
Multi-Represented Classification based on Confidence
Estimation

Johannes Aßfalg, Hans-Peter Kriegel, Alexey Pryakhin, Matthias Schubert

Institute for Informatics, Ludwig-Maximilians-University of Munich, Germany

{assfalg,kriegel,pryakhin,schubert}@dbs.ifi.lmu.de

Abstract. Complex objects are often described by multiple representations mod-

eling various aspects and using various feature transformations. To integrate all

information into classification, the common way is to train a classifier on each

representation and combine the results based on the local class probabilities. In

this paper, we derive so-called confidence estimates for each of the classifiers

reflecting the correctness of the local class prediction and use the prediction hav-

ing the maximum confidence value. The confidence estimates are based on the

distance to the class border and can be derived for various types of classifiers

like support vector machines, k-nearest neighbor classifiers, Bayes classifiers,

and decision trees. In our experimental results, we report encouraging results

demonstrating a performance advantage of our new multi-represented classifier

compared to standard methods based on confidence vectors.

1 Introduction

In many application areas such as multimedia, biology, and medicine, objects can be

described in multiple ways. For example, images can be described by color histograms

or texture features or proteins can be described by text annotations, sequence descrip-

tions, and 3D shapes. To classify these multi-represented objects, it is often useful to

integrate as much information as possible because the representation providing the best

suitable object description might vary from object to object. A simple way to combine

multiple representations would be to span a feature space with respect to all features

occurring in some representation. However, this approach induces treating sparse di-

mensions such as word occurrences in the same way as color distributions or texture

descriptions. Therefore, established methods for classifier combination, which is also

called classifier fusion, train a classifier on each representation and derive a global class

prediction based on the class probabilities of each of these classifiers.

In this paper, we introduce a new method for combining local class predictions

based on so-called confidence estimates. A confidence estimate reflects the degree of

reliability for the class prediction of a given classifier. In contrast, the probability dis-

tributions used in the established methods for building combined classifiers represent

the likelihood that an object o belongs to any of the possible classes. The difference

becomes clear when considering the following two-class case. A classic probability es-

timate for class c1 of 40 % implies that it would be better to predict class c2 which must

have correspondingly a probability estimate of 60 %. On the other hand, a confidence

estimate of the class decision for class c1 of 40 % only implies that the result of the

Proceedings of the 11th Pacific-Asia Conference on Advances in Knowledge

Discovery and Data Mining (PAKDD 2007), Nanjing, China, pp. 23-34.

classifier is rather unreliable. In multi-class problems, the difference can be seen more

easily because there is only 1 confidence estimate for the class decision and not a sepa-

rated probability estimation for each of the classes. In this paper, we argue that reliable

confidence estimates are easier to derive and that a confidence estimate yields enough

information for learning powerful multi-represented classifiers.

A second advantage of the proposed method is that confidence estimates can be de-

rived from multiple types of classifiers such as Support Vector Machines (SVMs), Bayes

classifiers, k-nearest-neighbor (kNN) classifiers and decision trees. Since the principle

idea of deriving confidence estimates is the same for each of these classifiers, the con-

fidence estimates are directly comparable even for different types of classifiers trained

on varying feature spaces. This is not necessarily the case for probability estimation be-

cause the idea behind approximating the class probabilities is often quite different for

various classifiers. Thus, the semantic of the probabilities is not necessarily comparable

leading to suboptimal classification results.

To derive confidence estimates, we introduce the concept of the confidence range

of a decision. The confidence range is the smallest range inside which the classified

object could be moved in order to be assigned to a different class. In other words, the

confidence range corresponds to the distance of an object to the closest class border.

Therefore, deriving confidence estimates from SVMs can be done in a straightforward

way. However, there still exist major differences between the probability estimation for

a SVM as proposed in [1] and the confidence estimate employed in this paper. First of

all, it is possible to derive a confidence estimate of less than 50 % for the predicted

class, if it is quite uncertain that the prediction is correct. Additionally, the method

proposed in [1] yields a solution for probability estimation in two class problems while

our method using confidence estimates can be applied to an arbitrary number of classes.

For employing other classifiers than SVMs, we will provide algorithms for several well-

established classification methods like Bayes classifiers, decision trees, and kNN clas-

sifiers for deriving confidence ranges. Afterwards the confidence ranges are used to

calculate confidence estimates which are finally used to find the global class decision.

