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Abstract

Similarity search in large multimedia databases is an im-
portant issue in nowadays multimedia environment. Multi-
media objects such as music videos usually consist of mul-
tiple representations such as audio or video features. Since
each representation may be of significantly different qual-
ity for a given multimedia object, similarity search meth-
ods could greatly benefit from taking these multiple rep-
resentations into account. An intelligent similarity search
technique should consider all available representations of
the database objects and should automatically choose the
best representation(s), i.e. those representations that model
the object in the best possible way. In this paper, we pro-
pose a novel approach for similarity search in multimedia
databases taking multiple representations of multimedia ob-
jects into account. In particular, we present weighting func-
tions to rate the significance of a feature of each representa-
tion for a given database object. This allows to weight each
representation during query processing. A broad experi-
mental evaluation shows the suitability and the effectiveness
of multi-represented similarity search in video databases.

1 Introduction

In this paper, we propose a novel framework for video
similarity search that takes the multi-represented nature of
the data objects into account. In particular, our framework
is able to integrate multiple representations such as audio
and video features into the query processing. The most im-
portant issue for multi-represented similarity search is the
weighting of each representation, i.e. the decision “how
significant is a given representation for a given object”.
We propose methods for this task that can be applied to
both types of summarization techniques, i.e. higher-order
and first-order summarization, that are commonly used in
multimedia similarity search. In addition, we propose a
method for combining multiple representations for similar-
ity search by weighting each representation. A broad ex-
perimental evaluation of our methods using a database of

music videos demonstrates the benefit of our methods for
similarity search in multimedia databases.

2 Related Work

Usually, multimedia objects consist of thousands or even
millions of feature vectors. In order to handle such data effi-
ciently, summarization techniques are usually applied to the
original data, i.e. the original feature vectors are grouped
together and each group is represented by a summarization
vector or summarization representative. Similarity is then
defined on these summarizations or the according summa-
rization representatives.

In general, we can distinguish two classes of summariza-
tion techniques, namely higher-order and first order summa-
rization. Higher-order summarization techniques are usu-
ally generated by applying optimization algorithms on fea-
ture vectors. They describe a video as a mix of statisti-
cal distributions or cluster representatives. First-order tech-
niques calculate a small set of representative feature vectors
as summarization vectors in order to describe a video. A
randomized technique for summarizing videos, called video
signature, is proposed in [1].

3 Multi-represented Similarity Search in
Multimedia Databases

In the following, we assumeDB to be a database of
N multimedia objects. Each objectOi ∈ DB, i =
1, . . . , N , is represented by a given set ofD representations
R1, . . . , RD, where each representation is a feature space,
i.e. Ri ⊆ R

di , anddi ∈ N denotes the dimensionality
of the feature space of representationRi (1 ≤ i ≤ D).
The j-th representation ofOi is denoted byOj

i , i.e. Oi =
(O1

i , . . . , OD
i ). We further assume that each representation

Oj
i of Oi consists of a series of feature vectors of lengthnj ,

i.e. Oj
i = (oj

i 1, . . . , o
j
i nj

) with oj
i l ∈ Ri.

In addition, we assume that the distances within each
representation are normalized sufficiently over all represen-
tations, e.g. using any of the methods of [4]. In order to
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combine multiple representations within the similarity eval-
uation, we have to determine for each objectOi ∈ DB
and for each of its representationsOj

i a weight for each of
the nj feature vectorsoj

i 1, . . . , o
j
i nj

. Having weights for
each feature vector of each representation of each object,
we can use any common distance measure between sets of
points such as the Hausdorff distance in order to compute a
weighted distance between two multi-represented multime-
dia objects. We will first introduce novel methods to deter-
mine the weights for a feature vector of a given represen-
tation and then describe how these weights can be used to
improve similarity search on multimedia objects.

3.1 Weighting Functions For Summarizations

For efficiency reasons, these large sets of feature vectors
are usually summarized within each representation. The
derived summarizations can be classified as first-order or
higher-order summarizations (cf. Section2). Thus, the fea-
ture vectorsoj

i 1, . . . , o
j
i ni

of objectOi ∈ DB of represen-
tation Rj are representative points of the derived summa-
rizationsSj

i 1, . . . , S
j
i ni

. In the following, an original point
p belongs to a summarizationS if it is a member of the
according cluster (in case of higher-order summarizations)
or if the according representative ofS is the representative
with the lowest distance top among the representatives of
all summarizations.
A Weighting Function Based on Support. The idea be-
hind our first weighting function is that each summarization
vector represents a given amount of original feature vectors.
This amount is a good indication on the significance of this
representative, i.e. how good this summarization represents
the original feature vectors. Thus, in our first approach, the
weight of thel-th feature vectoroj

i l of thej-th representa-
tion of objectOi ∈ DB, denoted byWsupp(oj

i l), is com-

puted by the fraction of points that are represented byoj
i l.

