran-
sition matrix. This approach however, cannot directly account for
additional observations for latter timestamps. Figure 3 illustrates a
total of 1000 samples drawn in a one-dimensional space. Starting
at the first observation time t = 0, transitions are performed us-
ing the a-priori Markov chain. At the second observation at time
t = 20, the great majority of trajectories becomes inconsistent.
Such impossible trajectories have to be dropped. At time t = 40,
even more trajectories become invalid; After this observation, only
one out of a thousand samples remains possible and useful.

Clearly, the number of trajectory generations required to obtain
a single valid trajectory sample increases exponentially in the num-
ber of observations of an object, making this traditional Monte-
Carlo approach inappropriate in obtaining a sufficient number of
valid samples within acceptable time.

5.2 Efficient and Appropriate Sampling
To tackle the disadvantages of traditional sampling, we now in-

troduce an optimized approach af drawing samples. On these sam-
ples, traditional NN algorithms for (certain) trajectories ([5, 6, 20,
7, 21, 8]) can be used to estimate NN probabilities.

In a nutshell, our approach starts with the initial observation θo1
at time to1, and performs transitions for object o using the a-priori
Markov chain of o until the final observation θo|Θo| at time t|Θo|
is reached. During this Forward-run phase, Bayesian inference is
used to construct a time-reversed Markov model Ro(t) of o at time
t given observations in the past, i.e., a model that describes the
probability

Roij(t) := P (o(t− 1) = sj |o(t) = si, {θoi |toi < t})

of coming from a state sj at time t−1, given being at state si at time
t and the observations in the past. Then, in a second Backward-
run phase, our approach traverses time backwards, from time t|Θo|
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to t1, by employing the time-reversed Markov model Ro(t) con-
structed in the forward phase. Again, Bayesian inference is used to
construct a new Markov model F o(t− 1) that is further adapted to
incorporate knowledge about observations in the future. This new
Markov model contains the transition probabilities

F oij(t− 1) := P (o(t) = sj |o(t− 1) = si,Θ
o). (4)

for each point of time t, given all observations, i.e., in the past, the
present and the future.

As an illustration, Figure 4(left) shows the initial model given
by the a-priori Markov chain, using the first observation only. In
this case, a large set of (time, location) pairs can be reached with a
probability greater than zero. The adapted model after the forward
phase (given by the a-priori Markov chain and all observations), de-
picted in Figure 4(center), significantly reduces the space of reach-
able (time, location) pairs and adapts respective probabilities. The
main goal of the forward-phase is to construct the necessary data
structures for efficient implementation of the backward-phase, i.e.,
Ro(t). This task is not trivial, since the Markov property does not
hold for the future, i.e., the past is not conditionally independent
of the future given the present. Figure 4(right) shows the result-
ing model after the backward phase. In the following section, both
phases are elaborated in detail.

Note that the Baum-Welch algorithm for hidden Markov mod-
els (HMMs) is similar to the proposed algorithm. This algorithm
aims at estimating time-invariant transition matrices and emission
probabilities of a hidden Markov model. In contrast, we assume
this underlying model to be given, however we aim at adapting it
by computing time-variant transition matrices. Despite these dif-
ferences, the above algorithm could also be proven by showing that
our model is a special case of a HMM and deducting the algorithm
from the Baum-Welch algorithm [30]. Related to our algorithm
is also the Forward-Backward-Algorithm for HMMs that aims at
computing the state distribution of an HMM for each point in time.
In contrast, we aim at computing transition matrices for each point
in time, given a set of observations.

5.2.1 Forward-Phase
First note that, for the algorithm to work, it is necessary that ob-

servations are non-contradicting. To obtain the backward transition
matrix Ro(t), we can apply the theorem of Bayes as follows:

Ro(t)ij := P (o(t− 1) = sj |o(t) = si) = (5)

P (o(t) = si|o(t− 1) = sj) · P (o(t− 1) = sj)

P (o(t) = si)

Computing Ro(t)ij is based on the a-priori Markov chain only,
and does not consider any information provided by observations.
To incorporate knowledge about past observations into Ro(t)ij , let
pasto(t) := {θoi |toi < t} denote the set of observations temporally
preceding t. Also, let prevo(t) := argmaxΘo

i∈past
o(t)t

o
i denote

the most recent observation of o at time t. Given all past observa-
tions, Equation 5 becomes conditioned as follows:

LEMMA 4.

