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Abstract. In many scientific, engineering or multimedia applications,
complex distance functions are used to measure similarity accurately.
Furthermore, there often exist simpler lower-bounding distance func-
tions, which can be computed much more efficiently. In this paper, we
will show how these simple distance functions can be used to parallelize
the density-based clustering algorithm DBSCAN. First, the data is parti-
tioned based on an enumeration calculated by the hierarchical clustering
algorithm OPTICS, so that similar objects have adjacent enumeration
values. We use the fact that clustering based on lower-bounding distance
values conservatively approximates the exact clustering. By integrating
the multi-step query processing paradigm directly into the clustering al-
gorithms, the clustering on the slaves can be carried out very efficiently.
Finally, we show that the different result sets computed by the various
slaves can effectively and efficiently be merged to a global result by means
of cluster connectivity graphs. In an experimental evaluation based on
real-world test data sets, we demonstrate the benefits of our approach.

1 Introduction

Density-based clustering algorithms like DBSCAN [1] are based on ε-range que-
ries for each database object. Thereby, each range query requires a lot of distance
calculations. When working with complex objects, e.g. trees, point sets, and
graphs, often complex time-consuming distance functions are used to measure
similarity accurately. As these distance calculations are the time-limiting factor
of the clustering algorithm, the ultimate goal is to save as many as possible of
these complex distance calculations.

Recently an approach was presented for the efficient density-based clustering
of complex objects [2]. The core idea of this approach is to integrate the multi-
step query processing paradigm directly into the clustering algorithm rather
than using it “only” for accelerating range queries. In this paper, we present a
sophisticated parallelization of this approach. Similar to the area of join process-
ing where there is an increasing interest in algorithms which do not assume the
existence of any index structure, we propose an approach for parallel DBSCAN
which does not rely on the pre-clustering of index structures.

First, the data is partitioned according to the clustering result carried out on
cheaply computable distance functions. The resulting approximated clustering
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ditional communication between the various clients. The presented local clustering approach also
takes advantage of the approximating lower-bounding distance functions. The detected clusters
and the detected exact merge point sets are then transmitted to the server (cf. Fig. 1b). 

Finally, the server determines the correct clustering result by merging the locally detected
clusters. This final merging step is based on the exact merge points detected by the clients. Based
on these merge points, cluster connectivity graphs are created. In these graphs, the nodes repre-
sent the locally detected clusters. Two local clusters are connected by an edge if a merge point of
one cluster is a core-object in the other cluster (cf. Fig. 1c). In the following sections, we will de-
scribe each step in more detail.

4     Server-Side Data Partitioning

As indicated in the last section, we first partition the data based on a server-side clustering on
the lower bounding filter information. Before, we describe in detail how we do this partitioning
in Section 4.2, we first describe the basic concepts of density-based clustering along with the flat
density-based clustering algorithm DBSCAN and the hierarchical clustering algorithm OPTICS.

4.1 The Server-Side Clustering 

The key idea of density-based clustering is that for each object of a cluster the neighborhood
of a given radius ε has to contain at least a minimum number of MinPts objects, i.e. the cardinality
of the neighborhood has to exceed a given threshold. 

Definition 1 (directly density-reachable) Object p is directly density-reachable from object q
w.r.t. ε and MinPts in a set of objects D, if p ∈  Nε(q) and |Nε(q)| ≥ MinPts, where Nε(q) denotes
the subset of D contained in the ε-neighborhood of q.

The condition |Nε(q)| ≥ MinPts is called the core object condition. If this condition holds for
an object q, then we call q a core object. Other objects can be directly density-reachable only from
core objects.

C1,2,1
exact

Fig. 1. Basic idea of parallel density-based clustering.
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Fig. 1. Basic idea of parallel density-based clustering.

conservatively approximates the exact clustering. The objects of the conservative
cluster approximations are then distributed onto the available slaves in such a
way that each slave has to cluster the same amount of objects, and that the
objects to be clustered are close to each other. Note that already at this early
stage, we can detect some noise objects which do not have to be transmitted
to the local clients. In addition to the objects to be clustered by a client, we
send some filter merge points to this client. These filter merge points are also
determined based on approximated distance functions. (cf. Figure 1a).

Second, each client carries out the clustering independently of all the other
clients. No further communication is necessary throughout this second step. The
presented local clustering approach also takes advantage of the approximating
lower-bounding distance functions. The detected clusters and the detected exact
merge point sets are then transmitted to the server (cf. Figure 1b).