Formally, if |Sj
i l| denotes the fraction of original points that

are summarized bySj
i l, then the weight of the representa-

tive oj
i l is computed by

Wsupp(oj
i l) = |Sj

i l|/nj .

A Weighting Function Based on Specific Quality Mea-
sures. The first weighting function only considers the
number of objects the given summarization vector repre-
sents. However, it does not take the distances to the rep-
resentative object into account. A better idea might be to
consider the distances of the original points within one sum-
marization to their representative.

Usually, the summarization is generated optimizing a
specific quality function. For example, for higher-order
summarizations, the summarization is derived from a clus-
tering algorithm such ask-means or EM, which optimizes

a clustering quality criterion (e.g.TD2, log-likelihood). In
case of first-order summarization techniques, we can e.g.
use the method described in [1] and the according quality
function. Our second quality measure is based on the qual-
ity criterion upon which the summarization is generated. In-
tuitively, a summarization vector with high representative
power should be weighted high.

Let CQ(oj
i l) be the quality measure for thel-th sum-

marization vector of thej-th representation of objectOi ∈
DB, based on which the summarization is generated, e.g.
TD2 in case of higher-order features generated byk-means.
Then, the weight ofoj

i l is computed by:

Wqual(o
j
i l) = CQ(oj

i l).

A Weighting Function Based on Local Neighborhood.
The second weighting function takes each original object
into account when computing the weights for the derived
summarizations. When handling e.g. noisy objects, it
would be more reliable to rate the weight of a representa-
tive point r based only on the original points in the local
neighborhood ofr.

Our third weighting function follows this idea. Let
Nε(r

j
i ) = {qj

i |dist(rj
i , q

j
i ) ≤ ε} be theε-neighborhood

of a representativerj
i of the i-th database objectOi ∈ DB

in thej-th representationRj . Let us note thatNε(r
j
i ) only

contains original feature vectorsqj
i of Oi in representation

Rj . We define the weight ofoj
i l by the number of objects

in its local neighborhood, formally

Wlocal(o
j
i l) = |Nε(o

j
i l)|/nj .

A Weighting Function Based on Entropy. The three
weighting functions which we have introduced so far are
rather local in the following sense: in order to compute the
weight of a representativeo of a summarizationSo, they
only consider the objects that are summarized bySo, i.e.
belong toSo. However, it may be more appropriate to con-
sider all original features of a given representationRi in or-
der to rate a summarization vectoroi of this representation.
Our fourth weighting strategy follows this idea.

When computing the weight of a summarization vector
oi of a representationRi, we want to take the distances of
all original feature vectorsqi

1, . . . , q
i
m of representationRi

to oi into account. In fact, the distances ofqi
l to oi can be

considered as a random variablex following a Gaussian dis-
tribution G(x). The information content of such a random
variable can be measured by its entropy. For example, if the
entropy of the variablex equals 1, the distancesdist(qi

l , o
i)

are randomly distributed, whereas if the entropy of the vari-
able x is considerably low, the distancesdist(qi

l , o
i) are

most likely densely packed around the mean value ofx and
thus,oi is a good representation of the vectorsqi

1, . . . , q
i
m.

2



Formally, letxoi = {dist(oi, qi
l) | 1 ≤ l ≤ m} be a

random variable. The Gaussian distributionG(xoi) of this
random variablexoi is represented by the mean

µG(xoi ) =
∑m

l=1 dist(oi, qi
l)

m

and the standard deviation

σG(xoi ) =

√√√√ 1
m
·

m∑
j=1

(dist(o, qj)− µG(xoi ))2.

The entropy ofxoi is then defined as

H(xoi) =

+∞∫
−∞

G(xoi) · log G(xoi) dxoi .

Let oj
i l be thel-th summarization vector of objectOi ∈

DB in representationRj and letxoj
i l

be the random vari-
able built by the distances of the original features ofOi in
representationRj to oj

i l as defined above. The weight of
oj

i l is defined as the entropy of the random variablexoj
i l

,
formally

Wentropy(o
j
i l) = 1−H(xoj

i l
).

3.2 Combining Multiple Representations for Sim-
ilarity Detection

Having defined a weighting function for each summa-
rization vector for each representation of a database object,
we can combine multiple representations for the process of
similarity detection. The key step for effective similarity
search is the design of a dedicated distance measure that
takes the weights of each summarization vector into ac-
count.

In general, we can adopt any distance measure that
has been designed for multimedia objects to consider the
weights of each feature vector. LetO = (O1, . . . , OD) ∈
DB be an arbitrary database object and letQ =
(Q1, . . . , QD) be the query object. Furthermore, letdisti

be the distance function for comparing thei-th representa-
tion of O andQ, i.e. ai andQi. Then, the distance between
query objectQ and a database objectO can be computed by

dist(Q,O) =
D∑

i=1

λi · disti(Oi, Qi).