Ro(t)ij := P (o(t− 1) = sj |o(t) = si, past
o(t)) = (6)

P (o(t) = si|o(t− 1) = sj , past
o(t)) · P (o(t− 1) = sj |pasto(t))

P (o(t) = si|pasto(t))
PROOF. Equation 6 uses the conditional theorem of Bayes

P (A|B,C) = P (B|A,C)·P (A|C)
P (B|C)

, the correctness of which is shown
in the extended version of this paper ([26]).

The conditional probability P (o(t) = si|o(t− 1) = sj , past
o(t))

can be rewritten as P (o(t) = si|o(t − 1) = sj), exploiting the
Markov property and the assumption of non-contradiction between
model and observation.

By exploiting the Markov property, the priors P (o(t − 1) =
sj |pasto(t)) and P (o(t) = si|pasto(t)) can both be rewritten as
P (o(t − 1) = sj |prevo(t)) and P (o(t) = si|prevo(t)) respec-
tively as long as o was not observed at time t; i.e., given the posi-
tion at some time t, the position at a time t+ > t is conditionally
independent of the position at any time t− < t. If o was observed
at time t, this probabilty is trivially given by the observation. Thus,
Equation 6 can be rewritten as Ro(t)ij =

P (o(t) = si|o(t− 1) = sj) · P (o(t− 1) = sj |prevo(t))
P (o(t) = si|prevo(t))

(7)

The probability P (o(t) = si|o(t − 1) = sj) is given directly
by the definition of the a-priori Markov chain Mo(t) of o. Both
priors P (o(t − 1) = sj |prevo(t)) and P (o(t) = si|prevo(t))
can be computed by performing time transitions from observation
prevo(t), also using the a-priori Markov chain Mo(t). For each
element rij ∈ Roij(t), and each point of time t ∈ [t1, t|Θo|], these
priors can be computed in a single run, iteratively performing tran-
sitions from t1 to t|Θo|. During this run, all backward probabilities
P (o(t − 1) = sj |o(t) = si, past

o(t)) are computed using Equa-
tion 7 and memorized in the inhomogeneous matrix Ro(t). During
any iteration of the forward algorithm, where a new observation
presento(t) := Θo

t ∈ Θo is reached, the information of this ob-
servation has to be incorporated into the model. This is done triv-
ially, by setting P (o(t) = si|pasto(t), presento(t)) to one if si is
the state θ observed by presento(t) and to zero otherwise.

5.2.2 Backward Phase
During the backward phase, we traverse time backwards using

the reverse transition matrix Ro(t), to propagate information about
future observations back to past points of time, as depicted in Fig-
ure 4(c). During this traversal, we again obtain a time reversed
matrix F o(t), describing state transitions between adjacent points
of time, given observations in the future. Due to this second rever-
sal of time, matrix F o(t) also contains adapted transition proba-
bilities in the forward direction of time. Thus, matrix F o(t) repre-
sents a Markov model which corresponds to the desired a-posteriori
model: It contains the probabilities of performing a state transition
between state si and sj at time t to time t+1, incorporating knowl-
edge of observations in both the past and the future. In contrast,
the a-priori Markov modelMo(t) only considers past observations.
We now discuss the details of this phase.

LEMMA 5. The following reverse Markov property holds for
each element Roij of Ro:

P (o(t) = sj |o(t+1) = si, o(t+2) = st+2, ..., o(t+k) = st+k) =

P (o(t) = sj |o(t+ 1) = si) (8)

This reverse markov property allows us to traverse the time domain
backward equivalent to a forward traversal. As an initial state for
the backward phase, we use the state vector corresponding to the fi-
nal observation Θo

|Θo| at time to|Θo| at state θo|Θo|. This way, we take
the final observation as given, making any further probabilities that
are being computed conditioned to this observation. At each point
of time t ∈ [t|Θo|, t1] and each state si ∈ S, we compute the prob-
ability that o is located at state si at time t given (conditioned to the
event) that the observations futureo(t) := {θoi |toi > t)} at times
later than t are made. Let nexto(t) = argminΘo

i∈future
o(t)(t

o
i )
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denote the soonest observation of o after time t. To obtain F o(t),
we once again exploit the theorem of Bayes:

