
© 1998 IFIP. Published by Kluwer Academic Publishers

Proceedings of the Tenth International IFIP TC5
WG-5.2; WG-5.3 Conference

PROLAMAT 1998

Database support for
concurrent digital mock–up

S. Berchtold, H.–P. Kriegel, M. Pötke

Institute for Computer Science,
University of Munich

Oettingenstr. 67, 80538 München, Germany,
Phone +49-89-2178-2190, Fax +49-89-2178-2192,
{berchtol, kriegel, poetke}@informatik.uni-muenchen.de

Abstract
This paper presents new techniques to extend digital mock–up applications by
state–of–the–art database functionality for concurrent engineering. We propose a
database architecture for the efficient management of spatial, structural, and
thematic engineering data. This includes methods for representing and indexing
CAD files as well as multi–step query processing. Evaluations of the database
system show that the proposed query processor performs collision queries on a
2.5 gigabyte CAD database within seconds, plus the time required by the digital
mock–up tool.

Keywords
digital mock–up, concurrent engineering, CAD database

© 1998 IFIP. Published by Kluwer Academic Publishers 2

1 INTRODUCTION

In this paper, we propose a new technique introducing database technology into
the file–based world of CAD and electronic prototyping. This is an important
issue because today, hundred thousands of CAD files of a car or a plane may
occupy terabytes of distributed secondary and tertiary storage, representing a
scenario the file–based organization is obviously inappropriate for. New
commercial electronic prototyping tools, however, require easy and efficient
access to this data in order to significantly reduce the time and cost of product
development (Virtual Mockup Progress, 1996). In the car industry, for example,
late engineering changes caused by problems with fit, appearance or shape of
parts account for 20–50 percent of die cost (Clark and Fujimoto, 1991).
Therefore, DMU (digital mock–up) tools employ sophisticated voxel–based algo-
rithms for a fast and early detection of colliding parts.
 Unfortunately, there is no support for concurrent engineering. Rather, these
systems are not capable of handling more than a few hundred parts and they
require as input a small, well-assembled list of the CAD files to be examined.
With the traditional file–based approach, each user has to select these files
manually. This can take hours or even days of processing time for the parts may
be generated on different CAD systems, spread over many file servers and belong
to a variety of users. In a concurrent engineering process several cross-functional
project teams may be recruited from many departments, such as engineering,
production, quality assurance, or supply. Each team will have to develop its own
parts as a contribution to the whole product. However, the team working on
section 12B of a jet–plane may not want to bother about the location and the
format of each single CAD file of the adjacent sections 12A and 12C. In order to
do a quick check of fit or appearance, they simply want to download only the
colliding parts. On the other hand, the Internet is gaining in importance for
industrial file exchange. For example, an engineer working in the United States
may want to perform collision queries with her latest design for the product of a
European customer. What she needs is a fast and comfortable DMU interface to
the customer’s CAD database having an appropriate data management on the
internal level.
 Furthermore, without support of structural information, the user has to take care
of different variants, versions and multiple instances of parts. To efficiently
manage geometric and structural data, we therefore propose an enterprise–wide
CAD database giving the cross-functional project teams easy and state–of–the–art
access to all relevant parts of the product. Our technique allows a scenario of an
integrated, concurrent development process and thus is applicable to most major
production companies. In addition, our technique provides all advantages of a
database application, such as recovery and concurrency control, when integrated
in a commercial database system. We implemented and tested a prototype of the
system called DEEP (Database Extension to Electronic Prototyping), combining

3

spatial database and CAD technologies into a unique and complete database
solution for electronic prototyping.

2 DATABASE SUPPORT FOR THE DIGITAL MOCK–UP

The problem of the DMU may be briefly characterized as follows: "Given a set of
parts, each described by a CAD file and additional structural information such as
’Car model XY consists of drive system and body, where drive system consists of
engine and transmission, and so on’, determine all metallic parts of the engine
colliding with any part of the body. Moreover, take into account that we may
have multiple variants of engines and other parts." Therefore, three categories of
data are relevant to this process: geometric data (the CAD files), structural data
(the product structures), and thematic data (such as material, temperature or color
of parts). A database solution to the problem must efficiently manage all of them.
 The basic idea of our technique is to maintain a consistent and up–to–date
database for geometric, structural and thematic attributes of all parts, that can be
accessed by any engineer involved in the project. To allow fast queries on
geometric data, we developed new algorithms for the approximation of triangu-
lated CAD data by a set of bounding boxes. These approximating bounding boxes
are stored in an adapted and optimized R*–tree (Beckmann et al., 1990). As our
database additionally contains the structural and thematic attributes of the parts,
we are able to perform collision and distance queries (as shown in figure 1) for a
part or a collection of parts against the whole product within seconds, with full
support of structural and thematic properties. As our experiments show, our
technique is efficient even for very large volumes of CAD data.

