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Abstract:
The management of spatial data in applications such as graphics and image processing, geography as
weil as computer aided design (CAD) imposes stringent new requirements on spatial database systems,
in particular on efficient query processing of complex spatial objects. In this paper, we propose a two-
level, multi-representation query processing technique which consists of a filter and a refinement level.
The efficiency of spatial query processing is improved considerably using the foilowing two design
paradigms: first, divide and conquer, i.e. decomposition of complex spatial objects into more simple
spatial components such as convex polygons, triangles or trapezoids, and second, application of
efficient and robust spatial access methods tor simple spatial objects. The most powerful ingredient in
our approach is the object decomposition. Applied to the refinement level of the query processor, it
substitutes complex computational geometry algorithms by simple and fast algorithms tor simple
components. In this paper, we present tour different decomposition techniques tor polygonal objects.
The second part of the paper consists of an empirical performance comparison using real and synthetic
data. The tour types of decomposition techniques are compared to each other and with the tradition al
approach with respect to the performance of spatial query processing. This comparison points out that
our approach using object decomposition is superior to tradition al query processing strategies.

1 lntroduction

The demand für using database systems in application areas such as graphics and image processing, computer
aided design (CAD) as weIl as geography and cartography is considerably increasing. The imponant
characteristic of these applications is the occurance of spatial objects. The management of spatial objects
imposes stringent new requirements on spatial database systems. One of the most challanging requirements is
efficient query processing of complex spatial objects.

The typical object type that occurs in the above mentioned applications are two- or three-dimensional spatial

objects. Points, lines, or rectangles are known as simple spatial objects, because their complete description is
given by only a small number of parameters. Semantically complex objects with an application specific
complexity, such as contour lines, limits of lots, and contours of CAD objects have the shape of simple

polygons. Complexity properties of such polygonal objects, such as the shape, the number of vertices, or the
smoothness of the contour are difficult to predict. Additionally, as a general property of polygons, holes have
to be taken into account für a general handling of objects ocCurring in geographic information systems, e.g. to

model areas of land containing lake areas. In order to support the above type of spatial applications, the ability
to manage simple polygons is fundamental to a spatial database system. In this paper, we would like to
present and to evaluate a query processor based on spatial access methods (see für example [NHS 84], [See
90]) and computational geometry techniques [PS 85].

In the next chapter we introduce a query processing mechanism using a fIlter technique based on spatial
access methods. The basic ingredient für achieving performance improvements in this query processing
mechanism is the introduction of redundancy [are 89]. This is the subject of chapter 3. A special type of
introducing redundancy in object representation is the socalled structural decomposition. Chapter 4 describes
four different structural decomposition techniques für SPHs. In chapter 5 we describe the processing of
spatial queries based on object decomposition in more algorithmic detail. Chapter 6 contains a comparison of
the different structural decomposition techniques with respect to their performance within spatial query
processing. The paper concludes with a summary that points out the main contributions and gives an outlook
to future activities.

The Performance of Object Decomposition Techniques für (..S:'.!JJ) '8/)

Spatial Query Processing ")
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Query processing using filter techniques2

In this chapter, we will introduce a special type of polygonal objects and a query processing mechanism foT

managing large sets of such objects.

2.1 Spatial objects and spatial queries

The types of spatial objects we consider is the class of .):.imple g..olygons with holes (SPH, see figure 1). A
polygon is called simple if there is no pair of nonconsecutive edges sharing a point. An SPH is a simple
polygon where simple polygonal holes may be cut out from the enclosure polygon. From our experience, the
class of SPH is adequate for GIS applications (see [Bur 87]) and most 2D CAD/CAM applications.

simple polygon simple polygon with holesFigure 1:

Queries in spatial applications generally feier to spatial and nonspatial data. Spatial data can be classified into
geometrical and topological aspects whereas nonspatial data is given by alphanumerical data related to spatial
entities. Geometric data describes properties such as the spatiallocation, size, and shape of spatial objects.
Topological data describes properties such as connectivity, adjacency and inclusion modelling relationships
between geometric data. By the war, it is not necessary to store topological data explicitely, because it can be
derived from geometric data by formulating suitable query conditions. Most spatial query conditions describe
such topological aspects between stored objects and the query object. Additionally, spatial queries not only
retrieve data, hut also may construct new objects. Usually these objects are displayed and not necessarlly
stored in the database.

From the literature no standard set of geometric queries fulfIlling all requirements of spatial applications is
known [SV 89]. Thus it is necessary to provide a small set of basic spatial queries which are efficiently
supported by the database system. Application specific queries, e.g. in [Oos 90], typically using more

complex query conditions, can be decomposed into a sequence of such basic spatial queries. We present the

following set ofbasic spatial queries:

.PointQuery: Given a point pe E2, [md all SPHs in the database where pe SPH.

.WindowQuery: Given a rectilinear window w ~ E2, [md an SPHs in the database where w n SPH * 0.

.RegionQuery: Given an SPH* ~ E2, [md an SPHs in the database where SPH* n SPH * 0.

.EnclosureQuery: Given an SPH* ~ E2, find all SPHs in the database where SPH* ;2 SPH.

.ContainmentQuery: Given an SPH* ~ E2, [md an SPHs in the database where SPH* ~ SPH.

.IntersectionQuery: Given an SPH* ~ E2, compute the intersection of SPH* with an SPHs in the database.

As an example consider the following query: Given an area bounded by two latitudes and two meridians. Find
the most populated city within this area and the state, this city belangs to. This query can be evaluated by
initia1ly enforcing a window query yielding the set of all cities lying within the specified area. After
computationally detennining the most populated Olle a point/enclosure query fmds out the unique state to
which this city belangs.

2.2 Query processing supported by access rnethods and cornputational geornetry

A typical property of spatial queries is their restriction to a specific spatiallocation in data space. Only that
location and some lirnited neighbouring area is essential für the evaluation of most spatial queries. The
window query is a typical example für such a query (see figure 2).