F oij(t) := P (o(t+ 1) = sj |o(t) = si,Θ
o) =

P (o(t) = si|o(t+ 1) = sj ,Θ
o) · P (o(t+ 1) = sj |Θo)

P (o(t) = si|Θo)
(9)

By exploiting the reverse Markov property (c.f. Equation 8), we
can rewrite P (o(t) = si|o(t+ 1) = sj ,Θ

o) = P (o(t) = si|o(t+
1) = sj , past(t + 1)) which is given by matrix Ro(t). Both pri-
ors P (o(t + 1) = sj |Θo) and P (o(t) = si|Θo) can be com-
puted in the following way inductively. Given that we compute
P (o(t) = si|past(t), present(t)) during the forward phase, the
last transition of the forward phase yields P (o(tend) = si|Θo).
The remaining probabilities P (o(tk) = si|Θo) can be computed
by employing the Markov transitions in backward direction with
matrix R(t).

5.2.3 Sampling Process

Algorithm 2 AdaptTransitionMatrices(o)
1: {Forward-Phase}
2: ~so(to1) = θo1
3: for t = to1 + 1; t ≤ to|Θo|; t++ do
4: X′(t) = Mo(t− 1)T · diag(~so(t− 1))

5: ∀i ∈ {1 . . . |S|} : ~so(t)i =
|S|∑
j=1

X′ij(t)

6: ∀i, j ∈ {1 . . . |S|} : Ro(t)ij =
X′

ij(t)

~so(t)i
7: if t ∈ Θo then
8: ~so(t) = θot {Incorporate observation}
9: end if

10: end for
11: {Backward-Phase}
12: for t = to|Θo| − 1; t ≥ to1; t-- do
13: X′(t) = Ro(t+ 1)T · diag(~so(t+ 1))

14: ∀i ∈ {1 . . . |S|} : ~so(t)i =
|S|∑
j=1

X′ij(t)

15: ∀i, j ∈ {1 . . . |S|} : F o(t)ij =
X′

ij(t)

~so(t)i
16: end for
17: return F o

Algorithm 2 summarizes the construction of the transition model
for a given object o. In the forward phase, the new distribution vec-
tor ~so(t) of o at time t and backward probability matrix Ro(t) at
time t can be efficiently derived from the temporary matrix X ′(t),
computed in Line 4. The equation is equivalent to a simple tran-
sition at time t, except that the state vector is converted to a di-
agonal matrix first. This trick allows to obtain a matrix describ-
ing the joint distribution of the position of o at time t − 1 and
t. Formally, each entry X ′(t)i,j corresponds to the probability
P (o(t − 1) = sj ∧ o(t) = si|pasto(t)) which is equivalent to
the numerator of Equation 6.6 To obtain the denominator of Eq.
6 we first compute the row-wise sum of X ′(t) in Line 5. The re-
sulting vector directly corresponds to ~so(t), since for any matrix
A and vector x it holds that A · x = rowsum(A · diag(x)). By
employing this rowsum operation, only one matrix multiplication
is required for computing Ro(t) and ~so(t).

Next, the elements of the temporary matrix X ′(t) and the ele-
ments of ~so(t) are normalized in Equation 6, as shown in Line 6 of
the algorithm.
6The proof for this transformation P (A ∩ B|C) = P (A|C) ·
P (B|A,C) can be derived analogously to Lemma 4.

Finally, possible observations at time t are integrated in Line 8.
In Lines 12 to 15, the same procedure is followed in time-reversed
direction, using the backward transition matrix Ro(t) to compute
the a-posteriori matrix F o(t).

The overall complexity of this algorithm is O(|T | · |S|2). The
initial matrix multiplication requires |S|2 multiplications. While
the complexity of a matrix multiplication is in O(|S|3), the mul-
tiplication of a matrix with a diagonal matrix, i.e., MT · s can be
rewritten as MT

i · sii, which is actually a multiplication of a vector
with a scalar, resulting in an overall complexity of O(|S|2). Re-
diagonalization needs |S|2 additions as well, such as re-normalizing
the transition matrix, yielding 3 · |T | · |S|2 for the forward phase.
The backward phase has the same complexity as the forward phase,
leading to an overall complexity of O(|T | · |S|2).