Finally, the server determines the correct clustering result by merging the
locally detected clusters. This final merging step is based on the exact merge
points detected by the clients. Based on these merge points, cluster connectivity
graphs are created. In these graphs, the nodes represent the locally detected
clusters. Two local clusters are connected by an edge if a merge point of one
cluster is a core object in the other cluster (cf. Figure 1c).

The remainder of this paper is organized as follows. In Section 2, we shortly
sketch the work from the literature related to our approach. In Sections 3, 4 and
5, we explain the server-side partitioning algorithm, the client-side clustering al-
gorithm, and the server-side merging of the results from the clients, respectively.
In Section 6, we present a detailed experimental evaluation based on real world
test data sets. We close the paper in Section 7 with a short summary and a note
on future work.



2 Related Work

Complex Object Representations. Complex object representations, like high-
dimensional feature vectors [3], vector sets [4], trees or graphs [5], are helpful
to model real world objects accurately. The similarity between these complex
object representations is often measured by means of expensive distance func-
tion, e.g. the edit distance. For a more detailed survey on this topic, we refer the
interested reader to [6].
Clustering. Given a set of objects with a distance function on them, an interest-
ing data mining question is, whether these objects naturally form groups (called
clusters) and what these groups look like. Data mining algorithms that try to
answer this question are called clustering algorithms. For a detailed overview on
clustering, we refer the interested reader to [7].
Density-Based Clustering. Density based clustering algorithms apply a local
cluster criterion to detect clusters. Clusters are regarded as regions in the data
space in which the objects are dense, and which are separated by regions of
low object density (noise). One of the most prominent representatives of this
clustering paradigm is DBSCAN [1].
Density-Based Clustering of Complex Objects. In [2] a detailed overview can
be found describing several approaches for the efficient density-based clustering
of complex object. Furthermore, in [2] a new approach was introduced which
performs expensive exact distance computations only when the information pro-
vided by simple distance computations is not enough to compute the exact clus-
tering. In Section 4, we will use an adaption of this approach for the efficient
clustering on the various slaves.
Parallel Density-Based Clustering of Complex Objects. To the best of our knowl-
edge there does not exist any work in this area.

3 Server-Side Data Partitioning

The key idea of density-based clustering is that for each object of a cluster the
neighborhood of a given radius ε has to contain at least a minimum number of
MinPts objects, i.e. the cardinality of the neighborhood has to exceed a given
threshold. An object p is called directly density-reachable from object q w.r.t.
ε and MinPts in a set of objects D, if p ∈ Nε(q)) and |Nε(q)| ≥ MinPts,
where Nε(q) denotes the subset of D contained in the ε-neighborhood of q. The
condition |Nε(q)| ≥ MinPts is called the core object condition. If this condition
holds for an object q, then we call q a core object. Other objects can be directly
density-reachable only from core objects. An object p is called density-reachable
from an object q w.r.t. ε and MinPts in the set of objects D, if there is a chain
of objects p1, . . . , pn, p1 = q, pn = p, such that pi ∈ D and pi+1 is directly
density-reachable from pi w.r.t. ε and MinPts. Object p is density-connected to
object q w.r.t. ε and MinPts in the set of objects D, if there is an object o ∈ D
such that both p and q are density-reachable from o. Density-reachability is the
transitive closure of direct density-reachability and is not necessarily symmetric.
On the other hand, density-connectivity is a symmetric relation.



DBSCAN. A flat density-based cluster is defined as a set of density-connected
objects which is maximal w.r.t. density-reachability. Thus a cluster contains not
only core objects but also border objects that do not satisfy the core object
condition. The noise is the set of objects not contained in any cluster.

OPTICS. While the partitioning density-based clustering algorithm DBSCAN
can only identify a flat clustering, the newer algorithm OPTICS [8] computes
an ordering of the points augmented by the so-called reachability-distance. The
reachability-distance basically denotes the smallest distance of the current object
q to any core object which belongs to the current cluster and which has already
been processed. The clusters detected by DBSCAN can also be found in the OP-
TICS ordering when using the same parametrization, i.e. the same ε and MinPts
values. For an initial clustering with OPTICS based on the lower-bounding filter
distances the following two lemmas hold.

