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Abstract music videos demonstrates the benefit of our methods for
similarity search in multimedia databases.

Similarity search in large multimedia databases is an im-
portant issue in nowadays multimedia environment. Multi- 2 Related Work
media objects such as music videos usually consist of mul- ] ) . ]
tiple representations such as audio or video features. Since Usually, multimedia objects consist of thousands or even
each representation may be of significantly different qual- n_1|II|ons of feature vectors. In_order to handle such qlata effi-
ity for a given multimedia object, similarity search meth- cu_en_tly, summarization te_chnlques are usually applied to the
ods could greatly benefit from taking these multiple rep- original data, i.e. the orlgmal feature vectors are gro.upe.d
resentations into account. An intelligent similarity search together and each group is represented by a summarization
technique should consider all available representations of VECtOr or summarization representative. Similarity is then
the database objects and should automatically choose thedefined on these summarizations or the according summa-
best representation(s), i.e. those representations that mode['zation representatives. _
the object in the best possible way. In this paper, we pro- In gene_ral, we can dlst|_ngwsh two class_es of summariza-
pose a novel approach for similarity search in multimedia tion techniques, namely higher-order and first order summa-
databases taking multiple representations of multimedia ob- fization. Higher-order summarization techniques are usu-
jects into account. In particular, we present weighting func- ally generated by applying optimization algorithms on fea-
tions to rate the significance of a feature of each representa-turé vectors. They describe a video as a mix of stafisti-
tion for a given database object. This allows to weight each c_al distributions or cluster representanves._ First-order tech-
representation during query processing. A broad experi- Niques calcglatg asmall set of representative featurg vectors
mental evaluation shows the suitability and the effectivenessdS Summarization vectors in order to describe a video. A

of multi-represented similarity search in video databases. randomized technique for summarizing videos, called video
signature, is proposed i

1 Introduction 3 Multi-represented Similarity Search in

In this paper, we propose a novel framework for video Multimedia Databases
similarity search that takes the multi-represented nature of
the data objects into account. In particular, our framework  In the following, we assum@®5 to be a database of
is able to integrate multiple representations such as audio¥N multimedia objects. Each object; € DB, i =
and video features into the query processing. The mostim-1, - - -, IV, is represented by a given setfrepresentations
portant issue for multi-represented similarity search is the 121, - - -, 2p, Where each representation is a feature space,
weighting of each representation, i.e. the decision “how i-€. R; € R%, andd; € N denotes the dimensionality
significant is a given representation for a given object’. Of the feature space of representatiBp (1 < i < D).
We propose methods for this task that can be applied toThe j-th representation ab; is denoted by0;, i.e. O; =
both types of summarization techniques, i.e. higher-order (O}, ..., OF). We further assume that each representation
and first-order summarization, that are commonly used in O] of O; consists of a series of feature vectors of length

multimedia similarity search. In addition, we propose a i.e. Of = (og'l,..‘,og . ) With ogl € R;.
method for combining multiple representations for similar- In addition, we assume that the distances within each
ity search by weighting each representation. A broad ex-representation are normalized sufficiently over all represen-

perimental evaluation of our methods using a database oftations, e.g. using any of the methods 4f.[In order to
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combine multiple representations within the similarity eval- a clustering quality criterion (e.gC D?, log-likelihood). In

uation, we have to determine for each objést € DB case of first-order summarization techniques, we can e.g.
and for each of its representatio®$ a weight for each of  use the method described ifi] fand the according quality
the n; feature vectors’ |,...,o! . Having weights for  function. Our second quality measure is based on the qual-

each feature vector of each representation of each objectity criterion upon which the summarization is generated. In-
we can use any common distance measure between sets @#itively, a summarization vector with high representative
points such as the Hausdorff distance in order to compute apower should be weighted high.

weighted distance between two multi-represented multime-  Let CQ(o] ;) be the quality measure for theth sum-

dia objects. We will first introduce novel methods to deter- marization vector of thg-th representation of obje€d;
mine the weights for a feature vector of a given represen-DB3, based on which the summarization is generated, e.g.
tation and then describe how these weights can be used td'D? in case of higher-order features generated-myeans.
improve similarity search on multimedia objects. Then, the weight 0b? , is computed by:

