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Abstract. For discrete co-occurrence data like documents and words,
calculating optimal projections and clustering are two different but re-
lated tasks. The goal of projection is to find a low-dimensional latent
space for words, and clustering aims at grouping documents based on
their feature representations. In general projection and clustering are
studied independently, but they both represent the intrinsic structure
of data and should reinforce each other. In this paper we introduce a
probabilistic clustering-projection (PCP) model for discrete data, where
they are both represented in a unified framework. Clustering is seen to
be performed in the projected space, and projection explicitly considers
clustering structure. Iterating the two operations turns out to be exactly
the variational EM algorithm under Bayesian model inference, and thus
is guaranteed to improve the data likelihood. The model is evaluated on
two text data sets, both showing very encouraging results.

1 Introduction

Modelling discrete data is a fundamental problem in machine learning, pat-
tern recognition and statistics. The data is usually represented as a large (and
normally sparse) matrix, where each entry is an integer and characterizes the
relationship between corresponding row and column. For example in document
modelling, the “bag-of-words” methods represent each document as a row vec-
tor of occurrences of each word, ignoring any internal structure and word order.
This is taken as the working example in this paper, but the proposed model is
generally applicable to other discrete data.

Data projection and clustering are two important tasks and have been widely
applied in data mining and machine learning (e.g., principal component analy-
sis (PCA) and k-means [1]). Projection is also referred as feature mapping that
aims to find a new representation of data, which is low-dimensional and phys-
ically meaningful. On the other hand, clustering tries to group similar data
patterns together, and thus uncovers the structure of data. Traditionally these
two methods are studied separately and mainly on continuous data. However in
this paper we investigate them on discrete data and treat them jointly.

Projection on discrete data differs from the case on continuous space, where,
for example, the most popular technology PCA tries to find the orthogonal di-
mensions (or factors) that explains the covariance of data dimensions. However,
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one cannot make the same orthogonal assumption on the low-dimensional factors
of discrete data and put the interests on the covariance anymore. Instead, it is
desired to find the independent latent factors that explain the co-occurrence of
dimensions (e.g., words). In text modelling, if we refer the factors as topics, the
projection actually represent each document as a data point in a low-dimensional
topic space, where a co-occurrence factor actually suggests more or less a clus-
ter of words (i.e., a group of words often occurring together). Intuitively, if the
projected topic space is informative enough, it should also be highly indicative
to reveal the clustering structure of documents. On the other hand, a truly dis-
covered clustering structure reflects the shared topics within document clusters
and the distinguished topics across document clusters, and thus can offer evi-
dence for the projection side. Therefore, it is highly desired to consider the two
problems in a unified model.

In this paper a novel probabilistic clustering-projection (PCP) model is pro-
posed, to jointly handle the projection and clustering for discrete data. The
projection of words is explicitly formulated with a matrix of model parameters.
Document clustering is then incorporated using a mixture model on the pro-
jected space, and we model each mixture component as a multinomial over the
latent topics. In this sense this is a clustering model using projected features for
documents if the projection matrix is given, and a projection model with struc-
tured data for words if the clustering structure is known. A nice property of the
model is that we can perform clustering and projection iteratively, incorporating
new information on one side to the updating of the other. We will show that
they are corresponding to a Bayesian variational EM algorithm that improves
the data likelihood iteratively.

This paper is organized as follows. The next section reviews related work.
Section 3 introduces the PCP model and explicitly points out the clustering
and projection effects. In Section 4 we present inference and learning algorithm.
Then Section 5 presents experimental results and Section 6 concludes the paper.

2 Related Work

PCA is perhaps the most well-known projection technique, and has its counter-
part in information retrieval called latent semantic indexing [4]. For discrete data,
an important related work is probabilistic latent semantic indexing (pLSI) [7]
which directly models latent topics. PLSI can be treated as a projection model,
since each latent topic assigns probabilities to a set of words and thus a docu-
ment, represented as a bag of words, can be treated as generated from a mixture
of multiple topics. However, the model is not built for clustering and, as pointed
by Blei et al. [2], it is not a proper generative model, since it treats document
IDs as random variables and thus cannot generalize to new documents. Latent
Dirichlet allocation (LDA) [2] generalizes pLSI by treating the topic mixture
parameters (i.e., a multinomial over topics) as variables drawn from a Dirichlet
distribution. This model is a well-defined generative model and performs much
better than pLSI, but the clustering effect is still missing. On the other side, doc-



ument clustering has been intensively investigated and the most popular method
is probably partition-based algorithms like k-means (see, e.g., [1]). Non-negative
matrix factorization (NMF) [11] is another candidate and is shown to obtain
good results in [13].