The main contributions of this paper are:

– A new method for combining classifiers based on the confidence estimates instead

of complete distribution vectors.
– Methods for deriving confidence ranges for various classifiers such as decision

trees, Bayes classifiers, or kNN classifiers.
– Methods for learning a function that derives confidence estimates from the derived

confidence ranges.

Our experimental evaluation illustrate the capability of our new approach to improve

the classification accuracy compared to combined classifiers that employ distribution

vectors.

The rest of the paper is organized as follows. Section 2 surveys related work. In

section 3, we introduce the general idea for our method of classifier combination. Af-

terwards, section 4 describes methods to derive confidence ranges for various classifiers

and explains their use for deriving confidence estimates. The results of our experimental

evaluation are shown in section 5. Section 6 concludes the paper with a summary and

ideas for future work.

2 Related Work

In general, methods that employ multiple learners to solve a common classification

problem are known as ensemble learning. An overview over ensemble learning tech-

niques can be found in [2]. Within the area of ensemble learning our work deals with the

subarea of classifier combination. The aim of classifier combination is to use multiple

independently trained classifiers and combine their results to increase the classification

accuracy in comparison to the accuracy of a single classifier. Combining classifiers to

learn from objects given by multiple representations has recently drawn some attention

in the pattern recognition community [3–5]. The authors of [3] developed a theoretical

framework for combining classifiers which use multiple pattern representations. Fur-

thermore, the authors propose several combination strategies like max, min, and, prod-

uct rule. [4] describes so-called decision templates for combining multiple classifiers.

The decision templates employ the similarity between classifier output matrices. In [5]

the author proposes a method of classifier fusion to combine the results from multiple

classifiers for one and the same object. Furthermore, [5] surveys the four basic combina-

tion methods and introduces a combined learner to derive combination rules increasing

classification accuracy. All methods mentioned above assume that a classifier provides

reliable values of the posteriori probabilities for all classes. Techniques for deriving

probability estimates from various classifiers can be found in [1, 6]. Learning reliable

probability estimates and measuring their quality is a rather difficult task, because the

training sets are labeled with classes and not with class probability vectors. In contrast

to these solutions, we propose a method that calculates a single confidence estimate

reflecting the correctness of each particular class decision. A related subarea of ensem-

ble learning is co-training or co-learning which assumes a semi-supervised setting. The

classification step of co-training employs multiple independent learners in order to an-

notate unlabeled data. [7] and [8] were the first publications that reported an increase

of classification accuracy by employing multiple representations. The most important

difference of co-learning approaches to our new approach of multi-represented classi-

fication is that we do not consider a semi-supervised setting. Additionally, co-training

retrains its classifiers within several iterations whereas the classifiers in our approach

are only trained once. Recently, methods of hyper kernel learning [9] were introduced

that are also capable of employing several representation in order to learn a classifier.

In contrast to our method the hyper kernel learners optimize the use of several kernels

that can be based on multiple representations within one complex optimization problem

which is usually quite difficult to solve.

3 Confidence Based Multi-Represented Classification

In this section we will specify the given task of multi-represented classification and

describe our new approach of using a single confidence value for each representation to

derive global class decisions.

A multi-represented object o is given by an n-tuple (o1, . . . , on) ∈ R1 × . . . × Rn

of feature vectors drawn from various feature spaces Ri = Fi ∪ {−}. Fi denotes the

corresponding feature space of representation i and ”−” denotes that there is no object

description for this representation. Missing representations are a quite common problem

in many application areas and thus, should be considered when building a method.

Obviously, for each object there has to be at least one oj �= ”−”. For a given set of

classes C = ci, . . . , ck, our classification task can be described in the following way.

Given a training set of multi-represented objects TR ⊂ R1 × . . . × Rn, we first of

all train a classifier CLi : Ri → C for each representation. Afterwards, we train a

confidence estimator CECLi
: Ri → [0..1] based on a second training set TRconf

for each classifier which predicts the confidence of the class decision CLi(oi) for each

object oi. Let us note that we employed cross validation for this second training since

the number of training objects is usually limited. To combine these results, we employ

the following combination method:

CLglobal(o) = CLargmax
0≤j≤n

{CECLj(o)}(o)

where o is an unknown data object.