Lemma 1. Let Cexact
1 , . . . , Cexact

n be the clusters detected by OPTICS based on
the exact distances, and let Cfilter

1 , . . . , Cfilter
m be the clusters detected by OPTICS

based on the lower-bounding filter distances. Then the following statement holds:

∀i ∈ {1, . . . , n}∃j ∈ {1, . . . ,m} : Cexact
i ⊆ Cfilter

j .

Proof. Let Nfilter
ε (o) denote the ε-neighborhood of o according to the filter dis-

tances, and let Nexact
ε (o) denote the ε-neighborhood according to the exact dis-

tances. Due to the lower-bounding filter property Nexact
ε (o) ⊆ Nfilter

ε (o) holds.
Therefore, each object o which is a core object based on the exact distances is
also a core object based on the lower-bounding filter distances. Furthermore,
each object p which is directly density-reachable from o according to the exact
distances is also directly density-reachable according to the filter functions. In-
duction on this property shows that if p is density-reachable from o based on
the exact distances, it also holds for the filter distances. Therefore, all objects
which are in one cluster according to the exact distances are also in one cluster
according to the approximated distances.

Lemma 2. Let noiseexact denote the noise objects detected by OPTICS based
on the exact distances and let noisefilter denote the noise objects detected by OP-
TICS based on the lower-bounding filter distances. Then the following statement
holds:

noisefilter ⊆ noiseexact .

Proof. An object p is a noise object if it is not included in the ε-neighborhood of
any core object. Again, let Nfilter

ε (o) and Nexact
ε (o) denote the ε-neighborhood

of o according to the filter distances and the exact distances, respectively. Due
to the lower-bounding filter property Nexact

ε (o) ⊆ Nfilter
ε (o) holds. Therefore, if

p /∈ Nfilter
ε (o), it cannot be included in Nexact

ε (o), proving the lemma.

Both Lemma 1 and Lemma 2 are helpful to partition the data onto the
different slaves. Lemma 1 shows that exact clusters are conservatively approxi-
mated by the clusters resulting from a clustering on the lower-bounding distance



functions. On the other hand, Lemma 2 shows that exact noise is progressively
approximated by the set of noise objects resulting from an approximated cluster-
ing. For this reason, noise objects according to the filter distances do not have
to be transmitted to the slaves, as we already know that they are also noise
objects according to the exact distances. All other N objects have to be refined
by the P available slave processors. Let Cfilter

1 , . . . , Cfilter
m be the approximated

clusters resulting from an initial clustering with OPTICS. In this approach, we
assign Pslave =

∑m
i=1 |C

filter
i |/P objects to each of the P slaves. We do this

partitioning online while carrying out the OPTICS algorithm. At each time dur-
ing the clustering algorithm, OPTICS knows the slave j having received the
smallest number Lj of objects up to now, i.e. the client j has the highest free
capacity Cj = Pslave −Lj . OPTICS stops the current clustering at two different
event points: In the first case, a cluster Cfilter

i of cardinality |Cfilter
i | ≤ Cj was

completely determined. This cluster is sent to the slave j. In the second case,
OPTICS determined Cj more points belonging to the current cluster Cfilter

i .
These points are grouped together to a filter cluster Cfilter

i,j . Then, we transmit
the cluster Cfilter

i,j along with the filter merge points Mfilter
i,j to the slave j. The

set Mfilter
i,j can be determined throughout the clustering of the set Cfilter

i,j and
can be defined as follows.

Definition 1 (filter merge points). Let Cfilter
i be a cluster which is split

during an OPTICS run into n clusters Cfilter
i,1 , . . . , Cfilter

i,n . Then, the filter merge
points Mfilter

i,j for a partial filter cluster Cfilter
i,j are defined as follows: Mfilter

i,j =
{q ∈ Cfilter

i − Cfilter
i,j | ∃p ∈ Cfilter

i,j : q is directly density-reachable from p}.

The filter merge points Mfilter
i,j are necessary in order to decide whether ob-

jects o ∈ Cfilter
i,j are core objects. Furthermore, a subset Mexact

i,j ⊆ Mfilter
i,j is used

to merge exact clusters in the final merge step (cf. Section 5).