Despite that plenty of work has been done in either clustering or projection,
the importance of considering both in a single framework has been noticed only
recently, e.g., [6] and [12]. Both works are concerned about document clustering
and projection on continuous data, while lacking the probabilistic interpretations
to the connections among documents, clusters and factors. Buntine et al. [3]
noticed this problem for discrete data and pointed out that the multinomial
PCA model (or discrete PCA) takes clustering and projection as two extreme
cases. Another closely related work is the so-called two-sided clustering, like [8]
and [5], which aims to clustering words and documents simultaneously. In [5]
it is implicitly assumed a one-to-one correspondence between the two sides of
clusters. [8] is a probabilistic model for discrete data, but it has similar problems
as in pLSI and not generalizable to new documents.

3 The PCP Model

We consider a corpus D containing D documents, with vocabulary V having V
words. Following the notation in [2], each document d is a sequence of Nd words
that is denoted by wd = {wd,1, . . . , wd,Nd

}, where wd,n is a variable for the nth
word in wd and denotes the index of the corresponding word in V.

To simplify explanations, we use “clusters” for components in document clus-
tering structure and “topics” for projected space for words. Let M denote the
number of clusters and K the dimensionality of topics. Roman letters d,m, k, n, j
are indices for documents, clusters, topics, words in wd, and words in V. They
are up to D,M,K,Nd, V , respectively. Letter i is reserved for temporary index.

3.1 The Probabilistic Model

The PCP model is a generative model for a document corpus. Figure 1 (left)
illustrates the sampling process in an informal way. To generate one document
d, we first choose a cluster from the M clusters. For the mth cluster, the cluster
center is denoted as θm and defines a topic mixture over the topic space. There-
fore θm is a K-dimensional vector and satisfies θm,k ≥ 0,

∑K
k=1 θm,k = 1 for all

m = 1, . . . ,M . The probability of choosing a specific cluster m for document d
is denoted as πm, and π := {π1, . . . , πM} satisfies πm ≥ 0,

∑M
m=1 πm = 1.

When document d chooses cluster m, it defines a document-specific topic
mixture θd, which is obtained exactly from the cluster center θm. Note that
everything is discrete and two documents belonging to the same cluster will
have the same topic mixtures. Words are then sampled independently given
topic mixture θd, in the same way as in LDA. Each word wd,n is generated by
first choosing a topic zd,n given the topic mixture, and then sampling the word
given the projection β. β is the K×V matrix where βk,j specifies the probability



Fig. 1. Informal sampling process (left) and plate model (right) for the PCP model.
In the left figure, dark arrows show dependencies between entities and the dashed line
separates the clustering and projection effects. In the plate model, rectangle means
independent sampling, and hidden variables and model parameters are denoted as
circles and squares, respectively. Observed quantities are marked in black.

of generating word j given topic k, βk,j = p(wj = 1|zk = 1). Therefore each row
βk,: defines a multinomial distribution for all words over topic k and satisfies
βk,j ≥ 0,

∑V
j=1 βk,j = 1.

To complete the model, we put a Dirichlet prior Dir(λ) for all the cluster
centers θ1, . . . , θM , and a symmetric Dirichlet prior Dir(α/M, . . . , α/M) for the
mixing weights π. Note that they are sampled only once for the whole corpus.

Finally we obtain the probabilistic model formally illustrated in Figure 1
(right), using standard plate model. cd takes value {1, . . . ,M} and acts as the
indicator variable saying which cluster document d takes on out of the M clus-
ters. All the model parameters are α,λ, β and amount to 1 +M +K × (V − 1).
The following procedure describes the sampling process for the whole corpus:

1. Choose model parameter α,λ, β;
2. For the mth cluster, choose θm ∼ Dir(λ),m = 1, . . . ,M ;
3. Choose the mixing weight π ∼ Dir(α/M, . . . , α/M);
4. For each document wd:

(a) Choose a cluster m with mixing weights π, and obtain θd = θm;
(b) For each of the Nd words wd,n:

i. Choose a topic zd,n ∼ Mult(θd);
ii. Choose a word wd,n ∼ Mult(βzd,n,:).