3.1 Weighting Functions For Summarizations Wauat (0] ) = CQ(0] ).

For efficiency reasons, these large sets of feature vectorsy Weighting Function Based on Local Neighborhood.
are usually summarized within each representation. TheTne second weighting function takes each original object

derived summarizations can be classified as first-order ofi,ig account when computing the weights for the derived
higher-order summarizations (cf. Sectidn Thus, the fea-  gymmarizations. When handling e.g. noisy objects, it

ture vectorsy; ,, ..., 0, of objectO; € DB of represen- 419 be more reliable to rate the weight of a representa-
tation R; are representative points of the derived summa- e point based only on the original points in the local
rizationsS7,, ..., 57, . Inthe following, an original point  neighborhood of-.

p belongs to a summarizatiofi if it is a member of the Our third weighting function follows this idea. Let

according cluster (in case of higher-order summarizations)NE(Tg) = {q/|dist(r?,¢}) < e} be thee-neighborhood
or if the according representative §fis the representative . ' e

ith the | ¢ dist A h i ¢ of a representative; of thei-th database objec?; € DB
Wi € lowest distance Ip among he representatives ot the j-th representatiof?;. Let us note thatV.(r7) only
all summarizations. ;

A Weighting Function Based on Support. The idea be- contains original feature vectogg of O; in representation

hind our first weighting function is that each summarization %+ Ve define the weight of;, by the number of objects

vector represents a given amount of original feature vectors.n its local neighborhood, formally
This amount is a good indication on the significance of this

representative, i.e. how good this summarization represents
the original feature vectors. Thus, in our first approach, the

weight of thel-th feature vector , of the j-th representa- N : : :
tion of objectO; € DB, denoted by, (o! ), is com- weighting functions which we have introduced so far are
) ’ ' supp i 1) rather local in the following sense: in order to compute the

puted by the fraction of points that are re_presentgd;jt;y weight of a representative of a summarizatiors,, they
Formally, if|S7, | denotes the fraction of original points that  only consider the objects that are summarizedspyi.e.
are summarized by’ ,, then the weight of the representa- belong toS,. However, it may be more appropriate to con-

Wlocal(ogl) = |N€(O-Z]l)|/nj

A Weighting Function Based on Entropy. The three

tive o{l is computed by sider all original features of a given representatyrin or-
der to rate a summarization vecigrof this representation.
Wi (011) = 157,1/n;. Our fourth weighting strategy follows this idea.

When computing the weight of a summarization vector

A Weighting Function Based on Specific Quality Mea- o' of a representatio®;, we want to take the distances of
sures. The first weighting function only considers the all original feature vectorg:, ..., ¢’ of representatiork;
number of objects the given summarization vector repre-to o’ into account. In fact, the distances gfto o’ can be
sents. However, it does not take the distances to the repconsidered as a random variabléollowing a Gaussian dis-
resentative object into account. A better idea might be to tribution G(x). The information content of such a random
consider the distances of the original points within one sum- variable can be measured by its entropy. For example, if the
marization to their representative. entropy of the variable equals 1, the distancésst (g}, o')

Usually, the summarization is generated optimizing a are randomly distributed, whereas if the entropy of the vari-
specific quality function. For example, for higher-order able = is considerably low, the distancelst(q;,o") are
summarizations, the summarization is derived from a clus- most likely densely packed around the mean value afd
tering algorithm such ak-means or EM, which optimizes  thus,o’ is a good representation of the vectofs. .., ¢’,.



Formally, letz,; = {dist(o’,q}) | 1 <1 < m} be a more intuitive than using the weights of bathandO be-
random variable. The Gaussian distributiGfi,:) of this cause we want to ensure that we find database objects that

random variable:,: is represented by the mean are most similar ta). Thus, the weights of) are much
o more important than that of the database object
_ 2 dist(o, qf) Regarding the distance function which should be used on
He(zy) = m the summarizations in each representation, we propose to

distinguish between higher-order summarizations and first-

and the standard deviation L )
order summarizations. Of course, we can combine repre-