4 Client-Side Clustering

Each of the filter clusters Cfilter
i,j is clustered independently on the exact distances

by the assigned slave j. For clustering these filter clusters, we adapt the approach
presented in [2], so that it can also handle the additional merge points Mfilter

i,j .
The main idea of the client-side clustering approach is to carry out the range
queries based on the lower-bounding filter distances instead of using the expen-
sive exact distances. Thereto, we do not use the simple seedlist of the original
DBSCAN algorithm, but we use a list of lists, called Xseedlist . The Xseedlist
consists of an ordered object list OL. Each entry (o, T,PL) ∈ OL contains a flag
T indicating whether o ∈ Cfilter

i,j (T = C) or o ∈ Mfilter
i,j (T = M). Each entry of

the predecessor list PL consists of the following information: a predecessor op of
o, which is a core object already added to the current cluster, and the predecessor
distance, which is equal to the filter distance df (o, op) between the two objects.



Definition 4 (exact merge points) Let  be a cluster to be refined on the slave with the cor-
responding merge point set . Let  be n exact clusters determined throughout
the client-side refinement clustering. Then, we determine the set  where

={q| q ∈  p ∈ : q is directly density-reachable from p}.

Based on these exact merge point sets and the exact clusters, we can define a “cluster connec-
tivity graph”. 

Definition 5 (connectivity graph Gi for a cluster ) Let  be a cluster which was refined
on one of the s different slaves. Let  be an exact cluster determined by
slave j along with the corresponding merge point sets .Then a graph Gi = (Vi, Ei)
is called a connectivity graph for  iff the following statements hold:
  • Vi = 
  • Ei = {

( ( p is a core-point))}

Note that we could leave out the additional condition  which demands that we only con-
nect exact clusters by an edge if they are from different slaves. Anyway, also without this addi-
tional condition , two clusters  and  from the same slave j are never connected
by an edge. Such a connection of the two clusters would already have taken place throughout the
refinement clustering on the slave j. Based on the connectivity graphs Gi for the approximated
clusterings , we can determine the database connectivity graph. 

Definition 6 (database connectivity graph G) Let  be one of the  approximated
clusters along with the corresponding connectivity graph Gi = (Vi, Ei). Then we call
G = ( , ) the database connectivity graph.

The database connectivity graph is nothing else but the union of the connectivity graphs of the
approximated clusters. Based on the above definition, we state the central lemma of this paper.

Lemma 4. Let G be the database connectivity graph. Then the determination of all maximal
connected subgraphs of G is equivalent to a DBSCAN clustering carried out on the exact
distances. 

Proof. According to Lemma 3, the “status“ of each object o is determined correctly. Note, that we
assign a border object which is directly density-reachable from core objects of different clusters
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Fig. 4. Server-side partitioning step (a) and merge step (b).
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Fig. 2. Server-side partitioning step (a) and merge step (b).

The result of the extended DBSCAN algorithm is a set of exact clusters
Cexact

i,j,l ⊆ Cfilter
i,j along with their additional exact merge points Mexact

i,j,l ⊆ Mfilter
i,j .

To expand a cluster Cexact
i,j,l we take the first element (o, T,PL) from OL and set

op to the nearest predecessor object in PL.
Let us first assume that T = C holds. If PL = NIL holds, we add o to Cexact

i,j,l ,
delete o from OL, carry out a range query around o, and try to expand the
cluster Cexact

i,j,l . If PL 6= NIL holds, we compute do(o, op). If do(o, op) ≤ ε, we
proceed as in the case where PL = NIL holds. If do(o, op) > ε and length of
PL > 1 hold, we delete the first entry from PL. If do(o, op) > ε and length of
PL = 1 hold, we delete o from OL. Iteratively, we try to expand the current
cluster Cexact

i,j,l by examining the first entry of OL until OL is empty.
Let us now assume that T = M holds. If PL = NIL holds, we add o to

Mexact
i,j,l , delete o from OL, and try to expand the exact merge point set Mexact

i,j,l .
If PL 6= NIL holds, we compute do(o, op). If do(o, op) ≤ ε, we proceed as in the
case where PL = NIL holds. If do(o, op) > ε and length of PL > 1 hold, we delete
the first entry from PL. If do(o, op) > ε and length of PL = 1 hold, we delete o
from OL. Iteratively, we try to expand the current exact merge point set Mexact

i,j,l

by examining the first entry of OL until OL is empty.

5 Server-Side Merging

Obviously, we only have to carry out the merge process for those clusters Cfilter
i

which were split in several clusters Cfilter
i,j . The client detects that each of these

clusters Cfilter
i,j contains t clusters Cexact

i,j,1 , . . . , Cexact
i,j,t . Note that t can also be

equal to 0, i.e. no exact cluster is contained in the cluster Cfilter
i,j . For each of

the t exact clusters Cexact
i,j,l there also exists a corresponding set of exact merge

points Mexact
i,j,l ⊆ Mfilter

i,j (cf. Figure 2) defined as follows.