Once the transition matrices F o(t) for each point of time t have
been computed, the actual sampling process is simple: For each
object o, each sampling iteration starts at the initial position θo1 at
time to1. Then, random transitions are performed, using F o(t) un-
til the final observation of o is reached. Doing this for each object
o ∈ D, yields a (certain) trajectory database, on which exact NN-
queries can be answered using previous work. Since the event that
an object o is a ∀NN (∃NN) of q is a binomial distributed random
variable, we can use methods from statistics, such as the Hoeffd-
ing’s inequality ([29]) to give a bound of the estimation error, for a
given number of samples.

6. SPATIAL PRUNING
Pruning objects in probabilistic NN search can be achieved by

employing appropriate index structures available for querying un-
certain spatio-temporal data. In this work, we use the UST-tree
[25]. In this section, we briefly summarize the index and show how
it can be employed to efficiently prune irrelevant database objects,
identify result candidates, and find influence objects that might af-
fect the ∀NN probability of a candidate object.

The UST-Tree. Given an uncertain spatio-temporal object o,
the main idea of the UST-tree is to conservatively approximate the
set of possible (location, time) pairs that o could have possibly
visited, given its observations Θo. In a first approximation step,
these (location, time) pairs, as well as the possible (location, time)
pairs defined by Θo

i and Θo
i+1 are minimally bounded by rectan-

gles. Such a rectangle, for observations Θo
i and Θo

i+1 is defined
by the time interval [toi , t

o
i+1], as well as the minimal and maximal

longitude and latitude values of all reachable states.

EXAMPLE 2. Consider Figure 5, where four objects objects A,
B, C and D are given by three observations at time 0, 5 and 10.
For each object, the set of possible states in the corresponding time
intervals [0, 5] and [5, 10] is approximated by two minimum bound-
ing rectangles. For illustration, the set of possible states at each
point of time is also depicted by dashed rectangles.

The UST-tree indexes the resulting rectangles using an R∗-tree
([31]). We now discuss how such an index structure can be used
for the evaluation of P∀NNQ and P∃NNQ queries.

Pruning candidates of P∀NNQ queries. For a P∀NNQ query,
an object must have a non-zero probability of being the closest ob-
ject to q, for all timestamps in the query interval. As a consequence,
to find candidate objects for the P∀NNQ query, we have to consider
for all objects o ∈ D whether for each t ∈ q.T there does not exist
an object o′ ∈ D such that dmin(o(t), q(t)) > dmax(o′(t), q(t)).
Here, dmin(o(t), q(t)) (dmax(o(t), q(t))) denotes the minimum
(maximum) distance between the possible states of o(t) and q(t).
Thus, the set of candidatesC∀(q) of a P∀NNQ is defined asC∀(q) =
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Figure 5: Spatio-Temporal Pruning Example.

{o ∈ D|∀t ∈ q.T : dmin(o(t), q(t)) ≤ mino′∈Ddmax(o′(t), q(t))}

Applying spatial pruning on the leaf level of the UST-tree, we have
to apply the dmin and dmax distance computations on the mini-
mum bounding rectangles on the leaf level in consideration of the
time intervals associated with these leaf entries. In our example,
given the query point q with q.T = [2, 8], only object A is a can-
didate, since dmin(q(t), A(t)) ≤ dmax(q(t), o(t)) for all o ∈ D
in the time intervals [0,5] and [5,10], both together covering q.T .
Objects B, C and D can be safely pruned.

It is important to note that pruned objects, i.e., objects not con-
tained in C∀(q) may still affect the ∀NN probability of other ob-
jects and even may prune other objects. For example, though object
B is not a candidate, it affects the ∀NN probability of all other ob-
jects and contributes to prune possible worlds of object A, because
dmax(q(t), A(t)) > dmin(q(t), B(t)) ∀t ∈ [5, 10]. All objects
having at at least one timestamp t ∈ q.T a non-zero probability
being the NN of q may influence the ∀NN probability of other ob-
jects. Since we need these objects for the verification step of both
the exact and the sampling algorithms, we have to maintain them
in an additional list I∀(q) =

{o ∈ D|∃t ∈ T : dmin(o(t), q(t)) ≤ mino′∈Ddmax(o′(t), q(t))}

To perform spatial pruning at the non-leaf level of the UST-tree, we
can analogously apply dmin and dmax on the MBRs of the non-leaf
level.