Denote θ as the set of M cluster centers {θ1, . . . , θM}, the likelihood of the
corpus D can be written as

L(D;α,λ, β) =
∫

π

∫
θ

D∏
d=1

p(wd|θ,π;β)dP (θ;λ) dP (π;α), (1)

where p(θ;λ) =
∏M

m=1 p(θm;λ), and the likelihood of document d is a mixture:

p(wd|θ,π;β) =
M∑

cd=1

p(wd|θ, cd;β)p(cd|π). (2)



Given mixture component cd, likelihood term p(wd|θ, cd;β) is then given by

p(wd|θcd
;β) =

Nd∏
n=1

K∑
zd,n=1

p(wd,n|zd,n;β)p(zd,n|θcd
). (3)

3.2 PCP as a Clustering Model

As can be seen from (2) and (3), PCP is a clustering model when the projection
β is assumed known. The essential terms now are the probabilities of clusters
p(m|π) = πm, probabilistic clustering assignment for documents p(wd|θm;β),
and cluster centers θm, for m = 1, . . . ,M . Note from (3) that cluster centers θm

are not modelled directly with words like p(w|θm), but with topics, p(z|θm). This
means we are not clustering documents in word space, but in topic space. This
is analogous to clustering continuous data on the latent space found by PCA
[6], and K is exactly the dimensionality of this space. To obtain the probability
that document d belongs to cluster m, we project each word into topic space,
and then calculate the distance to cluster center θm by considering all the words
in wd. This explains (3) from perspective of clustering.

To improve generalization and avoid overfitting, we put priors to θm and π
and treat them as hidden variables, as usually done in mixture modelling. The
prior distributions are chosen to be Dirichlet that is conjugate to multinomial.
This will make model inference and learning much easier (see Section 4).

3.3 PCP as a Projection Model

A projection model aims to learn projection β, mapping words to topics. As can
be seen from (3), the topics are not modelled directly with documents wd, but
with cluster centers θm. Therefore if clustering structure is already known, PCP
will learn β by using the richer information contained in cluster centers, not
just individual documents. In this sense, PCP can be explained as a projection
model with structured data and is very attractive because clustered documents
are supposed to contain less noise and coarser granularity. This will make the
projection more accurate and faster.

As a projection model, PCP is more general than pLSI because document
likelihood (3) is well defined and generalizable to new documents. Although LDA
uses similar equation as (3), the topic mixture θd is only sampled for current
document and no inter-similarity of documents is directly modelled. Documents
can only exchange information via the hyperparameter for θd’s, and thus its
effect to β is only implicit. On the contrary, PCP directly models similarity of
documents and incorporate all information to learn β.

As discussed in [2], projection β can be smoothed by putting a common
prior to all the rows. If only the maximum a posteriori (MAP) estimate of β is
considered, the effect of smoothing turns out to add a common factor to each
entry of β before normalization each row. This is also straightforward in PCP
model and we will not discuss it in detail for simplicity. In the experiments we
will use this smoothing technique.



4 Inference and Learning

In this section we consider model inference and learning. As seen from Figure 1,
for inference we need to calculate the a posteriori distribution of latent variables

p̂(π,θ, c, z) := p(π,θ, c, z|D, α,λ, β),

including both effects of clustering and projection. Here for simplicity we denote
π,θ, c, z as groups of πm, θm, cd, zd,n, respectively. This requires to compute (1),
where the integral is however analytically infeasible. A straightforward Gibbs
sampling method can be derived, but it turns out to be very slow and inap-
plicable to high dimensional discrete data like text, since for each word we have
to sample a latent variable z. Therefore in this section we suggest an efficient
variational method by introducing variational parameters for latent variables [9].
Then we can maximize the data likelihood by iteratively updating these parame-
ters and obtain a variational EM algorithm until convergence. The interesting
thing is that this algorithm is equivalent to performing clustering and projection
iteratively, which we will discuss in detail.