Definition 2 (exact merge points). Let Cfilter
i,j be a cluster to be refined on

the slave with the corresponding merge point set Mfilter
i,j . Let Cexact

i,j,l ⊆ Cfilter
i,j be

an exact cluster determined during the client-side refinement clustering. Then,
we determine the set Mexact

i,j,l ⊆ Mfilter
i,j of exact merge points where Mexact

i,j,l =
{q ∈ Mfilter

i,j | ∃p ∈ Cexact
i,j,l : q is directly density-reachable from p}.

Based on these exact merge point sets and the exact clusters, we can define
a “cluster connectivity graph”.

Definition 3 (cluster connectivity graph). Let Cfilter
i be a cluster which

was refined on one of the s different slaves. Let Cexact
i,j,l ⊆ Cfilter

i,j ⊆ Cfilter
i be an

exact cluster determined by slave j along with the corresponding merge point sets
Mexact

i,j,l ⊆ Mfilter
i,j . Then a graph Gi = (Vi, Ei) is called a cluster connectivity

graph for Cfilter
i iff the following statements hold:

– Vi = {Cexact
i,1,1 , . . . , Cexact

i,1,n1
, . . . , Cexact

i,s,1 , . . . , Cexact
i,s,ns

}.
– Ei = {(Cexact

i,j,l , Cexact
i,j′,l′ ) | ∃p ∈ Mexact

i,j,l : p ∈ Cexact
i,j′,l′ ∧ p is a core point}.

Note that two clusters Cexact
i,j,l and Cexact

i,j′,l′ from the same slave j = j′ are
never connected by an edge. Such a connection of the two clusters would already
have taken place throughout the refinement clustering on the slave j. Based
on the connectivity graphs Gi for the approximated clusterings Cfilter

i , we can
determine the database connectivity graph.

Definition 4 (database connectivity graph). Let Cfilter
i be one of n ap-

proximated clusters along with the corresponding cluster connectivity graph Gi =
(Vi, Ei). Then we call G = (

⋃n
i=1 Vi,

⋃n
i=1 Ei) the database connectivity graph.

The database connectivity graph is nothing else but the union of the con-
nectivity graphs of the approximated clusters. Based on the above definition, we
state the central lemma of this paper.

Lemma 3. Let G be the database connectivity graph. Then the determination
of all maximal connected subgraphs of G is equivalent to a DBSCAN clustering
carried out on the exact distances.

Proof. For each object o the client-side clustering determines correctly, whether
it is a core object, a border object, or a noise object. Note, that we assign a border
object which is directly density-reachable from core objects of different clusters
redundantly to all of these clusters. Therefore, the only remaining issue is to show
that two core objects which are directly density-reachable to each other are in the
same maximal connected subgraph. By induction, according to the definition of
density-reachability, two clusters then contain the same core objects. Obviously,
two core objects o1 and o2 are directly density-reachable if they are either in the
same exact cluster Cexact

i,j,l or if o1 ∈ Cexact
i,j,l and o2 ∈ Mi,j,lexact resulting in an

edge of the database connectivity graph. Therefore, depth-first traversals through
all of the connectivity graphs Gi corresponding to a filter cluster Cfilter

i create
the correct clustering result where each subgraph corresponds to one cluster.



6 Experimental Evaluation

In this section, we present a detailed experimental evaluation based on real-world
data sets. We used CAD data represented by 81-dimensional feature vectors [3]
and vector sets where each element consists of 7 6D vectors [4]. Furthermore,
we used graphs [5] to represent image data. The used distance functions can
be characterized as follows: (i) The exact distance computations on the graphs
are very expensive. On the other hand, the filter is rather selective and can
efficiently be computed. (ii) The exact distance computations on the feature
vectors and vector sets are also very expensive as normalization aspects for the
CAD objects are taken into account [4, 3]. As a filter for the feature vectors we
use their Euclidean norms [9] which is not very selective, but can be computed
very efficiently. The filter used for the vector sets is more selective than the
filter for the feature vectors, but also computationally more expensive. If not
otherwise stated, we used 3,000 complex objects from each data set.