Pruning for the P∃NNQ query. Pruning for the P∃NNQ query
is very similar to that for the P∀NNQ query. However, we have to
consider that an object being the nearest neighbor for a single point
in time is already a valid query result. Therefore, no distinction
is made between candidates and influence objects. Every pruner
can be a valid result of the P∃NNQ query, such that each object
with a dmin smaller than the pruning distance has to be refined.
The remaining procedure of the P∃NNQ-algorithm is equivalent to
P∀NNQ-pruning.

7. EXPERIMENTAL EVALUATION
Setup Our experimental evaluation focuses on the efficiency and

effectiveness of P∀NNQ, P∃NNQ and PCNNQ queries. Due to the
high runtime complexity of the exact solutions we will focus on
the approximation techniques. We conducted a set of experiments

to verify both the effectiveness and efficiency of the proposed so-
lutions, using a desktop computer having an Intel i7-870 CPU at
2.93 GHz and 8GB of RAM. All algorithms were implemented in
C++ and integrated into the UST framework. This framework and
a video illustrating the datasets can be found on the project page7.

Artificial Data. Artificial data for our experiments was created
in three steps: state space generation, transition matrix construc-
tion and object creation. First, the data generator constructs a two-
dimensional Euclidean state space, consisting of N states. Each
of these states is drawn uniformly from the [0, 1]2 square. In order
to construct a transition matrix, we derive a graph by introducing
edges between any point p and its neighbors having a distance less

than r =
√

b
n∗π with b denoting the average branching factor of

the underlying network. This parameter ensures that the degree of
a node does not depend on the number of states in the network.
Each edge in the resulting network represents a non-zero entry in
the transition matrix. The transition probability of this entry is in-
directly proportional to the distance between the two vertices.

To create observations of an object o, we sample a sequence of
states and compute the shortest paths between them, modeling the
motion of o during its whole lifetime (which we set to 100 steps
by default). To add uncertainty to the resulting path, every lth

node, l = i ∗ v, v ∈ [0, 1], of this trajectory is used as an ob-
served state. i denotes the time between consecutive observations
and v denotes a lag parameter describing the extra time that o re-
quires due to deviation from the shortest path; the smaller v, the
more lag is introduced to o’s motion. The resulting uncertain tra-
jectories were distributed over the database time horizon (default:
1000 timestamps) and indexed by a UST-tree [25]. As a pruning
step for query evaluation, we employed the UST-tree’s MBR filter-
ing approach described in Section 6. Our experiments concentrate
on evaluating nearest neighbor queries given a certain query state.
These states were uniformly drawn from the underlying state space.

Real Data. We also generated a data set from a set of GPS trajec-
tories of taxis in the city of Beijing [32] using map matching. First,
trajectories from the dataset below a given gps-frequency were fil-
tered out since these trajectories are not fine-granular enough to
provide useful information during the training step. The remaining
trajectories were interpolated to obtain measurements with a fre-
quency of 1Hz. These trajectories where then map matched to a
reduced Beijing-graph obtained from OpenStreetMap (OSM). Due
to the sparsity of data, we assume that a-priori, all objects utilize
the same Markov model M . The time domain is discretized to one
tic every 10 seconds. From the map matched trajectories, the tran-
sition matrix was extracted by aggregating the turning probabilities
at crossroads. OSM-nodes with no hits in the underlying training
data where filtered out. The state space was then formed by the
remaining nodes of the OSM graph, all in all 68902 states. Cer-
tain trajectories of cars where taken directly from the map matched
trajectories, but in order to ensure comparability to the artificial
data have been capped at a length of 100 tics and distributed in the
database horizon. The certain trajectories where then made uncer-
tain by taking every l-th gps measurement as an observation; the
discarded gps measurements serve as ground truth for effective-
ness experiments. For the real data experiment varying the number
of objects, we set l = 8.