3

Figure 

2: Zooming infO a query window

Obviously, objects (SPHs) lying close together in dataspace are often accessed jointly by a window query.
The same holds für the other basic queries defmed above. Therefore a physical clustering of spatial objects
wirb respect to their spatiallocation is essential für providing efficient locality based query processing. This
type of spatial clustering is supponed by spatial access methods (SAM), introduced below. In the absence of
such a spatial clustering no spatial locality can be exploited by a query processing algorithm Every single
stored object has to be evaluated against the query condition leading to poor performance that is funher
decreasing with an inceasing number of stored objects and an increasing object complexity. Therefore, Olle
essential ingredient of an efficient query processing within a spatial database system is spatial clustering of the

objects.
In the past few years many spatial access methods were developed which provide the organization of large

sets of simple spatial objects on secondary storage. The most simple class of spatial objects rnanaged by such
access methods are (multidimensional) point objects. The grid file [NHS 84], PLOP-hashing [KS 88], the
BANG file [Fre 87], and the buddy tree [SK 90] are weIl known representatives of this class of access
methods. A survey can be found in [SK 90]. There are three basic techniques für extending multidimensional

point access methods (PAMs) to multidimensional spatial access methods (SAMs) für rectangles [SK 88]:

clipping, overlapping regions and transformation.
Another imponant characteristic of a SAM is the type of spatial objects it is ahle to handle directly, i.e. the

type of objects which are exactly represented. All spatial access methods proposed up to now, are restricted to
the storage of simply shaped objects such as cells of a fixed grid (grid cells für shon) rOM 86], rectilinear

rectangles (with their sides parallel to the axis, rectangles für shon) [Gut 84], [NHS 84], [SK 88], [SK 90],

[BKSS 90], spheres [Oos 90] or convex cells (convex polygons) [Gue 89].
However, no spatial access methods is available für more complex spatial objects and panicularly is not für

the class of SPH. In order to provide an efficient access method für complex spatial objects, a 'brote force'

approach was applied up to now. Any spatial object is placed within a rectilinear rectangle or convex polygon
of minimum shape forrning a container für that object, yielding a socalled conservative approximation. A

simple spatial object is called a container iff any point inside the contour of the complex spatial object is also
contained in the container object. Those containers are selected according to their suitability to be handled by
Olle of the spatial access methods mentioned above.

As simple containers just provide conservative approximations, query processing on complex spatial

objects has to procede in a two-step manner. The fIrst step, the socalledfilter step, reduces the entire set of
objects to a subset of candidates using their spatiallocation. The filter step is based on spatial access methods

managing container objects using the following propeny: if the container does not fulfill the query condition,
so does not the object itself. However, because container objects provide no exact representation, this filter

step does not exactly evaluate the query, hut only yields a set of candidates, which may fulfill the query
condition. Therefore, these candidates have to be exarnined in a second step, called refinement step. This step

applies complex algorithms known from the field of computational geometry to the original spatial objects and
detects exactly those objects finally fulfilling the query condition.
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Consider the following Point Query as an example für this kind of query processing. Two objects remain to
be examined in the refmement step, bur only Olle of them fulfills the query condition (figure 3).

Figure 3: Example for the Point Query

At fIrst glance, this brote force approach of coupling a spatial access method and computational geometry
algorithms, seems to be a good method of query processing. However, more detailed considerations reveal
the main dis advantages of this approach: in the case of a bad approximation of an object by its container, a

large number of 'false drop' candidates, i.e. objects not fulfilling the query condition, have to be refmed. On
the other hand, the refinement of Olle single object is very costly particularly if the object complexity is high,
because complex and time-consurning computational geometry algorithms have to be applied. We have to
consider these two aspects when tuning the performance of spatial query processing.

In the next section we will exarnine both steps of query processing in more detail to show possible ways of

performance improvements.

2.3 Performance improvements of query processing

The filter step
The perfonnance of the filter step considerably depends on the quality of the spatial object approximation by
the container used für fIltering issues. The approximation quality is defmed as the amount of area covered by
the container hut not by the object itself. As containers, e.g. minimal bounding boxes, are simple spatial

objects, they cannot exactly represent complex spatial objects without introducing additionally covered area.
Minimizing the amount of that area will direcdy (proportionally) improve the fIlter step. Also more complex
containers may yield a retter approximation. The only requirement to the container type is the ability to be
efficiently managed by a SAM. Particularly für rectangles there are very efficient access methods, e.g. the R*-
tree [BKSS 90]. Therefore, we propose recti1inear polygons as a particular type of container. They can be
fonned by a set of recti1inear boxes, at the expense of introducing redundancy in object representation. Using
a number of containers to represent Olle object is the basic idea of redundant object representation. For SAMs
some limited amount of redundancy leads to better query perfonnance, as we will see in chapter 6.

The refinement step
The perfonnance of the refmement step depends on the number of refmed objects as weIl as on their
complexity. Minimizing the number of objects to be refmed is the task of the filter step. Therefore, object

complexity is the issue to be examined hefe. The more complex the spatial objects are, the more time
consuming are the computational geometry algorithms needed für query evaluation. A simplification of the
refined objects with respect to their complexity may lead to a bettel overall perfonnance of the refinement step
even if a limited amount of redundancy has to be handled.

Summarizing, the mall goals in performance improvement of filter based query processing are the

following:
1. Improvement of the accuracy of the fIlter step to minimize the number of candidates.
2. Improvement of the refmement step by using objects considerably simpler than the original SPHs to

speed up computational geometry algorithms.
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The above considerations show, that für improving the performance of spatial query processing, we have to
give up using Olle single container für every complex spatial object. Therefore, Dur objective is to represent
the SPHs within the spatial access methods using a number of containers inducing redundancy in object

representation.
A more detailed consideration of different types of redundant representations of SPHs is subject of the next

chapter.

3.

Object representation based on redundancy

The basic idea of any redundancy based object representation is to improve query perfonnance by shifting
time requirements from query processing to update and restructuring operations. Retrieval operations typically
occur considerably more orten than update operations, e.g. insertions. Thus it is worth to invest more time in
preprocessing which is saved in a manyfold way in query processing. Specifically, we will generate a new
type of object representation in preprocessing which is time saving in query processing. In more detail, the

preprocessing step calculates a redundant object representation given by a decomposition into less complex
components. This leads to a better fIlter approximation and more efficient computational geometry algorithrns
within the refmement step.