Figure 1 Example for a collision query result

4

2.1 Geometric decomposition and approximation

The most important benefit of CAD files in a modern production environment is
their usage within the manufacturing process which requires a very high accuracy
(at least 0.2–0.5 mm in the car industry). But to determine a collision of the
exhaust system with the rear–axle, we do not need the geometric information to
be that precise for the whole calculation. Thus, in order to index the exact spatial
data, we decided to store only conservative approximations (space reduction:
1/50–1/350 with a 20 mm precision).

Triangle–based approximation
The basic idea of our first approximation algorithm is to decompose the accurate
surface triangulations of the CAD parts into partitions of triangles and then
approximate each relatively small partition by a minimum bounding box (BB)
suitable to be stored in an R*–tree.
 In the first step of our algorithm, we transform a flat triangulated representation
of each CAD part into a graph having nodes for the triangles and edges to
represent topological neighborhood relationships between them. Next, we
traverse the graph by applying a best–first search starting from an arbitrary node s
and using the Euclidean distance to s as heuristic function to be minimized. Let v
be the sum of the normal vectors of the triangles visited so far (weighted by the
area of the triangles) and m(v) the coordinate axis which is the best
approximation of the direction of v. Then, the extension e of the triangles along
m(v) yields a criterion to stop the search and approximate the resulting
component by a minimum bounding box (cf. figure 2a). An additional criterion to
complete a component is the ratio of the area of the visited triangles to the area of
their bounding box, considered in projection along m(v). Thereby, the dead space

Figure 2a Figure 2b
Triangle-based approximation Voxel-based approximation

5

in the generated components and their spatial overlap can be controlled. The
search is continued from the neighboring nodes of the component. The
decomposition and approximation of the CAD file is finished if all nodes have
been visited. This algorithm has a worst–case complexity of O(n * log n), where
n is the number of triangles.

Voxel–based approximation
Because of common geometric and topological inconsistencies of triangulations,
we developed another algorithm, which first approximates the CAD file by a set
of voxels and then partitions and approximates the set of voxels with a resolution
r in a second step (cf. figure 2b). The algorithm is rather similar to the algorithm
operating on the triangulation. But, as the set of voxels is likely to be much
smaller than the set of triangles, and geometric and topological properties of
voxels are known in advance, this algorithm is about twice as fast and has only
O(n) worst–case time complexity. The generation of a voxel set from a
triangulation is computationally very expensive, but most DMU tools require it
anyway. With the voxels already computed, our voxel–based approximation is
about 40 times faster than the triangle–based version. Some resulting
approximations are shown in figures 3a and 3b.

Note, that we may not only approximate triangulations derived from static CAD
parts, but dynamic envelopes derived from moving parts as well.

2.2 Spatial indexing

We collect the files from the various CAD systems of the company, convert them
by applying the algorithms described above and create a corresponding R*–tree
in the database. For each CAD part the R*-tree contains all the bounding boxes.
 The R*–tree is a height–balanced index structure for the management of
bounding boxes on secondary storage. It comprises internal nodes each storing an

Figure 3a Figure 3b
Triangle-based approximation Voxel-based approximation

6

array of bounding boxes and pointers to sub–nodes, the directory, and data pages
that store the actual objects. Each bounding box in an internal node describes the
area occupied by the objects in the corresponding sub–tree, however, the
bounding boxes are allowed to overlap with each other. Whenever a new object
has to be inserted into the tree, the right data page is selected by traversing down
the directory. If the new object doesn’t fit into the data page, the page is split
similar to a B–tree and a new entry in the according internal node is created. This
split might be propagated to higher levels of the tree. In order to query the R*–
tree, we simply traverse the directory in a top–down matter and decide for each
entry in each visited internal node if the sub–node is affected by the query. If so,
we recurse into that sub–tree; otherwise, we can ignore the sub–tree.

2.3 The DEEP architecture

The architecture of our DEEP system consists of four major components,
handling geometric, structural, and thematic data and the corresponding CAD
files. These components are depicted in figure 4.
 The core data structure of the geometric component is the R*–tree. It contains
approximated spatial information on all variants and versions of all parts of the
product. The problem of dealing with multiple instances of parts is rather similar
to the well–treated problem of accessing multiversion data (Bercken and Seeger,
1996). However, the approaches described there handle versions in a temporal
way and therefore are not adequate for our variants. Therefore we assign a unique
four–byte identifier to each variant and version of a part. Let us refer to this
identifier as surrogate, for it is a pointer–like representation of a part in the
product. As proposed by Brinkhoff et al. (1993), each bounding box in a data
page of the R*–tree is labelled with its surrogate to connect the spatial index to
the other components of the system.
 The structural component contains the product structures and their structure
tables. Product structures are trees representing the structural data of the product,
i.e. information about parts, variants, multiple instances of parts, and their
position in the product. They are retrieved from the manufacturer's EDM
(engineering data management) database. The structure tables are used to locate
the surrogates in the product structures.
 In order to manage thematic attributes, we additionally store a set of indexed
tables in the thematic component of the database system. These may be
traditional B–trees using surrogates, too, for the representation of parts. Finally
the CAD component maintains a table to look up the full path of the CAD file for
each surrogate. Optionally we may add a link table to quickly determine the data
pages that store the approximating bounding boxes of a part. As the
approximation of a part usually spreads over many data pages, this table will get
very large.