7.1 Evaluation: P∀NNQ and P∃NNQ
For performance analysis, the sampling approach (Section 5) is

divided into two phases. In the first phase the trajectory sampler

7http://www.dbs.ifi.lmu.de/cms/Publications/UncertainSpatioTemporal
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Figure 6: Varying the Number of States N
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Figure 7: Varying the Branching Factor b

(TS) is initialized (the adapted transition matrices are computed ac-
cording to Algorithm 2). This phase can be performed once and
used for all queries. In the second phase, the actual sampling of
10k trajectories (per object) for the approximate P∀NNQ (FA) and
P∃NNQ (EX) queries is performed.

In our default setting during efficiency analysis on the artificial
dataset we set the number of objects |D| = 10k, the number of
states N = |S| = 100k, average branching factor of the synthetic
graph b = 8, probability threshold τ = 0 and the length of the
query interval |T | = 10. These parameters lead to a total of 110k
observations (11 per object) and 100k diamonds for the UST-index.

Varying N . In the first experiment (Figure 6) we investigate the
effect of an increasing state space size N , while keeping a constant
average branching factor of network nodes. This effect corresponds
to expanding the underlying state space, e.g., from a single country
to a whole continent. In Figure 6 (left) we can see that increasing
N leads to a sublinear increase in the run-time of the sampling
approaches. This effect can be mostly explained by two aspects.
First, the size of the a-priori model increases linearly withN , since
the number of non-zero elements of the sparse matrix M increases
linearly withN . This leads to an increase of the time complexity of
matrix operations, and therefore makes adapting transition matrices
more costly. At the same time, the number of candidates |C(t)| and
influence objects |I(t)| (see Section 6) decreases significantly as
seen in Figure 6 (right) because the degree of intersection between
objects decreases with a higher number of states, making pruning
more effective, and therefore reducing the actual cost for sampling.

The runtime difference among sampling the P∀NNQ and P∃NNQ
query diminishes with increasing N because the size of the result
set of the P∀NNQ increases with N while P∃NNQ produces less
results with increasing N . The P∃NNQ runtime is also higher than
the P∀NNQ runtime because for the P∃NNQ query not only candi-
date objects are possible results, but also influence objects.

Varying b. Figure 7 evaluates the branching factor b, i.e., the
average degree of each network node. As expected, Figure 7 (left)
shows that an increasing branching factor yields a higher run-time
of all approaches due to a higher number of non-zero values in vec-
tors and matrices, making computations more costly. Furthermore,
in our setting, a larger branching factor also increases the number
of influence objects, as shown in Figure 7 (right).

Varying |D|. The number of objects (Figure 8) leads to a de-
creasing performance as well. The more objects stored in a database
with the same underlying motion model, the more candidates and
influence objects are found during the filter step. This leads to an
increasing number of probability calculations during refinement,
and hence a higher query cost.
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Figure 10: Efficiency of Sampling without Model Adaption.
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Figure 11: Effectiveness of Sampling, P∀NN and P∃NN
Real Dataset. We conducted additional experiments to evaluate

P∀NNQ and P∃NNQ queries on the taxi dataset (Figure 9). The un-
derlying state space consisting of 68902 states is a bit smaller than
the default synthetic dataset. Based on this dataset, we ran an ex-
periment varying the number of objects between 1000 and 20000.
The smaller size of the state space leads to a higher objects density,
leading to a larger number of candidates and influence objects than
the corresponding experiment on the artificial dataset. Addition-
ally, the non-uniform distribution of taxis in the city is more dense
close to the city center, making queries in this area more costly
due to the higher number of candidates and pruners. Further note
that in the real dataset, the motion patterns of objects are more di-
verse than on the synthetic data. There are taxis standing still, and
taxis moving quite fast. Standing taxis have a larger area of un-
certainty between observations, such that these objects reduce the
performance of query evaluation.

Sampling Efficiency. In the next experiment we evaluate the
overhead of the traditional sampling approach (using the a-priori
Markov model only) compared to the approach presented in Sec-
tion 5 which uses the a-posteriori model again based on the arti-
ficial dataset. The first, traditional approach (TS1) discards any
trajectory not visiting all observations. As discussed in Section
5.1, the expected number of attempts required to draw one sample
that hits all observations increases exponentially in the number of
observations. This increase is shown in Figure 10, where the ex-
pected number of samples is depicted with respect to the number
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Figure 12: Realdata: Effectiveness of the Model Adaption

of observations. This approach can be improved, by segment-wise
sampling between observations (TS2). Once the first observation is
hit, the corresponding trajectory is memorized, and further samples
from the current observation are drawn until the next observation is
hit. The number of trajectories required to be drawn in order to ob-
tain one possible trajectory, i.e., the trajectory hits all observations,
is linear to the number of observations when using this approach.
We note in Figure 10, that in either approach at least 100k samples
are required even in the case of having only two observations. In
contrast using the approach presented in Section 5, the number of
trajectories that need to be sampled, in order to obtain a trajectory
that hits all observations, is always one.