In other words, we employ each classifier CLj(o) for deriving a class and after-

wards determine the confidence of this class decision CECLj (o). As a global result, we

predict the class ci which was predicted by the classifier having the highest confidence

estimate CECLi
(o). To handle unknown representations, we define CECLj

(−) = 0.

Thus a missing representation cannot have the highest confidence value.

4 Deriving Confidence Estimates

After describing our general pattern for multi-represented classification, we now turn

to describing the method for deriving the confidence estimates. The main idea of our

proposed confidence estimation is that the larger the area around an object for which

the class prediction does not change, the larger is the confidence for the class decision.

In other words, the more we can alter the characteristics of an object without changing

its class, the more typical is this object for the given class in the given feature space.

The confidence range can be determined by calculating the distance of the classified

object o to the closest class border. Let us note that we can apply this idea regardless

of the used classification method. To formalize the area around each object for which

the class prediction remains unchanged, we define the confidence range of an object as

follows:

Definition 1. Let o ∈ F be a feature vector and let CL : F → C be a classifier w.r.t.
the class set C. Then the confidence range CRange(o) is defined as follows:

CRange(o) = min {‖v‖ |v ∈ F ∧ CL(o) �= CL(o + v)}

The methods for deriving the confidence range are varying between the classifica-

tion methods. For SVMs the method to extract a confidence range is straightforward.

For the two-class case, we can use the output of the SVM as distance to the separating

hyperplane. In the case of multi-class SVMs, the minimum distance to all of the used

hyperplanes is considered. For other classification paradigms, the calculation is less

straightforward. In general, the confidence range of an object o can be determined by

taking the minimum distance for which the class prediction changes from class cpred to

some other class cother. Thus, we can determine CRange(o) by:

CRange(o) = min
cother∈C\c{pred}

CRangecpred,cother
(o)

where CRangecpred,cother
(o) is the distance of o to the class border between the pre-

dicted class cpred and the class cother. In the following, we will provide methods for

approximating CRange(o) for three well-established classification methods.

4.1 Bayes Classification

For a Bayes classifier over a feature space F ⊆ R
d, each class c is determined by a prior

p(c) and a density function corresponding to p(x|c) where x ∈ F . The class having the

highest value for p(c) · p(x|c) is predicted. Thus, for each class cother, we need to

consider the following equation describing the class border between two classes:

p(cpred) · p(x|cpred) = p(cpred) · p(x|cother)
⇒ p(cpred) · p(x|cpred) − p(cpred) · p(x|cother) = 0

To determine the distance of an object o to this class border, we need to solve the

following optimization problem:

min
x∈Rd

d(o, x)

s.t. p(cpred) · p(x|cpred) − p(cpred) · p(x|cother) = 0

For example, the optimization problem for a general Gaussian distribution can be

formulated as follows:

min
x∈Rd

d(o, x)

s.t.(x − μ1)T × (Σ1)−1 × (x − μ1)

−(x − μ2)T × (Σ2)−1 × (x − μ2) − ln
p(c1) · Σ2

p(c2) · Σ1
= 0

To solve this problem, we employed a gradient descent approach which is an iter-

ative method for solving non linear optimization problems. Beginning at an initialized

point, the direction of the steepest descent is determined. Then, a step in this direction

is made whereas the step size is calculated by applying the Cauchy principle. The steps

are repeated until the minimum is reached which usually occurs after a small number

of iterations.

4.2 Decision Trees

For most decision trees, each node in the tree belongs to some discriminative function

separating the training instances with respect to a single dimension of the feature space.

MinDist: d1

d1 d2

Result: d2

1

2

1

2

calculateCRange(Object o, Tree decisionTree)

queue=getNewPriorityQueue(orderAscending);
/*classify o, store omitted subtrees in queue with their MinDist to o */
classID:=classify(o,decisionTree, queue);
LOOP

current=queue.removeFirst();
if (current.isLeaf() AND current.getClass()!= classID) then

return current.getMinDist();
else

foreach subtree ∈ current.getSubtrees()
queue.insert(subtree, subtree.getMinDistTo(o);

end if;
end LOOP;

Fig. 1. Example and pseudo code for determining CRange for decision trees.