4.1 Variational EM Algorithm

The idea of variational EM algorithm is to propose a joint distribution q(π,θ, c, z)
for latent variables conditioned on some free parameters, and then enforce q to
approximate the a posteriori distributions of interests by minimizing the KL-
divergence DKL(q‖p̂) with respect to those free parameters. We propose a vari-
ational distribution q over latent variables as the following

q(π,θ, c, z|η,γ,ψ,φ) = q(π|η)
M∏

m=1

q(θm|γm)
D∏

d=1

q(cd|ψd)
Nd∏
n=1

q(zd,n|φd,n), (4)

where η,γ,ψ,φ are groups of variational parameters, each tailoring the varia-
tional a posteriori distribution to each latent variable. In particular, η specifies
an M -dim. Dirichlet for π, γm specifies a K-dim. Dirichlet for distinct θm, ψd

specifies anM -dim. multinomial for indicator cd of document d, and φd,n specifies
a K-dim. multinomial over latent topics for word wd,n. It turns out that min-
imization of the KL-divergence is equivalent to maximization of a lower bound
of the log likelihood ln p(D|α,λ, β), derived by applying Jensen’s inequality [9]:

Lq(D) = Eq[ln p(π|α)] +
M∑

m=1

Eq[ln p(θm|λ)] +
D∑

d=1

Eq[ln p(cd|π)]

+
D∑

d=1

Nd∑
n=1

Eq[ln p(wd,n|zd,n, β)p(zd,n|θ, cd)]− Eq[ln q(π,θ, c, z)]. (5)

The optimum is found by setting the partial derivatives with respect to each
variational and model parameter to be zero, which corresponds to the variational
E-step and M-step, respectively. In the following we separate these equations into
two parts and interpret them from the perspective of clustering and projection,
respectively.



4.2 Updates for Clustering

As we mentioned in Section 3.2, the specific variables for clustering are document-
cluster assignments cd, cluster centers θm, and cluster probabilities π. It turns
out that their corresponding variational parameters are updated as follows:

ψd,m ∝ exp

� KX
k=1

h�
Ψ(γm,k)− Ψ(

KX
i=1

γm,i)
� NdX

n=1

φd,n,k

i
+ Ψ(ηm)− Ψ(

MX
i=1

ηi)

�
, (6)

γm,k =

DX
d=1

ψd,m

NdX
n=1

φd,n,k + λk, ηm =

DX
d=1

ψd,m +
α

M
, (7)

where Ψ(·) is the digamma function, the first derivative of the log Gamma func-
tion. ψd,m are the a posteriori probabilities p(cd = m) that document d belongs
to cluster m, and define a soft cluster assignment for each document. γm,k char-
acterize the cluster centers θm and are basically the kth coordinate of θm on the
topic space. Finally ηm control the mixing weights for clusters and define the
probability of cluster m. φd,n,k are the variational parameters that measure the
a posteriori probability that word wd,n in document d is sampled from topic k.
They are related to projection of words and assumed fixed at the moment.

These equations seem to be complicated and awful, but they turn out to be
quite intuitive and just follow the standard clustering procedure. In particular,

– ψd,m is seen from (6) to be a multiplication of two factors p1 and p2, where
p1 includes the γ terms in the exponential and p2 the η terms. Since ηm

controls the probability of cluster m, p2 acts as a prior term for ψd,m; p1 can
be seen as the likelihood term, because it explicitly measures the probability
of generating wd from clusterm by calculating the inner product of projected
features and cluster centers. Therefore, (6) directly follows from Bayes’ rule,
and a normalization term is needed to ensure

∑M
m=1 ψd,m = 1.

– γm,k is updated by summing over the prior position λk and the empirical
location, the weighted sum of projected documents that belong to cluster k.

– Similar to γm,k, ηk is empirically updated by summing over the belonging-
nesses of all documents to cluster k. α/M acts as a prior or a smoothing
term, shared by all the clusters.

Since these parameters are coupled, clustering is done by iteratively updating
(6) and (7). Note that the words are incorporated into the clustering process
only via the projected features

∑Nd

n=1 φd,n,k. This means that the clustering is
performed not in word space, but in the more informative topic space.

4.3 Updates for Projection

If ψ,γ,η are fixed, projection parameters φ and β are updated as:

φd,n,k ∝ βk,wd,n exp

� MX
m=1

ψd,m

h
Ψ(γm,k)− Ψ(

KX
i=1

γm,i)
i�
, (8)

βk,j ∝
DX

d=1

NdX
n=1

φd,n,kδj(wd,n), (9)



where δj(wd,n) = 1 if wd,n takes word index j, and 0 otherwise. Please recall that
φd,n,k is the a posteriori probability that word wd,n is sampled from topic k, and
βk,j measures the probability of generating word j from topic k. Normalization
terms are needed to ensure

∑K
k=1 φd,n,k = 1 and

∑V
j=1 βk,j = 1, respectively.