Sampling Precision and Effectiveness. Next, we evaluate the
precision of our approximate P∀NNQ and P∃NNQ query and an
aspect of a competitor approach [19]. The latter approach has been
tailored for reverse NN queries, but can easily be adapted to NN
query processing. Essentially, this approach performs a snapshot
query P∀NNQ(q,D, {t}, τ) for each t ∈ T . P∀NN(o, q,D, T )
is estimated by

∏
t∈T P∀NN(o, q,D, {t}). P∃NN(o, q,D, T )

can be approximated by 1−
∏
t∈T (1−P∃NN(o, q,D, {t})). The

scatterplot in Figure 11 (right) illustrates a set of P∀NN probabilties
on synthetic data (v = 0.2, |T | = 5). For each experiment, we
estimate probabilities by our sampling approach (SA) (Section 5)
with (104) samples and by the adapted approach of [19] (SS). We
approximated the exact approach (REF) by drawing a very high
(106) number of samples.

We model each case as a (x,y) point, where x models the refer-
ence (REF) and y the estimated probability (SA or SS). For (REF)
the results always lie on the diagonal identity function depicted by
a straight line. Probabilities of SA are very close to the diagonal,
showing that our sampling solution tightly approximates the results
of the exact P∀NNQ query. Concerning the snapshot approach, a
strong bias towards underestimating probabilities can be observed
for the P∀NNQ query. The snapshot-based P∃NNQ-query overes-
timates the results. This bias is a result of treating points of time
mutually independent. In reality, the position at time t must be in
vicinity of the position at time t − 1, due to maximum speed con-
straints. This positive correlation in space directly leads to a nearest
neighbor correlation: If o is close to q at time t− 1, then o is likely
close to q at time t. And clearly, if o is more likely to be close to
q at time t, then o is more likely to be the NN of q at time t. This
correlation is ignored by snapshot approaches. It can be seen that
the systematic error of [19] is quite significant.

The number of samples required to obtain an accurate approx-
imation of the probability of a binomial distributed random event
such as the event that o is the NN of q for each time t ∈ T has been
studied extensively in statistics [29]. Thus the required number of
samples is not explicitly evaluated here.

Effectiveness of the Forward-Backward Model. We tested the
effectiveness of the forward-backward model adaption in compari-
son to other approaches on the real dataset with a time interval be-
tween observations of 100 seconds. Figure 12 shows the mean error
of these approaches, computed during each point of time, evaluated
over a time interval of 30 tics (5 minutes). The mean error has been
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Figure 13: PCNN: Varying the Number of Objects

computed in leave-one-out manner, i.e. trajectories for computing
the error have not been used to train the model in order to avoid
overfitting. The figure visualizes the error of the a-priori model
(NO) considering only the first observation, the model adapted by
the forward phase only (F) and the forward-backward-adapted a-
priori-model (FB) from this paper. We further implemented two
additional approaches. The uniform approach (U), a competitor
corresponding to [13, 16], discards all probability information of
FB and, due to a lack of better knowledge, assumes all reachable
states at a given time to have a uniform probability. The differ-
ence to the cylinders and beads approximation models presented in
[13, 16] is that these models use conservative approximations that
may include some (time, state) pairs actually having a zero prob-
ability for an object to be located at. Thus, our U approach is at
least as good as the cylinders and beads approximation models in
terms of effectiveness, regardless of the approximation type used.
The approach FBU is equivalent to FB, however turning proba-
bilities in the transition matrix are equally distributed instead of
learning the exact transition probabilities from the underlying map
data. First note that the approach not incorporating any observa-
tions (NO), yields significant errors compared to the remaining ap-
proaches. Clearly, observations can reduce errors and uncertainty
during query evaluation. The forward-only approach (F) reduces
this error, however the error is still high especially directly before
an observation. This problem is solved by the forward-backward
approach from this paper (FB). Note that even if the Markov chain
is assumed to be uniformly distributed (FBU), the results are still
good, but worse than with the actual learned probabilities (FB).
This is good news, as it shows that even a non-optimally learned
Markov chain can lead to useful results, however with a slightly
higher error. This good performance comes from the fact that with
a uniform transition distribution the diamond-shaped space of pos-
sible time-state pairs still has high probabilities in the center of the
diamond, since trajectories near the center of the bead will have
a higher likelihood than trajectories close to the beads boundary.
This stands in contrast to the uniform approach (U) that models all
states at the diamonds border to have the same probabilities as the
states in the diamonds center; explaining why U performs worse
than FBU. To conclude, combining observations with a sufficiently
accurate transition matrix can produce the most accurate results.