Therefore, each leaf of a decision tree corresponds to a hyper rectangle. However, to

determine CRange(o), it is not sufficient to calculate the minimum distance of o to

the border of this hyper rectangle. If the neighboring leaf does correspond to the same

class, the border of the leaf does not provide a class border. Therefore, for determining

CRange(o), we need to find the distance of object o to the closest leaf belonging to any

other class than cpred. To find this leaf node while traversing the tree for classification,

we collect all subtrees that do not contain o, i.e. the subtrees that are omitted during

the classification of o. Each of these subtrees is stored in a priority queue which is or-

dered by the minimum distance of o to any node of the subtree. After the classification

algorithm reaches a leaf node (i.e. o is classified), we can process the priority queue

containing the collected subtrees. If the first object in the queue is a leaf node, we deter-

mine whether the leaf corresponds to a class which is different to the class prediction.

In this case, we can calculate CRange(o) as the distance of o to the boundaries of this

leaf. Since the priority queue is ordered by the minimum distance to o, there cannot

exist any other leaf with a boundary closer to o than the calculated CRange(o). If the

top element of the queue is a subtree, we remove the tree from the queue and insert its

descendants. Figure 1 illustrates an example for a small decision tree on the left side.

The right side of Figure 1 describes the proposed algorithm in pseudo code. Let us note

that calculating the minimum distance of o to any leaf node in the tree can be done

by only considering the attributes which are encountered while traversing the tree. For

each other attribute, the feature value of o must be contained within the range of the tree

node.

4.3 kNN Classification

Though it is sufficient for finding an accurate class decision, determining the k nearest

neighbors for an object o is not enough to determine CRange(o). Since the k nearest

neighbors do not necessarily contain representative objects of each of the classes, find-

ing the class border for a kNN classifier needs to consider additional objects belonging

to each of the classes. If the number of considered neighbors is one, the class borders

are described by Voronoi cells around the training objects. In this case, we can easily

calculate CRange(o) on the basis of the particular CRangecpred,cother
(o). Thus, we

only need to compare the distances to the class border which is determined by the near-

est neighbor uc of the predicted class c to any nearest neighbor uĉ of the other classes

ĉ. This distance can be calculated using the following lemma.

Lemma 1. Let o be an object, let uc be the nearest neighbor belonging to class CL(o) =
c and let uother be the nearest object belonging to some other class other ∈ C \c. Fur-
thermore, let d(x1, x2) be the Euclidian distance in R

d. Then, CRangec,other(o) for a
nearest neighbor classifier can be calculated as follows:

CRangec,other(o) =
d(uc, uother)2 + d(uc, o)2 − d(uother, o)2

2d(uc, uother)
− d(uc, uother)

2

A proof for this lemma can be found in [10].

Unfortunately, CRangec,other(o) is much more complicated to calculate for k > 1
because this would require to calculate Voronoi cells of the order k. Since this would

cause a very time consuming calculations, we propose a heuristic method to approxi-

mate CRange(o) for the case of k > 1. The idea of our heuristic is to determine the set

Uk
c consisting of the k closest objects for each class c. Note that the union of these sets

obviously contains the k nearest neighbors as well. For each class, we now build the

weighted centroid. The weights for determining the centroid are derived by the inverse

squared distance to the classified object o, in order to mirror the well-known weighted

decision rule for kNN classifiers. Formally, these class representatives are defined as

follows:

Repk
c (o) =

∑

ui∈Uk
c

1
d(o, ui)2

· ui · 1∑
ui∈Uk

c

1
d(o,ui)2

After having calculated a representative for each class, we can proceed as in the case

for k = 1. Let us note that using this heuristic, an object might have a negative distance

to the class if it is placed on the wrong side of the estimated class border. However, this

only occurs if the distance to the border is rather small and thus, the class decision is

more or less unreliable.

4.4 From Ranges to Confidence Estimates

Our goal is to compare the results of various classifiers trained on varying feature

spaces and employing various classification paradigms. However, the derived confi-

dence ranges do not represent a comparable and accurate confidence estimate so far. To

transform the confidence ranges into usable confidence estimates, we must cope with

the following two problems. First the confidence ranges are distances in different fea-

ture spaces and thus, a comparably small distance in R1 might induce a much higher

confidence than a larger confidence range in representation R2. Obviously, we have to

learn which confidence range induces a high likelihood for a correct class prediction.