Update (9) for βk,j is quite intuitive, since we just sum up all the documents
that word j occurs, weighted by their generating probabilities from topic k.
For update of φd,n,k in (8), βk,wd,n

is the probability that topic k generates
word wd,n and is thus the likelihood term; the rest exponential term defines the
prior, i.e., the probability that document d selects topic k. This is calculated by
taking into account the clustering structure and summing over all cluster centers
with corresponding soft weights. Therefore, the projection model is learned via
clusters of documents, not simply individual ones. Finally we iterate (8) and (9)
until convergence to obtain the optimal projection.

4.4 Discussion

As guaranteed by variational EM algorithm, iteratively performing the given
clustering and projection operations will improve the data likelihood monoton-
ically until convergence, where a local maxima is obtained. The convergence is
usually very fast, and it would be beneficial to initialize the algorithm using
some simple projection models like pLSI.

The remaining parameters α and λ control the mixing weights π and cluster
centers θm a priori, and they can also be learned by setting their partial deriva-
tives to zero. However, there are no analytical updates for them and we have to
use computational methods like Newton-Raphson method as in [2].

The PCP model can also be seen as a Bayesian generalization of the TTMM
model [10], where π and θm are directly optimized using EM. Treating them
as variables instead of parameters would bring more flexibility and reduce the
impact of overfitting. We summarize the PCP algorithm in the following table:

Table 1. The PCP Algorithm

1. Initialize model parameters α,λ and β. Choose M > 0 and K > 0. Choose initial
values for φd,n,k, γm,k and ηk.

2. Clustering: Calculate the projection term
PNd

n=1 φd,n,k for each document d and
iterate the following steps until convergence:
(a) Update cluster assignments ψd,m by (6);
(b) Update cluster centers γm,k and mixing weights ηk by (7).

3. Projection: Calculate the clustering term
PM

m=1 ψd,m

h
Ψ(γm,k)− Ψ(

PK
i=1 γm,i)

i
for each document d and iterate the following steps until convergence:
(a) Update word projections φd,n,k by (8);
(b) Update projection matrix β by (9).

4. Update α and λ if necessary.
5. Calculate the lower bound (5) and go to Step 2 if not converged.



5 Empirical Study

In this section we illustrate experimental results for the PCP model. In particular
we compare it with other models in the following three perspectives:

– Document Modelling: How good is the generalization in PCP model?
– Word Projection: Is the projection really improved in PCP model?
– Document Clustering: Will the clustering be better in PCP model?

We will make comparisons based on two text data sets. The first one is Reuters-
21578, and we select all the documents that belong to the five categories money-
fx, interest, ship, acq and grain. After removing stop words, stemming and picking
up all the words that occur at least in 5 documents, we finally obtain 3948
documents with 7665 words. The second data set consists of four groups taken
from 20Newsgroup, i.e., autos, motorcycles, baseball and hockey. Each group has
1000 documents, and after the same preprocessing we get 3888 documents with
8396 words. In the following we use “Reuters” and “Newsgroup” to denote these
two data sets, respectively. Before giving the main results, we illustrate one case
study for better understanding of the algorithm.

5.1 Case Study

We run the PCP model on the Newsgroup data set, and set topic numberK = 50
and cluster number M = 20. α is set to 1 and λ is set with each entry being
1/K. Other initializations are chosen randomly. The algorithm runs until the
improvement on Lq(D) is less than 0.01% and converges after 10 steps.

Figure 2 illustrates part of the results. In (a) 10 topics are shown with 10
words that have highest assigned probabilities in β. The topics are seen to be
very meaningful and each defines one projection for all the words. For instance,
topic 5 is about “bike”, and 1, 7, 9 are all talking about “car” but with different
subtopics: 1 is about general stuffs of car; 7 and 9 are specifying car systems
and purchases, respectively. Besides finding topic 6 that covers general terms for
“hockey”, we even find two topics that specify the hockey teams in US (4) and
Canada (8). These topics provide the building blocks for document clustering.

Figure 2(b) gives the 4 cluster centers that have highest probabilities after
learning. They define topic mixtures over the whole 50 topics, and for illustration
we only show the given 10 topics as in (a). Darker color means higher weight. It
is easily seen that they are corresponding to the 4 categories autos, motorcycles,
baseball and hockey, respectively. If we sort all the documents with their true la-
bels, we obtain the document-cluster assignment matrix as shown in Figure 2(c).
Documents that belong to different categories are clearly separated.