7.2 Continuous Queries
In our experimental evaluation on continuous queries we com-

pare the runtime and the size of the (unprocessed) result set for var-
ious database sizes and values of the threshold τ (default τ = 0.5)
using artificial data. After query evaluation, this result set can be
further condensed, e.g. by removing all smaller sets of timestamps
that are already implicitly contained in a larger set of timestamps.

Increasing the number of objects stored in the database leads to
an increase in the time needed to compute the a-posteriori Markov
model (TS) for each object (cf. Figure 13 (left)). This result
is equivalent to the result for P∀NNQ queries, since a-posteriori
models have to be computed for either query semantics. However,
the time required to obtain a sufficient number of samples (SA) is
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Figure 14: PCNN: Varying τ

much higher, since probabilities have to be estimated for a num-
ber of sets of time intervals, rather than for the single interval T .
This increase in run-time is alleviated by the effect that the number
of candidate time intervals obtained in the candidate time interval
generation step of our Apriori-like algorithm decreases (Figure 13
(right)). This effect follows from the fact that more objects lead
to more pruners, leading to smaller probabilities of time intervals,
leading to fewer candidate time intervals. The results of varying τ
can be found in Figure 14. Clearly an increasing probability thresh-
old decreases the average size of the result (Figure 14 (right)). Con-
sequently, the computational complexity of the query decreases as
fewer candidates are generated. Figure 14(left) shows that the run-
time of the sampling approach becomes very large for low values of
τ , since samples have to be generated for each relevant candidate
set. Similar to the Apriori-algorithm, the number of such candi-
dates grows exponentially with T , if τ is small.

8. K-NEAREST-NEIGHBOR QUERIES
Computing P∀kNN and P∃kNN is NP-hard in k. Finally, the

C∀kNNQ query which is based on the ∀kNNQ query, is also NP-
hard. The proof of this statement can be found in our technical
report [26]. To answer P∃kNNQ queries, P∀kNNQ queries and
PCkNNQ queries approximately in the case of k > 1, we can again
utilize the model adaptation and sampling technique presented in
Section 5. Therefore, possible worlds are sampled using the a-
posteriori models of all objects, given their observations. On each
such (certain) world an existing solution for kNN search on certain
trajectories (e.g. [5, 6, 7, 8]) is applied. The results of these de-
terministic queries can again be used to estimate the distribution of
the probabilistic result.

9. CONCLUSIONS
In this paper, we addressed the problem of answering NN queries

in uncertain spatio-temporal databases. We proposed three differ-
ent semantics of NN queries: P∀NNQ queries, P∃NNQ queries
and PCNN queries. We have first analyzed the complexity of these
queries, showing that computing all of them has high runtime com-
plexity. These results provide insights about the complexity of
NN search over uncertain data in general since the Markov chain
model is one of the simplest models that consider temporal de-
pendencies. More complex models are expected to be at least as
hard. To mitigate the problems of computational complexity, we
used a sampling-based approach based on Bayesian inference. For
the PCNNQ query we proposed to reduce the cardinality of the re-
sult set by means of an Apriori pattern mining approach. To cope
with large trajectory databases, we introduced a pruning strategy
to speed-up PNN queries exploiting the UST tree, an index for un-
certain trajectory data. The experimental evaluation shows that our
adapted a-posteriori model allows to effectively and efficiently an-
swer probabilistic NN queries despite the strong a-priori Markov
assumption.
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