7

2.4 Query processing

The query processor in our system follows the multi–step query processing
paradigm as proposed by Orenstein (1989). To specify the query parts, the user
just clicks on the respective items in a product structure (using a graphical
interface) or explicitly selects the corresponding CAD files. These can be
precomputed kinematic envelopes to allow dynamic examinations as well. As a
preprocessing step, we generate approximating bounding boxes of the selected
query parts. With the optional link table, we may retrieve these approximations
directly from the data pages of the R*–tree (in general this is more efficient). We
enlarge the resulting bounding boxes in case of a distance query. Then, we query
the R*–tree with the set of bounding boxes and obtain a set of surrogates,
representing a superset of the parts fulfilling the geometric query condition.
These are the candidates of the geometric filter step. This set is complete, since
the approximation of CAD files has been designed to be conservative. But it is
certainly not sound, i.e. some candidates will not fulfil the query condition – they
have to be eliminated by the next steps.
 In the third step (the structural filter), we reduce the set of geometric candidates
by eliminating self collisions and collisions with variants of the query parts,
because these collisions will never occur in reality. Additionally, we filter
surrogates by enforcing structural query conditions, e.g.: "report collisions with

…
…

…

…

…

…

…

Figure 4 DEEP architecture for concurrent engineering

8

parts of the V8 engine only". In the fourth step of query processing (the thematic
filter), we query the thematic tables in the database to check attributes of the
resulting surrogates according to thematic query conditions, e.g.: "report
collisions with plastic parts only". In the last step (the refinement step), we
simply query the CAD table to download the CAD files of the resulting
surrogates into an electronic prototyping tool. Note that this step is application
specific, depending on the kind of examination the user intends to do. We may
use a DMU tool for exact collision tests or for detection of material and
temperature conflicts. Or we may use the CAD files of the resulting parts to
perform FEM simulations or even build physical prototypes. Finally, we again
visualize the result of the query in the product structure.

3 EVALUATION RESULTS

To evaluate the practical significance of our technique, we implemented DEEP, a
client–server–based prototype of our system (Pötke, 1997 and 1998). The server
(containing the proposed architecture including the R*–tree) has been
implemented in C++ whereas the client (a graphical query interface operating on
product structures) has been implemented in Java. We integrated a commercial
DMU tool for the refinement step and tested the whole system holding up to 3300
parts in the database. This corresponds to a volume of 2.5 gigabytes of
triangulated CAD data, consisting of more than 50 million facets. The parts have
been generated from 165 surface triangulations of high accuracy (0.2–0.5 mm),
computed from original CATIA files of a major European car manufacturer. All
experiments have been performed on an HP C160 workstation, having 768
Mbytes of main memory and several Gbytes of secondary storage. For the
generation of approximations we employed the voxel–based algorithm described
above.
 The first set of experiments shows how the resolution of the approximating
bounding boxes for the CAD files influences the performance of the system. As
sample queries we used collision queries for each of the 165 original CAD files
without restriction by any additional structural or thematic query condition.
Figure 5 shows the average selectivity after the geometric and the structural filter
(i.e. the ratio of the number of candidates to the number of 3300 parts stored in
the database). We see that with a resolution of 20 mm, we need to download just
4.0% (130 parts) of the CAD database into the DMU tool to do a collision test for
the query part. Figure 6 depicts the time consumed by the query processor for the
same queries as presented in figure 5. For these experiments the link table option
was turned off, but 20 mm voxel representations of the surfaces had been
precomputed and persistently stored before. Thus, collision queries with a 4.0%
selectivity could be performed in 3.7 seconds on the average. For the refinement
step, the average time required to do a DMU on some 130 parts must be added.

9

Table 1 presents the size of some corresponding R*–trees and the time required
to build them.

Figure 7 depicts the processing time of a collision query (geometric and structural
filter, 20 mm index resolution) with a sample query part, while increasing the
number of parts in the database but maintaining a constant number of variants per
part. One can see that the processing time scales logarithmic with increasing
number of parts. Figure 8 depicts the average collision query time of the
geometric and the structural filter for a part in the database, when increasing only
the number of variants per part. The query time has an asymptotically linear
scale–up with increasing number of variants, due to high spatial overlap between
variants of the same part.