The most important part is to determine the weightλi

of representationRi. Obviously,λi should be derived from
the weights of summarization vectors of thei-th represen-
tation of the query objectQ, i.e. fromW (qi

1), . . . ,W (qi
ni

).
The use of the weights of the query objectQ only rather is

more intuitive than using the weights of bothQ andO be-
cause we want to ensure that we find database objects that
are most similar toQ. Thus, the weights ofQ are much
more important than that of the database objectO.

Regarding the distance function which should be used on
the summarizations in each representation, we propose to
distinguish between higher-order summarizations and first-
order summarizations. Of course, we can combine repre-
sentations of higher-order summarizations with representa-
tions of first-order representations.
Higher-order Summarizations. For higher-order sum-
marizations, we use the Hausdorff distance which is an
approved and frequently used distance measure in multi-
media similaritry search to compute the similarity between
a database objectOi = {oi

1, . . . , o
i
n} and a query object

Q = {qi
1, . . . , q

i
n} w.r.t. a given representationRi. In fact,

the Hausdorff distance relies on the distance of two specific
summarizations, one fromQi, sayqi

h, and one fromOi, say
oi

h. In other words, there are two summarizationsqi
h ∈ Qi

andoi
h ∈ Oi, such thatH(Qi, Oi) = dist(qi

h, oi
h). Then

the weight of thei-th representationλi is determined by the
the weight ofqi

h, formally

λi = W (qi
h).

Let us note that the distance functiondist(a, b) between
two summarization representativesa and b can be arbi-
trary. If the summarization representatives are feature vec-
tors, any common distance measure such as the Euclidean
distance can be used. If the summarization technique gen-
erates Gaussian distributions, e.g. using EM clustering, we
use the Kullback-Leibler distance [3].
First-order Summarizations. For first-order summariza-
tions, we use the distance function proposed in [1] called
ranked ViSig Similarity. This similarity measure relies on a
set of distances between summarizations of the queryQ and
a database objectO in each representation. Analogously
to higher-order features, we weight each distance with the
weight of the participating query summarization.

4 Experimental Evaluation
We evaluated our concepts using a database of 500 mu-

sic videos collected by a focused web crawler. We extracted
the image representations of the videos on a per-frame ba-
sis. From each image, we extracted four representations,
namely a color histogram and three textural features. For
the color histogram, we used the HSV color space. The
textural features were generated from 16 gray-scale con-
versions of the images. We computed contrast, entropy
and inverse difference moment using the co-occurrence ma-
trix [2]. For extracting the audio features, we divided the
audio signal of a video into short time frames, each hav-
ing a length of1/50 second. Every audio frame is repre-
sented by two features in the time- and frequency-domain.
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Figure 1. Precision vs recall for different weighting strategies when performing similarity search for
videos of the same artist.

We computed autocorrelation and threshold-crossing for the
time-domain, spectral flux and mel-frequency cepstral coef-
ficients for the frequency-domain [5].

Multi-represented vs. Uni-represented Similarity
Search. In a first experiment, we performed video sim-
ilarity search. As setup step, we picked 50 query videos
from our database and manually selected a set of videos
which are similar to the query videos. We compared recall
and precision achieved on the best single representation to
the query result computed by using theε-neighborhood and
entropy weighting functions. Furthermore, we investigated
the performance of our weighting strategies on three sum-
marization techniques, namely video signatures (ViSig), K-
Means and expectation maximization (EM). For all evalu-
ated summarization techniques, we observed a significant
performance improvement when using multiple representa-
tions in comparison to the best single representation. Fur-
thermore, our weighted approach leads to better results on
all considered summarization techniques.

Using the same test setup as described before, we
compared different standard combination techniques for
multi-represented objects, such as product, sum, minimum
and maximum, to our weighted combination method. In
most cases, our weighted approach is more effective than
the standard combination algorithms. Especially theε-
neighborhood and entropy weighting methods show good
precision and recall values for all considered summariza-
tion strategies.

Multi-represented Similarity Search Applications.
Given a query video of a specific artist, we want all videos
of this artist in our database. Obviously, in this application,
a more global notion of similarity is necessary. In order to
demonstrate this idea, we selected a set of 20 query videos
associated with different artists. For each video in our
query set, we extracted all videos of the same artist from
our database. The results of our artist search are depicted in
Figure1. In all experiments, the entropy-based weighting

function outperforms theε-neighborhood approach. This
can be explained by the fact that the entropy weighting
function takes all distances into account in opposite to the
local character of theε-neighborhood function.

5 Conclusions
In this paper, we presented a method for effective sim-

ilarity search in multimedia databases that takes multiple
representations of the database objects into account. In
particular, we proposed several weighting functions for
summarization vectors of different representations of each
database object. Our concepts are independent of the un-
derlying summarization method and compute a weight for
each summarization vector of each representation for each
object separately. Using these weighting factors, we further
show how well-known distance measures for non-multi-
represented multimedia objects can be adopted to multi-
represented objects. In our experiments we showed the ben-
efits of our approach.
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