In the following, we will present different types of redundant object representations für the class of SPHs
known from the literature [are 89].

Minimum bounding boxes (no redundancy):
The object management using olle object container in the filter step, coupled with a refinement step on the

original complex object representation is a widely used tradition al method (see [Gut 84]). This approach is
called 'identity' representation from now on. Without introducing redundancy this is the only approach
managing complex spatial objects by SAMs preserving spatia1location and exploiting spatial clustering. The
dis advantages of this approach, leading to a bad query performance, have been outlined before.

Redundancy induced by teils of a fixed grid:
In the quad tree I z-value ([Sam 84], [are 89] approach a container tor a spatial object is fonned by exactly
those cells of a fixed grid which have a common intersection with the object. As a cell of a fixed grid can be
efficiently represented by a bitstring, i.e. a z-value, representing the recursive grid partitioning of the
dataspace, those cells can be efficiently stored using an olle-dimensional access method, e.g. a B-tree.
Inducing redundancy is intended by forming a smaller and more complex container and therefore increasing
the performance of the fIlter step. As the object complexity generally is not decreased using this approach, the
refmement step is not improved.

Redundancy induced by grid and object structure:
A further approach is taken by grid based methods which are not restricted to a predefined grid resolution, hut
taking account of the object location and stmcture. Similiar to the edge-quadtree [Sam 84], an object is
partitioned into grid cells, socalled base grid cells. A base cell is the largest cell formed by recursive grid
partitioning containing parts of the object which fu1fil1 a predefmable complexity condition. Therefore, no
minimum cell resolution can be guaranteed. The resolution depends on the shape of the object. Thus the
partitioning process can typically produce cells of very small area. The refinement step, however, contrary to
original grid cell methods using a fIXed grid resolution, is tuned by the occurrence of very simple objects
represented by each grid cello The amount ofredundancy, however, in this method essentially depends on the
object structure, e.g. the distance of two vertices, and can arbitrarily grow.
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Redundancy induced by structural decomposition:
The usage of grid cells representing spatial objects has its origin in the lack of suitable spatial access methods
tor higher dimensional dataspace. Grid cells represented by bit strings form a transformation to a one-

dimensionallinearly ordered dataspace. However, grid cells are bound to a fIXed partitioning scheme and
therefore provide no location independent object approximation as minimum bounding boxes do. Therefore
the most promising approach introducing redundancy to object representation methods is a structural

decomposition of complex spatial objects into simpler components. The term 'structural' expresses that the
decomposition is oriented on the boundary of the polygonal object. Simi1ar to the original bounding box
approach, the components are managed by a SAM by placing them into containers, e.g. minimum bounding
boxes. Structural decompositions provide a high degree of choices tor component types and decomposition

algorithrns. Typical object types tor components are convex polygons, trapezoids, triangles and rectangles.
Choosing a proper decomposition algorithrn will improve both, the filter step and the refinement step. The
filter step performance will benefit from a retter overall object approximation by a container approximation of
each single component. However, the problem of multiple representation of one and the same object induced

by redundancy hag to be regarded. Additionally, the refinement step will be improved by simpler objects,
which can be processed raster by computational geometry algorithms.

In the next chapter, we present tour different decomposition techniques tor SPHs. The different redundant

representations tor an SPH produced by these decomposition algorithrns will be compared within a spatial
query processor with respect to their query performance in chapter 6.

4. Structural decomposition techniques

The goal of the following sections is to examine different structural decomposition techniques with respect to
their performance für spatial query processing. At first, a catalogue of important properties is introduced
wh ich allows to distinguish and classify the different types of decomposition algorithms für polygonal
objects. Then we will describe four different algorithrns in more detail.

4.1 Properties of structural decomposition techniques

The basic properties of a structural decomposition method can be divided into those describing qualitative and
those describing quantitative aspects of the method. Qualitative aspects are the type of generated

decomposition components and the distinction between partitioning or covering of spatial objects. A
decomposition is called a partition iff all components are pairwise disjoint. Otherwise, it is called a covering.
The application of specific techniques from the field of computational geometry (plane sweep, divide and
conquer, etc.) is another qualitative aspect of a decomposition technique.

Quantative aspects are the number of generated components with respect to the complexity of the object and
the quality of container approximation of these components. The time needed to decompose one object and to

apply computational geometry algorithrns to the decomposition components is a further quantitative aspect of a

decomposition technique.
Abstracting from the specific properties mentioned above, decomposition techniques can be classified with

respect to the complexity and the number of generated decomposition components. However, decomposing
into very simple components will lead to a high number of components and vice versa.

The basic idea of comparing different decomposition techniques (see chapter 6) is to experimentally
ev alu ate which grade of object decomposition leads to best performance in spatial query processing. What is
an adequate type of object components with respect to complexity of components and the amount of

redundancy?
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Therefore, we selected and implemented four different decomposition algorithrns which will be explained
in detail in the next chapter.

Most decomposition techniques known from the field of computational geometry have been developed
under requirements different from the application of efficient (spatial) query processing. In order to achieve

best query performance, it is necessary to take into account a number of requirements of object representation.
The algorithrns proposed in computational geometry ([CD 85], [KeSa 85]) are mostly optimal wirb respect to
one of those properties, e.g. minimal number of components, hut totally ignore other aspects, e.g. the TUn
time. Therefore, it was necessary to develop particular decomposition algorithms für query processing of
complex spatia! objects. The most important requirements are:

Low number of components
Increasing redundancy induced by a high number of components affects the performance of the filter
step which has to manage a significantly larger number of containers. Therefore, another important goal
is to rninirnize the number of generated components.

Good run time perfonnance
Whenever a new object is inserted into the database, a decomposition of that object must be perfromed.
Therefore, algorithms optimal in the number of components which requires an exponential nm time,
e.g. proposed in [PS 85] or other papers, are quite unacceptable. Thus decomposition algorithms with a
ron time of low order have to be provided.