A second problem we have to cope with is noise. In a noisy representation, an object

having a comparably high confidence range might still be classified with comparably

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40

Maximal Confidence Range

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Measured
Fitted

(a) Naive Bayes

0

0,2

0,4

0,6

0,8

1

0,00 2,00 4,00 6,00 8,00 10,00 12,00

Maximal Confidence Range

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Measured
Fitted

(b) Decision Tree

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Maximal Confidence Range

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Measured
Fitted

(c) kNN

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8

Maximal Confidence Range

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Measured
Fitted

(d) SVM

Fig. 2. Relationship between confidence range and classification accuracy.

low confidence. Therefore, the confidence estimates should mirror the global reliability

of the classifier as well as the confidence range of the individual object.

In order to understand the relationship between confidence ranges and the reliabil-

ity of the class prediction, we performed several experiments. First, we partitioned the

training data of each representation into three folds. We used two folds to train the clas-

sifier and used the remaining fold, the test fold, for calculating the confidence ranges.

Afterwards, we formed a curve expressing the accuracy of the class predictions for all

objects having a smaller CRange(o) then the given x-value in the graph. More pre-

cisely, for each test object o a set of objects was determined containing all objects u in

the test fold for which CRange(u) ≤ CRange(o). Then, the classification accuracy for

each of these subsets was calculated providing the y-value for the x-value CRange(o).
We observed small classification accuracies for subsets having a small maximal con-

fidence range. The accuracy is improved with increasing maximal confidence range

values and finally reaches the accuracy observed on the complete test set. Furthermore,

the graph displayed a sigmoidal pattern, i.e. there is a range of values where a small

increase of the confidence ranges results in a high increase of classification accuracy.

The results of the above described experiments are presented in Figure 2. The curve

labeled with ’Measured’ corresponds to these observed accuracy values while the curve

labeled with ’Fitted’ displays the function we will introduce in the following to model

Table 1. Description of the data sets.

DS1 DS2 DS3 DS4 DS5 DS6 DS7
Name Oxidore-

ductase

Trans-

ferase

Transporter

Activity

Protein

Binding

Enzyme

Regularization

Sonar Wave

5000

No. of Classes 20 37 113 63 19 2 3

No. of Objects 1051 2466 2218 4264 1046 208 5000

this behavior. As can be seen in Figure 2, the measured values form a sigmoidal shape

for all examined classification techniques.

Based on these observations we developed a technique to calculate confidence esti-

mates for each classifier. These confidence estimates range from 0 to 1 and thus, unlike

confidence ranges, the confidence estimates are directly comparable to each other. Since

the confidence estimates cannot become larger than the classification accuracy on the

complete test set, the noise level in each representation is considered as well. In the

following, the calculation of the confidence estimates is described in detail.

1. For a given classifier CLj , perform a 3-fold cross validation with the training data

in order to yield confidence range/accuracy pairs as described above.

2. A suitable optimization algorithm (e.g. Levenberg-Marquardt algorithm [11]) is

used to determine the parameters αj and βj that minimize the least squares error

for the sigmoid target function accuracyj(o) = 1
1+exp(αj×CRangej(o)+βj)

given

the observed pairs of confidence ranges and classification accuracy.

3. For classifier CLj and object o the confidence estimate CECLj
(o) can finally be

calculated as:

CECLj
(o) =

1
1 + exp(αj × CRangej(o) + βj)

The derived confidence estimates are now used for classifier combination as de-

scribed in section 3, i.e. the classification result based on the representation yielding the

highest confidence estimate is used as the global prediction of the combined classifier.

5 Experimental Evaluation

For our experimental evaluation, we implemented our new method for classifier com-

bination and confidence estimation in Java 1.5. All experiments were performed on a

workstation featuring two Opteron processors and 8 GB main memory. For comparing

our method to the established methods for classifier combination as described in [5],

we used the J48 (decision tree), Naive Bayes, SMO (SVM), and IBK (kNN classifier)

classifiers provided by the WEKA machine learning package [12]. The WEKA imple-

mentation provides probabilities for each of the classes which were combined using the

minimum, the maximum, the product, and average. For example, a joined confidence

vector v is constructed by taking the average class probability for each class ci over

all representation Rj as ith component vi. For our confidence estimates we used the

same classifiers and additionally implemented our new method. For fitting the sigmoid

functions we used the method introduced in [11].