5.2 Document Modelling

In this subsection we investigate the generalization of PCP model. We compare
PCP with pLSI and LDA on the two data sets, where 90% of the data are used



1 2 3 4 5 6 7 8 9 10

car ball game gm bike team car pit car team
engin runner basebal rochest clutch hockei tire det price year
ford hit gant ahl back nhl brake bo dealer win

problem base pitch st gear leagu drive tor year morri
mustang write umpir john front game radar chi model cub

good fly time adirondack shift season oil nyi insur game
probe rule call baltimor car citi detector van articl write
write articl strike moncton time year system la write jai
ve left write hockei work star engin stl cost won

sound time hirschbeck utica problem minnesota spe buf sell clemen

(a)

(b) (c)

Fig. 2. A case study of PCP model on Newsgroup data. (a) shows 10 topics
and 10 associated words for each topic with highest generating probabilities. (b)
shows 4 clusters and the topic mixture on the 10 topics. Darker color means
higher value. (c) gives the assignments to the 4 clusters for all the documents.

for training and the rest 10% are held out for testing. The comparison metric
is perplexity, which is conventionally used in language modelling and defined as
Perp(Dtest) = exp(− ln p(Dtest)/

∑
d |wd|), where |wd| is the length of document

d. A lower perplexity score indicates better generalization performance.
We follow the formula in [2] to calculate perplexity for pLSI. For PCP model,

we take the similar approach as in LDA, i.e., we run the variational inference and
calculate the lower bound (5) as the likelihood term. M is set to be the number
of training documents for initialization. As suggested in [2], a smoothing term
for β is used and optimized for LDA and PCP. All the three models are trained
until the improvement is less than 0.01%. We compare all three algorithms using
different K’s, and the results are shown in Table 2. PCP outperforms both pLSI
and LDA in all the runs, which indicates that the model fits the data better.

5.3 Word Projection

All the three models pLSI, LDA and PCP can be seen as projection models and
learn the mapping β. To compare the quality, we train a support vector machine



Table 2. Perplexity comparison for pLSI, LDA and PCP on Reuters and Newsgroup

Reuters Newsgroup

K 5 10 20 30 40 50 5 10 20 30 40 50

pLSI 1995 1422 1226 1131 1128 1103 2171 2018 1943 1868 1867 1924
LDA 1143 892 678 599 562 533 2083 1933 1782 1674 1550 1513
PCP 1076 882 670 592 555 527 2039 1871 1752 1643 1524 1493

(a) (b)

Fig. 3. Classification results on Reuters (a) and Newsgroup (b).

(SVM) on the low-dimensional representations of these models and measure the
classification rate. For pLSI, the projection for document d is calculated as the
a posteriori probability of latent topics conditioned on d, p(z|d). This can be
computed using Bayes’ rule as p(z|d) ∝ p(d|z)p(z). In LDA it is calculated as
the a posteriori Dirichlet parameters for d in the variational E-step [2]. In PCP
model this is simply the projection term

∑Nd

n=1 φd,n,k which is used in clustering.
We train a 10-topic model on the two data sets and then train a SVM for

each category. Note that we are reducing the feature space by 99.8%. In the ex-
periments we gradually improve the number of training data from 10 to 200 (half
positive and half negative) and randomize 50 times. The performance averaged
over all categories is shown in Figure 3 with mean and standard deviation. It is
seen that PCP obtains better results and learns a better word projection.

5.4 Document Clustering

In our last experiment we demonstrate the performance of PCP model on doc-
ument clustering. For comparison we implement the original version of NMF
algorithm [11] which can be shown as a variant of pLSI, and a k-means algo-
rithm that uses the learned features by LDA. For NMF we tune its parameter to
get best performance. The k-means and PCP algorithms are run with the true
cluster number, and we tune the dimensionality K to get best performance.

The experiments are run on both two data sets. The true cluster number
is 5 for Reuters and 4 for Newsgroup. For comparison we use the normalized
mutual information [13], which is just the mutual information divided by the
maximal entropy of the two cluster sets. The results are given in Table 3, and it



Table 3. Comparison of clustering using different methods

NMF LDA+k-means PCP

Reuters 0.246 0.331 0.418
Newsgroup 0.522 0.504 0.622

can be seen that PCP performs the best on both data sets. This means iterating
clustering and projection can obtain better clustering structure for documents.

6 Conclusions

This paper proposes a probabilistic clustering-projection model for discrete co-
occurrence data, which unifies clustering and projection in one probabilistic
model. Iteratively updating the two operations turns out to be the variational
inference and learning under Bayesian treatments. Experiments on two text data
sets show promising performance for the proposed model.
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