The original OPTICS and DBSCAN algorithms, their extensions introduced
in this paper, and the used filter and exact distances functions were implemented
in Java 1.4. The experiments were run on a workstation with a Xeon 2.4 GHz
processor and 2 GB main memory. All experiments were run sequentially on one
computer. Thereby, the overall time for the client-side clustering is determined
by the slowest slave. If not otherwise stated, we chose an ε-parameter yielding
as many flat clusters as possible, and the MinPts-parameter was set to 5.
Characteristics of the partitioning step. Figure 3 compares the number of merge
points for different split techniques applied to filter clusters. As explained in
Section 3, we split a filter cluster during the partitioning step along the order-
ing produced by OPTICS. Note that OPTICS always walks through a cluster
by visiting the densest areas first. Figure 3 shows that this kind of split strat-
egy yields considerably less merge points than a split strategy which arbitrarily
groups objects from a filter cluster together. Thus, the figure proves the good
clustering properties of our metric space filling curve OPTICS.
Dependency on the Number of Slaves. Figure 4 shows the absolute runtimes of
our parallel DBSCAN approach dependent on the number of available slaves for
the vector sets and for the graph dataset. The figure shows the accumulated times
after the partitioning, client-side clustering, and the merge step. The partitioning
times also include simulated communication times for the transfer of the objects

redundantly to all of these clusters. Therefore, the only remaining issue is to show that two
core-objects which are directly density-reachable to each other are in the same maximal connected
subgraph. By induction, according to Definition 2, two clusters then contain the same core objects.
Obviously, two core objects o1 and o2 are directly density-reachable if they are either in the same
exact cluster  or if  and  resulting in an edge of the database connec-
tivity graph. Therefore, depth-first traversals through all of the connectivity graphs Gi correspond-
ing to a filter cluster create the correct clustering result where each subgraph corresponds to
one cluster.

7     Experimental Evaluation

In this section, we present a detailed experimental evaluation based on real-world test data
sets. As test data, we used real-world CAD data represented by 81-dimensional feature vectors
[7] and vector sets where each element consists of 7 6D vectors [6]. Furthermore, we used graphs
[8] to represent real-world image data. The used distance functions can be characterized as fol-
lows: (i) The exact distance computations on the graphs are very expensive. On the other hand,
the used filter is rather selective and can efficiently be computed [8]. (ii) The exact distance com-
putations on the feature vectors and vector sets are also very expensive as normalization aspects
for the CAD objects are taken into account. We compute 48 times the distance between two 81-di-
mensional feature vectors, and between two vector sets, in order to determine a normalized dis-
tance between two CAD objects [6, 7]. As a filter for the feature vectors we use their Euclidean
norms [4] which is not very selective, but can be computed very efficiently. The filter used for
the vector sets is more selective than the filter for the feature vectors, but also computationally
more expensive [7]. If not otherwise stated, we used 3,000 complex objects from each data set,
and we employed the filter and exact object distance functions proposed in [6, 7, 8]. 

The original OPTICS and DBSCAN algorithms, along with their extensions introduced in this
paper and the used filter and exact object distances were implemented in Java 1.4. The experi-
ments were run on a workstation with a Xeon 2.4 GHz processor and 2 GB main memory under
Linux. All experiments were run sequentially on one computer. Thereby, the overall time for the
client-side clustering is determined by the slowest slave. If not otherwise stated, we chose an ε-pa-
rameter yielding as many flat clusters as possible, and the MinPts-parameter was set to 5. 

Comparison of the Partitioning Strategies. In a first experiment, we found that for high ε-val-
ues PartOPTICS clearly outperforms PartDBSCAN, as PartDBSCAN does not split large clusters but
assigns them to a single slave, while other slaves may be left idle. In contrast, PartOPTICS is able
to exploit the full computational power of all slaves independent of the chosen ε-parameter. Thus,
in all following experiments, PartOPTICS is used for the server-side partitioning.
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Characteristics of the PartOPTICS Approach. Fig. 5 compares the number of merge points for
different split techniques applied to filter clusters. As explained in Section 4.2, we split a filter
cluster during the partitioning step along the ordering produced by OPTICS. Note that OPTICS
always walks through a cluster by visiting the densest areas first. Fig. 5 shows that this kind of
split strategy yields considerably less merge points than a split strategy which arbitrarily groups
objects from a filter cluster together. Thus, Fig. 5 proves the good clustering properties of our
metric space filling curve “OPTICS”. 