Good container approximation
As outlined in chapter 2, the evaluation of a spatial query consists of the fIlter and the refinement step.
The fIlter step, based on a object container representation, yields the set of candidates to be exarnined in
the refmement step. Therefore, it is of crucial importance für the fIlter step to rninimize the 'dead space'

between a spatial object and its container and thus to reduce the number of components passing the filter
step. For achieving a good container approximation, object decomposition techniques rollst supply
components that can be weIl approximated by containers, e.g. minimum bounding boxes.

Small amount of storage
Until now, we only focussed on efficient processing of spatial queries. Nevertheless, limiting the
amount of additional storage required fOT the redundant object representation is important as weIl.

Ease of implementation
The integration of object decomposition techniques into a real spatial database system demands in the
developement of robust algorithms, easy to implement and maintain.

Obviously, there are many different criteria influencing the quality of a decomposition method. Without further
examination the importance of any of these criteria is not foreseeable. Therfore, we performed an empirical
comparison (chapter 6) to evaluate which method achieves best query performance.

In the next sections, we will introduce foul selected decomposition methods. We will give abrief
algorithmic description and try to depict particular properties with respect to the criteria outlined above. One
important premise foT the developement of the algorithrns was to use minimum bounding boxes as containers
foT the components.

4.2 Decomposition into convex polygons

As geometric algorithms for the type of convex polygons are more efficient than those for arbitrary SPHs, we
consider as a fll'St approach the decomposition of an SPH into a set of convex polygons. The basic idea is to
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transform the original SPH into a simpler bur equivalent geometric object and then decompose this new object
with an appropriate algorithm. This idea leads to the following two step algorithrn [DHH 90]:

Step 1: Transfonn the original SPH P into a polygon P' describing the same infInite set of points as P hut
containing no holes. This polygon P' is simple with the exception that edges rnay overlap. From
now on, those polygons are called simple*.

Step 2: Decompose the simple* polygon P' into a set of convex polygons.

Within the following algorithm the two techniques, transformation (step 1) and divide and conquer (step 2),
from the field of computational geometry are applied (see [PS 85]).

Step 1: Hole integration
The objective of the first step is to integrate all holes of the given SPH P into the enclosure polygon of P
without changing the infinite set of points described by the object. This will be achieved by sending out ho le
integration rays from the holes of the SPH towards the enclosure polygonuntil an holes are removed from the
original SPH. For a successfull termination of the hole integration step it is necessary to define an integration
order on the holes. This will be achieved by building up the convex hull over an the holes of the polygon and
sending out integration rays flom the holes having points on this hull towards the enclosure polygon. Thus, a
subset of the holes are integrated into the enclosure polygon and the algorithrn continues with building up the

convex hüll of the remaining holes and so on until no more holes are left. At the end of step 1 a simple*
polygon is produced describing the same (infinite) set ofpoints as the original SPH.

An imponant feature of the algorithm is that the integration rays, ie. an new segments, should be parallel

to Olle axis of the coordinate system whenever possible. This is due to the fact that an decomposition
components generated by step 2 of the algorithm will be approximated by rectilinear rectangles. Figure 4 gives
an example ofthe effect of step 1.

Figure 4: Example for the hole integration step

Step 2: Decomposition of the simple. Polygon
After removing the holes using step 1, the task of step 2 is to perform the actual decomposition of the objectp' 

into convex componets. As mentioned before, the only difference between simple polygons and simple*
polygons is the existence of overlapping edges. Therefore, most algorithrns tor the decomposition of simple
polygons into convex parts (see [CD 85]) can also be applied to simple* polygons with only slight
modifications. How can we decompose a simple polygon into convex parts? The vertices of a given simple
polygon which displayareflex angle, called notches, will play the crucial role in the following, because the
result objects (convex polygons) must not contain such vertices. So the basic idea of step 2 is to remove each
notch by me ans of simple line segments drawn from the notch. As in step 1, line segments should be parallel
to Olle axis whenever possible. The algorithm uses the technique of divide and conquer because after

removing Olle notch from the original polygon it will be applied to both produced result components in the
same way until no more notches remain and a set of convex components is achieved. Applying step 1 and 2 to
the original SPH gives the result set of convex components. Figure 5 shows the effect of steD 2.
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Figure 5: Exarnple forthe convex decomposition ofthe simple* polygon

We can sumrnarize the propeIties of the presented decomposition algorithm: it is easy to implement, has a

good run time performance (Q(n log2 n), where n is the number of veItices) and the number of produced

components in the worst case is twice the optimum number of convex components (see [DHH 90]).

Decomposition into trapezoids4.3

The second partitioning method we take into consideration is the decomposition of an SPH into a set of
trapezoids introduced by Asano/Asano [AA 83]. The components produced by this algorithm are formed as
trapezoids containing two horizontal sides. This property provides a good container approximation by means

of rectilinear rectangles. The algorithm uses the plane sweep technique known from the field of computational
geometry. The basic idea is, to send out for each vertex Olle or two horizontal rays into the interior of the

polygon to the fIrst edge encountered. In the following we give abrief description.
As mentioned before the algorithm uses the plane sweep technique, i.e. the vertices will be passed and

handled with increasing y -coordinates, for example. Thus, the entire algorithm consists of two steps:

Step 1: Sorting the vertices of the given SPH (enclosure polygon and holes) builds up the event point list,

i.e. a sorted list of all the points which have to be treated by the algorithm.
Step 2: Processing the event point list by switching from Olle event point (vertex) to the next sending out

partition rays (event point scheduling). Within this process, each ray and its successor form Olle

trapezoid!. Thus, the set of component objects is gradually generated.

Applying step 1 and step 2 to the original SPH produces the resulting set of trapezoids. Figure 6 shows an

example of the effect of the algorithm.

---o-~,~.s:..

Figure 6: Decomposition of an SPH into a set of trapezoids

Summarizing, the main properties of the presented decomposition technique are: It is very easy to implement
and hag a good mn time performance of Q(n log n) (where n is the number of vertices). The number of
produced components is three times the optimum number of components in the worst case, hut it is quite

better tor most SPHs [AA 83].