0,6

0,65

0,7

0,75

0,8

0,85

0,9

DS1 DS2 DS3 DS4 DS5
Data Set

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CE-Comb.
SVM
KNN

(a) Protein data sets

0,6

0,65

0,7

0,75

0,8

0,85

0,9

DS6 DS7
Data Set

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

CE-Comb.
Naive Bayes
Decision Tree

(b) UCI data sets

Fig. 3. Classification accuracy of CE-Comb. compared to separated classification.

We tested our new ensemble method on 5 multi-represented data sets describing

proteins (DS1-DS5). The 5 test beds consist of 19 to 113 Gene Ontology [13] classes.

The corresponding objects were taken from the SWISS-PROT [14] protein database

and consist of a text annotation and the amino acid sequence of the proteins. In order to

obtain a flat class-system with sufficient training objects per class, the original data was

adapted. We employed the approach described in [15] to extract features from the amino

acid sequences. The basic idea is to use local (20 amino acids) and global (6 exchange

groups) characteristics of a protein sequence. To construct a meaningful feature space,

we formed all possible 2-grams for each kind of characteristic, which yielded the 436

dimensions of our sequence feature space. For text descriptions, we employed a TFIDF

[16] vector for each description that was built of 100 extracted terms. Since these data

sets could only be tackled by the more flexible SVMs and kNN classifiers, we could not

test the Naive Bayes and the J48 decision tree classifiers on these problems. Therefore,

by splitting the wave-5000 (DS7) and the sonar data set (DS6) from the well-known

UCI machine learning repository [17] vertically, we generated two additional multi-

represented. Thus, we derived for each data set two representations containing only

half of the attributes of the original data set. An overview of our 7 test beds is given in

Table 1.

For our experiments, we first of all classified each representation separately using

several classifiers. Afterwards, we combined the best classification method for each

representation using our new method based on confidence estimates (CE-Comb.) and

the 4 standard methods mentioned above which are based on probability vectors. For

the UCI data sets, we tested only Naive Bayes and J48 because these data sets were

chosen to provide an example for these two types of classifiers.

Our first result compares the classification accuracy of our new combination method

with the classification accuracy achieved in the separated representations. Figure 3 dis-

plays the achieved classification accuracies. In all 7 data sets our new combination

method achieved a higher classification accuracy than both corresponding classifiers

which rely on only a single representation. Thus, using the additional information of

both representations was always beneficial.

Table 2. Accuracies for different combination methods.

DS 1 DS 2 DS 3 DS 4 DS 5 DS 6 DS 7
CE-Comb. 0.8287 0.8454 0.7939 0.8562 0.7973 0.7692 0.7954
Product 0.7761 0.8092 0.7633 0.8302 0.7514 0.7307 0.7794

Sum 0.8072 0.8051 0.7768 0.8142 0.7877 0.7307 0.7808

Min 0.7761 0.8053 0.7610 0.8332 0.7466 0.7307 0.7786

Max 0.8058 0.7939 0.7718 0.8090 0.7868 0.7307 0.7806

In Table 2 we compare our new method to the established methods of classifier

combination. The accuracies which where achieved using our confidence estimates are

shown in the first row. For all data sets our new method for classifier combination out-

performs the established approaches. The improvement by using our new combination

method was up to 4 % in data sets DS3 and DS6. Let us note that the classifiers in

each representation for all types of ensembles were always exactly the same. Thus, the

improvement is achieved by the different combination method only.

Table 3. Comparing various combinations.

DS 1 DS 2 DS 3 DS 4 DS 5
kNN+SVM 0.8116 0.8215 0.7831 0.8485 0.7782

SVM+kNN 0.8287 0.8454 0.7939 0.8562 0.79732
SVM+SVM 0.8097 0.836 0.7921 0.8410 0.7906

kNN+kNN 0.789 0.8215 0.7889 0.8499 0.7667

Our final result illustrates that the capability to combine classifiers of different types

proves to be beneficial on real world data sets. We tested all possible combinations of

SVMs and kNN classifiers for the 5 protein data sets. The results are displayed in Table

3. For all data sets, the combination of using a linear SVM for text classification and a

nearest neighbor classifier for sequence classification proved to yield the best accuracy.