Dependency on the Number of Slaves. Fig. 6 shows the absolute runtimes of our parallel DB-
SCAN approach dependent on the number of available slaves for the vector sets and for the graph
dataset. The figure shows the accumulated times after the partitioning, client-side clustering, and
the merge step. The partitioning times also include simulated communication times for the trans-
fer of the objects to the slaves in a 100 Mbit LAN. No communication costs arise from the cli-
ent-side clustering step, as each client already received all needed fiter merge points. A growing
number of slaves leads to a significant speedup of the client-side clustering. A lower bound of the
achievable total runtime is given by the time needed for the initial partitioning step. It is worth to
note the time needed for the final merging step is negligible even for a high number of slaves.
Although the number of exact merge points grows with an increasing number of slaves (cf. Fig.
5), the merge step remains cheap. 

Speed-Ups. Finally, Fig. 7 depicts the speedup achieved by our new parallel DBSCAN ap-
proach based on a server-side partitioning with OPTICS. We compared this approach to a DB-
SCAN approach based on a full table scan and compared to a DBSCAN approach based on the
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Characteristics of the PartOPTICS Approach. Fig. 5 compares the number of merge points for
different split techniques applied to filter clusters. As explained in Section 4.2, we split a filter
cluster during the partitioning step along the ordering produced by OPTICS. Note that OPTICS
always walks through a cluster by visiting the densest areas first. Fig. 5 shows that this kind of
split strategy yields considerably less merge points than a split strategy which arbitrarily groups
objects from a filter cluster together. Thus, Fig. 5 proves the good clustering properties of our
metric space filling curve “OPTICS”. 

Dependency on the Number of Slaves. Fig. 6 shows the absolute runtimes of our parallel DB-
SCAN approach dependent on the number of available slaves for the vector sets and for the graph
dataset. The figure shows the accumulated times after the partitioning, client-side clustering, and
the merge step. The partitioning times also include simulated communication times for the trans-
fer of the objects to the slaves in a 100 Mbit LAN. No communication costs arise from the cli-
ent-side clustering step, as each client already received all needed fiter merge points. A growing
number of slaves leads to a significant speedup of the client-side clustering. A lower bound of the
achievable total runtime is given by the time needed for the initial partitioning step. It is worth to
note the time needed for the final merging step is negligible even for a high number of slaves.
Although the number of exact merge points grows with an increasing number of slaves (cf. Fig.
5), the merge step remains cheap. 

Speed-Ups. Finally, Fig. 7 depicts the speedup achieved by our new parallel DBSCAN ap-
proach based on a server-side partitioning with OPTICS. We compared this approach to a DB-
SCAN approach based on a full table scan and compared to a DBSCAN approach based on the

0

500

1000

1500

2000

1 2 4 8 16 32 64

merge
clustering
partitioning

no. of slaves

Fig. 6. Absolute runtimes w.r.t. a varying number of slaves.

ru
nt

im
e 

[s
ec

.]

0

50

100

150

200

1 2 4 8 16 32 64
no. of slaves

ru
nt

im
e 

[s
ec

.]

a) vector sets b) graphs

Fig. 7. Overall speedup w.r.t. a varying number of slaves.

0

100

200

300

400

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

no. of slaves

sp
ee

du
p

0
10
20
30
40
50
60
70

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

sp
ee

du
p

a) speedup w.r.t. DBSCAN based on a 

no. of slaves

full table scan
b) speedup w.r.t. DBSCAN based on the

traditional multi-step query processing
paradigm.

(b) Graphs.

Fig. 4. Absolute runtimes w.r.t. a varying number of slaves.

Characteristics of the PartOPTICS Approach. Fig. 5 compares the number of merge points for dif-
ferent split techniques applied to filter clusters. As explained in Section 4.2, we split a filter cluster
during the partitioning step along the ordering produced by OPTICS. Note that OPTICS always walks
through a cluster by visiting the densest areas first. Fig. 5 shows that this kind of split strategy yields
considerably less merge points than a split strategy which arbitrarily groups objects from a filter clus-
ter together. Thus, Fig. 5 proves the good clustering properties of our metric space filling curve “OP-
TICS”. 