Triangulation4.4

The basic concept of decomposition of arbitrary SPHs is generating a low number of simple object
components which support fast query processing. Triangles are very simple objects with a fixed length

description and are easy to handle with computational geometry algorithms. The triangulation algorithm
introduced hefe guarantees the generation of a minimum number of triangles für a given SPH where the

triangles introduce no new vertices. The algorithm works in a three step manner:

In some cases degenerated trapezoids, i.e. triangles with Olle horizontal side may be produced.
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Step 1:
Triangulate the SPH using the Delaunay triangulation [Dei 34]. The Delaunay triangulation works on the set of
vertices of the SPH and generates a triangulation of its convex hüll, see figure 7a/b. It fulfills the socalled
Lawson criterion which guarantees homogenous triangles in the sense that the deviation of the angles of a
triangle is small. Thus the degeneration of the shape of the triangles is restricted. The resulting component
triangles may be completely inside the SPH or may be completely outside of the SPH or may have intersection
points with edges of the SPH. Figure 7anb depicts that the Delaunay triangulation does not necessary repre-
gent the original SPH, i.e. this only happens if the SPH is convex and hag no holes.

Figure 7: a) SampIe SPH
(19 vertices)

b) Delaunay
Triangulation
(27 Triangles)

c) Provisional
Triangulation
(50 Triangles)

d) Final
Triangulation
(17 Triangles)

Step 2:
In the second step aplane sweep algorithm [KHS 90] is applied which detects all intersections of the set of

triangles with the edges of the SPH. The intersections are removed by decomposing a triangle with
intersection points into a set of subtriangles where no more intersections occur, see figure 7c. The number of
the additionally generated triangles depends on the number of intersections. At this point, the algorithm does

not restrict to the vertices of the SPH hut has introduced new vertices, socalled 'StelleT points'.

Step 3: In the third step an Steiner points are completely removed by examining each set of Steiner points

lying on an edge of the SPH and merging an triangles belonging to these Steiner points info a single triangle.

Figure 7d depicts the final solution restricting to the vertices ofthe original SPH.

The properties of the triangulation introduced above can be surnmarlzed as follows: A minimum number of

triangles is guaranteed from the algorithm. There are no new vertices generated. The run time performance is

Q«n+k) log(n+k)), see [KHS 90], where n is the number of vertices and k is the number of intersections of

the triangles from step 1 with the edges of the SPH. Generally, there is no guarantee für triangles to contain

horizontal or vertical edges, which are essential für the quality of a container approximation.

4.5 Heterogeneous decomposition

The idea of this decomposition technique is to represent an SPH by components even more simple than

arbitrary triangles or trapezoids. Wirb respect to a container approximation by its bounding box, the most

simple type of component is a (rectilinear) rectangle. As this type of components is insufficient für the

representation of arbitrary SPHs, i.e. an arbitrary SPH can not be exactly represented by a set of rectangles, it

is necessary to use further types of components. Therefore, the decomposition technique is called

heterogeneous. With respect to a good approximation of the components by bounding boxes, we choose

rectilinear rectangles and rectilinear triangles, i.e. triangles with two edges parallel to the axes, as

decomposition components. To provide a unique representation of the area covered by an arbitrary SPH, an

additional type of components managing notches, i.e. a particular shape property of polygonal objects

described before, is necessary. This type of component is called a peak. Particularly für real applications this

type of component turns out to occur only in exceptional cases. Therefore, a more detailed description of

peaks is ignored in this paper. Figure 8 shows an example für a heterogeneous decomposition of a polygonal

object.
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Figure 8: Decornposition of an object into a set of rectilinear triangles and rectangles

The complete algorithm foT decomposing an SPH into the three types of components mentioned above

consists of 3 steps:

step 1: Remove the peaks representing them by means of peak components. This step builds up a new

SPH without peaks.
step 2: Remove an non rectilinear edges of the SPH by using rectilinear triangles. Thus, a set of rectilinear

polygons is generated.
step 3: Decompose an rectilinear polygons into rectilinear rectangles.

Figure 9 depicts snapshots of the result of the algorithm (step 1-3) für a sarnple polygon. Additionally let us

mention that the decomposition process can as weil be performed by aplane sweep type algorithm. However,
this algorithm is considerably more complicated, and therefore it is not presented hefe.

Slep 1

Figure 9: Heterogeneous decomposition in a 3 step algorithm

Olle important property of this heterogeneous decomposition technique is that the generated components are

very simple. Therefore, we expect that they can be processed very fast by geometric algorithrns. However,
this is enforced by a larger number of components than in other decomposition methods (twice the number of
components in practice). As the algorithmic complexity strongly depends on the structure and on the shape of
the decomposed object, an exact run time investigation of the above algorithm cannot be performed

analytically.

Query processing based on object decomposition5.

The objective of this chapter is to describe in more algorithmic detail the processing of different spatial queries
based on a decomposed object representation. In particular we will take a closer look at the insert operation,
the point query and the window query. These operations will be analyzed with respect to their performance in

chapter 6. The algorithms described below are not restricted to a specific decomposition technique, hut hold

fot any redundant spatial object representation.

5.1 Insert operation

The task of the insert operation is to add a new spatial object, i.e. an SPH, to an existing set of spatial objects,
managed by a given access method. This operation consists of three steps.
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Within the fugt step, the new object is decomposed into a set of simpler components (e.g. convex

polygons, triangles) by applying one of the decomposition algorithms introduced in the previous section.
Then, in step two, the minimum bounding box, i.e. the container object, tor each of those components is

generated. Furthermore, a unique identifier (a surrogate) tor the original SPH is determined and assigned to
a1l of its components. This identifier represents the correspondence between the original spatial object and its

decomposition components. Thus, the records describing the components consist of three parts: the minimum
bounding box of the component, the representation of the decomposition component, and the object identifier.
In a last step, a11 these records belonging to the original SPH are inserted into the database using the insert

algorithm ofthe SAM.
The result of the insertion operation is a new data fIle which now contains the components of the inserted

SPH. The components refering to theoriginal SPH are labeled by their unique identifier.
As expected, it tums out that the insertion cost using object decomposition is higher than using no

decomposition. However, the decomposed representation of spatial objects may improve spatial query
processing by an order of magnitude as we will see in chapter 6.