Thus, our new method is capable of exploiting different types of classifiers which often

yields a better ensemble than using only classifiers of one and the same type.

6 Conclusions

In this paper we describe a new method for classifier combination. The two main as-

pects of our new approach are the following. First of all, the global class decision is not

dependent on complete probability distributions over all classes but depends only on

a confidence estimate that the given classification result is indeed correct. The second

aspect is that the used confidence estimates are not limited to a particular type of classi-

fier. By introducing the general concept of confidence ranges, it is possible to generate

comparable confidence estimates for different types of classifiers and varying feature

spaces. To derive these confidence estimates, we provide algorithms to calculate confi-

dence ranges for kNN classifiers, decision trees, and Bayes classifiers. The confidence

ranges are transformed into meaningful confidence estimates using a trained sigmoid

function. Our experimental evaluation shows that our new method is capable of outper-

forming established methods based on probability vectors. Additionally, we observed

that it is sometimes indeed useful to use different types of classifiers for classifying

different representations.

In our future work, we are going to extend our new idea for classifier combination

to other methods of ensemble learning like co-training. Measuring the agreement be-

tween the used classifiers by means of our new confidence estimates might yield an

improvement compared to established methods using probability vectors.

References

1. Platt, J.: ”Probabilistic outputs for support vector machines and comparison to regularized

likelihood methods”. In: Advances in Large Margin Classifiers, MIT Press. (1999) 61–74

2. Valentini, G., Masulli, F.: ”Ensembles of learning machines”. Neural Nets WIRN (2002)

3. Kittler, J., Hatef, M., Duin, R., Matas, J.: ”On Combining Classifiers”. IEEE Transactions

on Pattern Analysis and Machine Intelligence 20 (1998) 226–239

4. Kuncheva, L., Bezdek, J., Duin, R.: ”Decision Templates for Multiple Classifier Fusion: an

Experimental Comparison”. Pattern Recognition 34 (2001) 299–314

5. Duin, R.: ”The Combining Classifier: To Train Or Not To Train?”. In: Proc. 16th Int. Conf.

on Pattern Recognition (ICPR’02), Quebec City, Canada). (2002) 765–770

6. Zadrozny, B., Elkan, C.: ”Obtaining calibrated probability estimates from decision trees and

naive Bayesian classifiers”. In: Proc. 18th Int. Conf. on Machine Learning, San Francisco,

CA. (2001) 609–616

7. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In:

ACL. (1995) 189–196

8. Blum, A., Mitchell, T.: ”Combining labeled and unlabeled data with co-training”. In: Proc.

of the eleventh annual conference on Computational learning theory (COLT ’98), New York,

NY, USA (1998) 92–100

9. Ong, C.S., Smalo, A.: ”Machine Learning with Hyperkernels”. In: Proc. of the 20th Int.

Conf. (ICML 2003), Washington, DC, USA. (2003) 576–583

10. Kriegel, H.P., Schubert, M.: ”Advanced Prototype Machines: Exploring Prototypes for clas-

sification”. In: in Proc. 6th SIAM Conf. on Data Mining, Bethesda, MD. USA. (2006)

176–188

11. Levenberg, K.: ”A method for the solution of certain problems in least squares”. Quart.

Appl. Math. 2 (1944) 164–168

12. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with

Jave Implementations. Morgan Kaufmann (1999)

13. The Gene Ontology Consortium: ”Gene Ontology: Tool for the Unification of Biology”.

Nature Genetics 25 (2000) 25–29

14. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Mar-

tin, M., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: ”The SWISS-

PROT Protein Knowledgebase and its Supplement TrEMBL in 2003”. Nucleic Acid Re-

search 31 (2003) 365–370

15. Deshpande, M., Karypis, G.: ”Evaluation of Techniques for Classifying Biological Se-

quences”. In: Proc. of the 6th Pacific-Asia Conf. on Advances in Knowledge Discovery

and Data Mining (PAKDD ’02), London, UK (2002) 417–431

16. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of In-

formation by Computer. Addison-Wesley (1989)

17. University of Irvine. http://www.ics.uci.edu/ mlearn/MLRepository.html, UCI Machine

Learning Repository. (2005)