m sentations of higher-order summarizations with representa-
OG(a,) = 4| = - Z(dist(o, qj) — Mc(xoi))z- tiqns of first-order reprgseptations. _
mo3 Higher-order Summarizations. For higher-order sum-
marizations, we use the Hausdorff distance which is an
The entropy ofz,: is then defined as approved and frequently used distance measure in multi-
media similaritry search to compute the similarity between
e a database objec®’ = {o!,...,0},} and a query object
H(w,) = / G(74i) - log G(741) d i Q = {qi,...,¢"} w.rt. a given representatioR;. In fact,
5o the Hausdorff distance relies on the distance of two specific
_ summarizations, one frof)?, sayq , and one fronO?, say
Let o/, be thel-th summarization vector of obje; € ol. In other words, there are two summarizatigf)se Q*
DB in representatio?; and Iet:cogl be the random vari-  andoj;, € O°, such thatt (Q", O*) = dist(g;,,0},). Then
able built by the distances of the original featuresXfin the weight of the-th representation’ is determined by the
representatioriz; to o}, as defined above. The weight of the weight ofg;,, formally
ol , is defined as the entropy of the random variabjel, A= W(ql).
formally . , o
W (0 ) =1-H(z, ). Let us note thgt the distance functldm(a,b) betweep
entropy 1% I %1 two summarization representativesand b can be arbi-
o . . . trary. If the summarization representatives are feature vec-
3.2 Combining Multiple Representations for Sim- 45 any common distance measure such as the Euclidean
ilarity Detection distance can be used. If the summarization technique gen-

Having defined a weighting function for each summa- erates Gaussian distributions, e.g. using EM clustering, we
rization vector for each representation of a database objectUse the Kullback-Leibler distanc8][
we can combine multiple representations for the process ofFirst-order Summarizations. For first-order summariza-
similarity detection. The key step for effective similarity tions, we use the distance function proposedlincglled
search is the design of a dedicated distance measure thd@nked ViSig Similarity. This similarity measure relies on a
takes the weights of each summarization vector into ac-Set of distances between summarizations of the qQeagd
count. a database objed? in each representation. Analogously
In general, we can adopt any distance measure that© higher-order features, we weight each distance with the
has been designed for multimedia objects to consider theWeight of the participating query summarization.
weights of each feature vector. L&t= (O*,...,0P) €
DB be an arbitrary database object and Bt = 4 Experimental Evaluation
(Q',...,QP) be the query object. Furthermore, st
be the distance function for comparing thtéh representa-
tion of O andQ, i.e. a* and@?. Then, the distance between
guery object) and a database obje@tcan be computed by

We evaluated our concepts using a database of 500 mu-
sic videos collected by a focused web crawler. We extracted
the image representations of the videos on a per-frame ba-
sis. From each image, we extracted four representations,
D namely a color histogram and three textural features. For

dist(Q,0) = Z)\i -dist (0%, Q). the color histogram, we used the HSV color space. The
= textural features were generated from 16 gray-scale con-
versions of the images. We computed contrast, entropy

The most important part is to determine the weight  and inverse difference moment using the co-occurrence ma-
of representatio®?;. Obviously,\? should be derived from  trix [2]. For extracting the audio features, we divided the
the weights of summarization vectors of théh represen-  audio signal of a video into short time frames, each hav-
tation of the query objea®, i.e. fromW(qi),.. ., W(q}’%). ing a length ofl /50 second. Every audio frame is repre-
The use of the weights of the query objéznly rather is sented by two features in the time- and frequency-domain.
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Figure 1. Precision vs recall for different weighting strategies when performing similarity search for
videos of the same artist.

We computed autocorrelation and threshold-crossing for thefunction outperforms the-neighborhood approach. This
time-domain, spectral flux and mel-frequency cepstral coef-can be explained by the fact that the entropy weighting
ficients for the frequency-domaib]| function takes all distances into account in opposite to the

Multi-represented vs.  Uni-represented Similarity ~ local character of the-neighborhood function.

Search. In a first experiment, we performed video sim- )

ilarity search. As setup step, we picked 50 query videos S Conclusions

from our database and manually selected a set of videos | this paper, we presented a method for effective sim-
which are similar to the query videos. We compared recall jjarity search in multimedia databases that takes multiple
and precision achieved on the best single representation Qepresentations of the database objects into account. In
the query result computed by using theeighborhood and  particular, we proposed several weighting functions for
entropy weighting functions. Furthermore, we investigated symmarization vectors of different representations of each
the performance of our weighting strategies on three sum-qstapase object. Our concepts are independent of the un-
marization techniques, namely video signatures (ViSig), K- gerlying summarization method and compute a weight for
Means and expectation maximization (EM). For all evalu- each summarization vector of each representation for each
ated summarization techniques, we observed a 5'9”'f'ca”bbject separately. Using these weighting factors, we further
performance improvement when using multiple representa-show how well-known distance measures for non-multi-
tions in comparison to the best single representation. Fur'represented multimedia objects can be adopted to multi-

thermore, our weighted approach leads to better results onepresented objects. In our experiments we showed the ben-
all considered summarization techniques. efits of our approach.
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