5.2 Point query

The result of a point query consists of all stored spatial objects containing a given query point. As described in
chapter 1 the processing of any spatial query consists of two steps: The filter step and the refmement step.
The filter step of a point query asked on a decomposed object representation using a SAM yields all those

components whose bounding box contains the query point. They are supplied by evaluating a point query
against the SAM. The refinement step sequentially examines these candidates performing a computational
geometry algorithm on the exact component representation ('point-in-object' test). If this test yields 'true', the
identifier of that component record is added to the result. After examination of all candidate records the query
is finished.

5.3 Window query

The window query yields a11 the spatial objects intersecting a given query window. Similarily to the point

query the filter step of a window query is based on the SAM: A window query is perfonned on the fIle of

components yielding a11 those components whose bounding box intersects the query window. Within the
refmement step the exact representation of all these candidates is tested against the query window, i.e. a

computational geometry algorithrn is perfonned on the exact representation of each component. If there is an
intersection, the object identifier of a component record is added to the result. Contrary to the point query the
described algorithm of query processing hag to deal with object redundancy. In general, there may be a
number of different components labeled with the same identifier and therefore refering to the same spatial

object intersecting the query window (see figure 10).

In such a case. the same identifier. i.e. the same spatial object. is handled more than once by the time

consuming refinement algorithm. To avoid a multiple refinement of the same object and a duplicated output of
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objects we propose the following strategy. We use a Olle dimensional main memory search structure, e.g. an
A VL-tree or a olle-dimensional hashing scheme, to manage the resulting object identifiers. Whenever the
identifier of an object is added to the result, it is also inserted into this search structure. Then, before applying
the refinement step to a filtered object, the corresponding object identifier is retrieved in the search struCture. If
it occurs in the search structure, an unnecessary refinement step is prevented. B y me ans of this technique we

avoid duplicates in the result and do not perform redundant refmement operations.

6.

Performance comparison of decomposition techniques

After presenting different stmctural decomposition techniques as weIl as query processing algorithms using
these techniques, it is the mall goal of this chapter to compare the different techniques to each other and to the

original, undecomposed representation. Thus, we can analyse whether it is worth it to decompose complex
spatial objects and which decomposition technique is best suitable. We will present aseries of tests which we
ran with Modula-2 implementations on SUN 3/60 workstations under UNIX. The mall question we want to

answer is whether decomposition techniques lead to better query performance and which technique achieves
best performance improvements in spatial query processing. The comparison consists of two parts: Part Olle

(section 6.2) compares the different decompositions among themselves with respect to their number of
produced components, their quality of container approximation and their amount of storage. Then in part two
of the test (section 6.3) the different decomposition techniques are investigated with respect to query

processing time.

6.1 Selection of test data

One basic problem of an empirical performance comparisons is the selection of an appropriate standardized set
of test data. The best choice is to exarnine data files used daily in real applications. Thus, we tried to provide
large sets of spatial data, e.g. digitized maps used in existing geographic information systems. Additionally,
large sets of synthetic data, i.e. polygons, were generated by a tool in order to facilitate testing the query
processing system under a wide range of varying data. To describe the test fIles used für the comparison, it is
necessary to provide a set of parameters which characterizes single polygons and sets of polygons. For single
polygons we choose the number of vertices, the number of holes, the size and the shape complexity as
parameters. The shape complexity is characterized by the class the polygon is a member of, i.e. convex,

starshaped, simple polygons and simple polygons wirb holes (SPH) (see [PS 85]). For sets of polygons, the
number of polygons, their cover, and their distribution in data space are additional paramters to be
investigated. The cover of a set of objects is the sUfi of the size of the objects relative to the size of the data
space. In particular, we selected the following files für Ouf comparison.

Num. of
Objects

471

1000

1000

1000

1000

Name Num. of
Vertices

95.1

85.0
85.0
20.0

20.0

Cover Dislrib. Num. of
Holes

0.02

2.OC

2.OC

O.OC

O.OC

Shape

0.27

1.00
10.00

1.00

10.00

europe

sph_85_1

sph_85_10

star-ZO_l

real

uniform

uniform

uniform

uniform

SPH

SPH

SPHstarshaped~shaped

Table 1: The test files

The fIrst fIle ('europe') consists of 471 polygons representing the counties of the European Community, see
table 12, In addition to the examination of this real data fIle we generated two pairs of test files by a tool, each

.2 We thankfully acknowledge receiving this data file from the 'Statistical Office of the European Communities'
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of them consisting of 1000 polygons. The 'sph_85' files contain SPHs, whereas the 'star_20' files contain

simple starshaped polygons without holes. We selected different covers für the fIles, cover 1 and 10, to
simulate different degrees of object overlap, e.g. occurring in multi attribute maps. The objects of the four

synthetic files are distributed uniformly in dataspace due to the fact that the performance of the R*-tree which
is used as a SAM für the bounding boxes is independent of the data distribution [BKSS 90].

6.2 Comparison of decomposition techniques with respect to structural properties

Within the fIrst part of the comparison we examined the different decomposition techniques of chapter 4 withrespect 

to the number of generated components, the quality of container approximation and the amount of

storage. Table 2 contains the test results für the files presented in section 6.1.

ioont---
471

2.15

1.00

convex ~ trapezoids triangles I h~~europe
Num. ofCompooents

Approximation

Amount of storage

22296

1.31

2.15

44332

1.20

2.77

44218

3.13

2.63

81338

1.25

3.73

sph_85_1/10 ident convex I trapezoids triangles

85004

3.13

3.03

heterogen

198305

1.15

5.19

1000

1.72

1.00

51149

1.31

2.99

83998

1.10

3.00

Num. ofComponents

Approximation

Amount of storage

star_20_1/10Num. 

ofComponenls

Approximation

Amount of storage

ident--
1000

1.41

1.00

~~ 

trapezoidsniangles

17958

3.06

2.64

heterogen

34429

1.19

3.67

7764

1.21

2.06

18958

1.11

2.79

Table 2: Test results für the structural properties of the decomposition techniques

For the interpretation of the results presented in table 2, we start with the analysis of the real data file 'europe'.