0.0

2.0

4.0

6.0

8.0

10.0

index resolution
(mm)

se
le

ct
iv

ity
(p

er
ce

nt
)

12.0

14.0

0 100 200 300 400 500 600 700

geometric filter

structural filter

0.0

0.5

1.0

1.5

2.0

2.5

index resolution
(mm)

pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

3.0

3.5

4.0

0 100 200 300 400 500 600 700

Figure 5 Figure 6
Selectivity of the geometric Processing time of the geometric

and structural filter and structural filter

pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 50 150

no. of parts
(each in 20 variants)

0 500 1000 1500 2000 2500 3000 3500

(no. of CAD files)

100

pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 5 20

no. of variants
(for 165 parts)

0 500 1000 1500 2000 2500 3000 3500

(no. of CAD files)

10 15

Figure 7 Figure 8
Increasing number of parts Increasing number of variants

10

4 CONCLUSION

In this paper, we proposed a database architecture for the efficient management
of spatial, structural, and thematic engineering data. We demonstrated that
database technology is required to handle the huge amount of distributed data.
Our architecture allows a comfortable and fast interaction of concurrent users.
We developed a query processor and showed its efficiency by evaluating its
performance on very large amounts of data. We would like to emphasize that our
database approach reduces hours or even days of processing time in the
traditional file–based approach to the order of seconds. Moreover, all engineers
share a single common source of CAD files for digital mock–up which
significantly reduces the communication effort within and between the project
teams.
 For the future, we plan to integrate DEEP into one of the commercial object–
relational database systems, which support R–trees as part of a spatial data
module. Furthermore, we intend to investigate the integration of DEEP with
novel CAD applications such as similarity search of parts (Berchtold, 1997).

5 REFERENCES

Beckmann N., Kriegel H.–P., Schneider R. and Seeger B. (1990) The R*–tree:
An Efficient and Robust Access Method for Points and Rectangles.
Proceedings ACM SIGMOD, 1990, 322–31.

Berchtold S. (1997) Geometry-based search of similar parts. (in german), Ph.D.
thesis, Shaker Verlag.

Table 1 Size and creation time for the spatial index

Index resolution Size (Mbytes) Creation time (hours)

20 mm 9.21 6.4

40 mm 2.25 0.5

80 mm 0.63 0.2

160 mm 0.20 0.2

11

Bercken v.d.J., Seeger B. (1996) Query Processing Techniques for Multiversion
Access Methods. Proceedings 22nd Conference on Very Large Databases
VLDB, 1996, 168–80.

Brinkhoff T., Horn H., Kriegel H.–P., Schneider R. (1993) A Storage and Access
Architecture for Efficient Query Processing in Spatial Database Systems.
Proceedings 3rd SSD, in Advances in Spatial Databases (ed. D. Abel, B.C.
Ooi), Lecture Notes in Computer Science, 692, 357–75.

Clark K.B. and Fujimoto T. (1991) Product Development Performance –
Strategy, Organisation, and Management in the World Auto Industry.
Harvard Business School Press, Boston, Mass.

Orenstein J.A. (1989) Redundancy in Spatial Databases. Proceedings ACM
SIGMOD, 1989, 294–305.

Pötke M. (1997) Database Extension to Electronic Prototyping. Advanced student
work, University of Munich.

Pötke M. (1998) Database support for digital mock–up in mechanical
engineering. (in german), Diploma thesis, University of Munich.

Virtual Mockup Progress (1996). CAD Report, Dec. 1996, CAD/CAM Publishing
Inc.

6 BIOGRAPHY

Stefan Berchtold is currently working in the area of query processing and data
mining in high-dimensional data spaces. His major research contributions were in
the area of high-dimensional index structures and similarity search in multimedia
and CAD databases. He received an MS degree in Computer Science from the
Technical University of Munich in 1993 and a PhD in Computer Science in 1997
from the University of Munich, Germany. Currently, he is with the AT&T
Laboratories in Florham Park, USA.

Hans–Peter Kriegel is a full professor for database and information systems in
the Institute for Computer Science at the University of Munich, Germany. His
research interests are in spatial database systems, particularly query processing,
performance issues, similarity search, high–dimensional indexing, and parallel
systems. Similarity search in CAD database systems led him to the area of
electronic prototyping and digital mock–up. Kriegel received his MS and PhD in
1973 and 1976, respectively, from the University of Karlsruhe, Germany.

Marco Pötke is a graduate student of Computer Science at the University of
Munich, Germany. His main interests are in information systems and
computational logic. Pötke has just finished his diploma thesis on database
support for digital mock–up in mechanical engineering, focusing on aspects of
efficient representation and management of engineering data.