Considering the degree of redundancy, i.e. the number of components introduced by decomposition,
shows that the number of generated components essentially depends on the type of objects stored in the file.
For the trapezoid and the triangle decomposition the number of components is approximately the same as the

number of vertices in the original object (see section 4.3 and 4.4). The convex decomposition generates about
half, the heterogeneous decomposition about twice the number of components compared to the trapezoid and

triangle decomposition. The number of convex components essentially depends on the shape, i.e. the number
of notches, of the SPHs, whereas the heterogeneous decomposition generates Olle triangle and olle rectangle
tor each vertex of the SPH in most cases.

Considering the quality of container approximation, the bad value of 2.15 tor the identity (undecomposed)
representation is conspicuous. Within query processing, such a bad value leads to frequent application of the
refinement step, which is particularly time consuming due to the undecomposed representation. The
application of decomposition techniques causes much better approximation values within the range of 1.2 -
1.3 tor the convex, the trapezoids and the heterogeneous decomposition. This is caused by the application of

partition rays parallel to Olle axis of the coordinate system. Using the triangle decomposition leads to values
larger than 3, because rectangles are no proper type of container tor triangles.

The influence of the number of components and the quality of container approximation on the performance
of spatial query procesing is evaluated in the next section.

The reason tor the introduction of redundancy introduced by structural decomposition techniques was to

speed up spatial query processing. However, this type of object representation leads to a higher amount of
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(secondary) storage than the identity representation. For real data, the convex representation needs twice as
much, the trapezoid and triangle representation requires almost three times as much, and the heterogeneous
representation needs almost four times as much storage space as the identical representation.

Within the next section we will carefully evaluate the performance of spatial query processing based on
different decomposition techniques and we will compare it to the identity representation.

6.3 Comparison of decomposition techniques with respect to spatial query processing

In this part of the comparison, we would like to empirically evaluate which object representation technique
(undecomposed, convex polygons, trapezoids, etc.) leads to best performance in spatial query processing.

As described in section 1 and in more detail in section 5, spatial query processing consists of two steps, the
filter step and the refinement step. According to this two phases, we evaluated query performance of different
types of spatial object decompositions comparing their results to the undecomposed object representation.

The performance of the fIlter step is considerably determined by the performance of the SAM handling

bounding boxes. We used the to Dur knowledge best access method handling bounding boxes, the R*-tree
[BKSS 90] with page capacity (directory and data) bound to 2K. The most time consuming operations during
queries in the R*-tree are accesses to secondary storage and comparisons within the directory and the data
pages. Thus, we counted the number of page accesses and the number of comparisons in directory as weil as
data pages and then multiplied them by typical time constants.

The refinement step performes computational geometry algorithms für those candidate objects supplied by

the fIlter step. In Dur bookkeeping of query time we include the time spent with the mall memory search
structure für object identifiers in the time für the refinement step. This is due to the fact that decomposition

techniques simplify complex computational geometry algorithms by using a set of object components.
Therefore, we assign the task of handling this redundant object representation to the refinement step.
Consequently, the refmement performance is determined by the time spent für computational geometry
algorithms and, in case of redundant object representations, the time needed für performing insenions and
search operations in the mall memory search structure managing the identifieres of found objects. As these
performance parameters strongly depend on the particular set of data, we explicitely measured them using
implementations of the different decomposition techniques.

Finally, we added the performance parameters of the filter and the refinement step to obtain a measure für
the overall query performance of redundant object representations für different spatial queries.

The queries that we performed on the different object representations are classified into point queries
(window query with zero extension) and window queries with different window sizes referring to a varying
selectivity of spatial queries. The size of the query window was fixed to the values of 0.01 %, 0.1 %, 1 %, and
10% of the data space size (which we consider für typical within real applications). More complex queries,
e.g. region queries using SPH shaped query regions, were not considered in this test. Those queries typically
are evaluated by performing a window query with a minimum bounding box of the query region foilowed by
more complex computational geometry algorithrns on the objects supplied by the filter step of the window
query. Therefore, those algorithrns are even more crucial in overall query processing and, in fact, additionally

favour object decomposition techniques.
The query results are presented in three figures für each of the data files introduced in the last section. The

figures depict the foilowing information: the horizontal axis represents the size of the query window. The

number below the window size is the percentage of answers with respect to the total number of objects. Let us
mention that a low percentage of answers corresponds to a high selectivity and vice versa. The venical axis
gives the time requirements für performing those queries of varying window sizes. The time is given in
microseconds per found object. Every decomposition technique is characterized by its own curve carrying an
abbreviation of the name of the technique. The first figure corresponds to the time spent für the filter step. The
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next Olle depicts the time needed für performing the computational geometry algorithms on the

object/component representations and, in case of redundant object representations, the time spent für the main
memory search structure avoiding duplicate refinement operations. Finally, the rightmost figure represents the
complete result adding the results of the fust two figures and therefore corresponds to the overall query time
of spatial query processing.

f
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~
~
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The overall query time clearly shows a strang dependance on the size of the query window. Further important
criteria which influence the perfoffilance of different object representations are the object complexity, i.e. the
number of vertices, and the cover of the objects. The mall results are:

.decomposition techniques clearly outperform (up to an order of magnitude) the undecomposed
representation für point queries and window queries with small query windows and thus high selectivity

.with decreasing queryselectivity the perfoffilance of the undecomposed representation improves relative to
the performance of decomposition techniques with a break-even point für a rather low ~electivity

.the performance of decomposition techniques für window queries of low selectivity strongly depends on
the amount of redundancy

.the more complex the objects, the more clearly appears the trends outlined above

Independent of the data file, point queries and high selectivity window queries are perfonned more efficiently
by any of the decomposed object representations than by the undecomposed representation. Particularly, the
real data file 'europe' (fig. 11) shows a significant gain of decomposed representations up to the factor 5 in
overall query time. As the first two figures, e.g. of the 'europe'-file (fig. 11.1 and 11.2), show, this
behaviour is due to the very expensive refinement operations für the undecomposed objects and to the fact,
that small query windows will profit from the selectivity of the spatial access method, limiting the number of
disk accesses and supplying a small amount of redundant components. Particularly, für the point query,
caused by the good container approximation of most decomposition methods, frequently no redundant

components are accessed at all. This trend obviously holds für any of the data files. The gain in efficiency of

object decompositions depends on the complexity of the data objects. The higher the complexity of the objects
with respect to the number of vertices, the better is the perfonnance of object decompositions relative to the

identity representation.
Regarding low selectivity window queries, i.e. query windows of 5-10 % of the data space, this trend

tums around. Redundant object representations perfonn Würge für large window queries depending on the
amount of redundancy. This is strongly caused by the large amount of components which have to be managed
by the access method. As queries of small selectivity relate to large portions of the data, the total amount of
stored data essentially determines the number of disk accesses necessary to answer those queries. Typically,
the amount of stored data für object decompositions is significantly higher than für an undecomposed object

representation, as we see from section 6.2, table 2. Therefore, für decomposed object representations the time
spent with the access method increases with a growing size of the query window, i.e. a shrinking selectivity
of the query (see first figures of the perfonnance results). The amount of redundancy that has to be handled
within the refinement step obviously increases, at the same time. Therefore, eliminating redundancy strongly

determines the perfonnance of the refinement step of decomposed representations. Contrarily, the average
time spent für Olle explicite object test of the undecomposed representation decreases, as the number of cheap
object tests increases (i.e. the bounding box of an object is fully included in the query window and therefore
no further action is necessary).
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The influence of an increasing object complexity is reflected in an intensification of the basic trends. On

one hand, complex objects require complex computational geometry algorithms in the case of undecomposed
representation (see fig. 11.2,12.2, and 13.2), on the other hand, decompositions of complex objects lack in a
further increase of redundancy (fig. 11.1, 12.1, and 13.1). Therefore, the performance of high selectivity
queries which strongly depend on efficient refmement operations will decrease wirb an increasing object

complexity für the undecomposed object representation. As low selectivity queries basically depend on the
number of disk accesses and the amount of redundancy to be handled, object decompositions will degenerate
für very complex objects which enlarge the degree ofredundancy. (see fig. 11.3, 12.3, and 13.3)

The cover of the objects directly corresponds to the selectivity of a query of frxed size. When only the
cover of the objects increases (allother parameters remain fixed), the number of answers will grow.
Therefore, the undecomposed representation needs a higher number of expensive refinement operations which
can be considered as a penalty für the performance. However, object decompositions surfer in handling a
large amount ofredundancy in the case oflow selectivity queries. (see fig. 12 and 14)

Summarizing over all shapes of objects, decomposition techniques gain by performing cheap computational
geometry algorithms in the refinement step. This advantage is strongly valid für high selectivity queries where
secondary storage accesses are not dominant. Low selectivity queries, however, supply a high amount of
redundancy which must be accessed on secondary storage and handled in main memory. These efforts rise

wirb an increasing size of query windows, i.e. decreasing selectivity. The degree of redundancy of a
decomposition method, i.e. the number of components für originally one spatial object, is mainly reflected in
the performance of low selectivity queries. The performance of the different decomposition techniques is
similar für high selectivity queries. This is due to the fact, that computational geometry algorithms perform
very sirniliar für all decomposition techniques considered hefe. The undecomposed representation performes
Würge für high selectivity queries. Depending on the decomposition technique and the particular type of
objects, a specific size of query window exists, where the performance curves of the undecomposed
representation and object decompositions intersect in a break-even point. Queries wirb higher selectivity are
more efficiently performed by the decomposed representations, queries wirb lower selectivity are handled
raster by the undecomposed representation.

Among the decomposition techniques the convex object decomposition mrns out to be the best performing
technique. It gains from a relatively small amount of redundancy (see section 6.2, table 2) and very cheap
computational geometry algorithms, because the average number of vertices is between 4 and 5. The break-

even point of the performance curve, particularly für complex data (fig. 12.3) and real data (fig. 11.3),
corresponds to a considerable large query size, i.e. a considerably low query selectivity. For most queries and
arbitrary types of objects, the convex decomposition technique performes bettet than the undecomposed

representation.
From Out tests we leamed, that an optimal decomposition technique is not obtained by minimizing the

complexity of the components due to the penalty of a very large amount of redundancy (see 'heterogeneous
decomposition'). It is desirable to find a decomposition method which restricts the computational effort für its
components and as weIl reduces the number of components. The performance of such an ideal decomposition
method within out test bed will correspond to a parallel to the axis representing query sizes, i.e. its
performance will be the same für small and für large query windows.

7 Conclusions

In this paper, we presented a two-level, multi-representation query processing technique fOT two-dimensional
polygonal objects consisting of a filter and a refinement step. The efficiency of the spatial query processor is
gained by decomposition of complex spatial objects into simple spatial components and the application of
efficient and robust spatial access methods fOT simple spatial objects. We introduced three new decomposition
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techniques foT simple polygons wirb holes. Within an extensive perfonnance cornparison, we cornpared these
techniques to each other, to another technique known frorn the literature and to the undecornposed
representation wirb respect to their perfonnance in spatial query processing. The main results are:

.Decomposition techniques generally perfonn extremely good für high selectivity spatial queries and they
outperfonn the traditional object representation up to one order of magnitude.

.Decomposition is a proper representation scheme especially für complex objects, i.e. polygonal objects
with an average vertex number greater than 80.

.Decomposed representations lead to a very good query perfonnance specially für files with a high cover,

e.g. multi-Iayer maps.
.The convex decomposition tums out to be the best compromise between simple computational geometry

algorithrns and a moderate degree of redundancy and is the winner of an decomposition techniques.

Summarizing, we can stare that query processing based on object decomposition is a prornising approach
worth to be further researched. In Dur future work, we will extend the query processor by more complex
queries, e.g. enclosure and containment queries. Furthermore, we plan to integrate additional decomposition
techniques and other spatial access methods, e.g. the cell tree [Olle 88] and the P-tree [KS 91], into Dur query
processor für an even more extensive comparison.
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