Dependency on the Number of Slaves. Fig. 6 shows the absolute runtimes of our parallel DBSCAN
approach dependent on the number of available slaves for the vector sets and for the graph dataset.
The figure shows the accumulated times after the partitioning, client-side clustering, and the merge
step. The partitioning times also include simulated communication times for the transfer of the objects
to the slaves in a 100 Mbit LAN. No communication costs arise from the client-side clustering step,
as each client already received all needed fiter merge points. A growing number of slaves leads to a
significant speedup of the client-side clustering. A lower bound of the achievable total runtime is giv-
en by the time needed for the initial partitioning step. It is worth to note the time needed for the final
merging step is negligible even for a high number of slaves. Although the number of exact merge
points grows with an increasing number of slaves (cf. Fig. 5), the merge step remains cheap. 

Speed-Ups. Finally, Fig. 7 depicts the speedup achieved by our new parallel DBSCAN approach
based on a server-side partitioning with OPTICS. We compared this approach to a DBSCAN ap-
proach based on a full table scan and compared to a DBSCAN approach based on the traditional mul-
ti-step query processing paradigm. The figure shows that for the feature vectors we achieve a speedup
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Characteristics of the PartOPTICS Approach. Fig. 5 compares the number of merge points for dif-
ferent split techniques applied to filter clusters. As explained in Section 4.2, we split a filter cluster
during the partitioning step along the ordering produced by OPTICS. Note that OPTICS always walks
through a cluster by visiting the densest areas first. Fig. 5 shows that this kind of split strategy yields
considerably less merge points than a split strategy which arbitrarily groups objects from a filter clus-
ter together. Thus, Fig. 5 proves the good clustering properties of our metric space filling curve “OP-
TICS”. 

Dependency on the Number of Slaves. Fig. 6 shows the absolute runtimes of our parallel DBSCAN
approach dependent on the number of available slaves for the vector sets and for the graph dataset.
The figure shows the accumulated times after the partitioning, client-side clustering, and the merge
step. The partitioning times also include simulated communication times for the transfer of the objects
to the slaves in a 100 Mbit LAN. No communication costs arise from the client-side clustering step,
as each client already received all needed fiter merge points. A growing number of slaves leads to a
significant speedup of the client-side clustering. A lower bound of the achievable total runtime is giv-
en by the time needed for the initial partitioning step. It is worth to note the time needed for the final
merging step is negligible even for a high number of slaves. Although the number of exact merge
points grows with an increasing number of slaves (cf. Fig. 5), the merge step remains cheap. 

Speed-Ups. Finally, Fig. 7 depicts the speedup achieved by our new parallel DBSCAN approach
based on a server-side partitioning with OPTICS. We compared this approach to a DBSCAN ap-
proach based on a full table scan and compared to a DBSCAN approach based on the traditional mul-
ti-step query processing paradigm. The figure shows that for the feature vectors we achieve a speedup
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Fig. 5. Overall speedup w.r.t. a varying number of slaves.

to the slaves in a 100 Mbit LAN. No communication costs arise from the client-
side clustering step, as each client already received all needed filter merge points.
A growing number of slaves leads to a significant speedup of the client-side
clustering. A lower bound of the achievable total runtime is given by the time
needed for the initial partitioning step. It is worth to note the time needed for
the final merging step is negligible even for a high number of slaves. Although
the number of exact merge points grows with an increasing number of slaves (cf.
Figure 3), the merge step remains cheap.
Speedup. Finally, Figure 5 depicts the speedup achieved by our new parallel DB-
SCAN approach based on a server-side partitioning with OPTICS. We compared
this approach to a DBSCAN approach based on a full table scan and compared
to a DBSCAN approach based on the traditional multi-step query processing
paradigm. The figure shows that for the feature vectors we achieve a speedup
of one order of magnitude already when only one slave is available. In the case
of the graph dataset we have a speedup of 67 compared to DBSCAN based
on a full table scan. These results demonstrate the suitability of the client-side
clustering approach. For the vector sets the benefits of using several slaves can
clearly be seen. For instance, our approach achieves a speedup of 4 for one slave
and a speedup of 20 for eight slaves compared to DBSCAN based on traditional
multi-step range queries.



7 Conclusions

In this paper, we applied the novel concept of using efficiently computable lower-
bounding distance functions for the parallelization of data mining algorithms
to the density-based clustering algorithm DBSCAN. For partitioning the data,
we used the hierarchical clustering algorithm OPTICS as a kind of space fill-
ing curve for general metric objects, which provides the foundation for a fair
and suitable partitioning strategy. We showed how the local clients can carry
out their clustering efficiently by integrating the multi-step query processing
paradigm directly into the clustering algorithm. Based on the concept of merge
points, we constructed a global cluster connectivity graph from which the fi-
nal clustering result can easily be derived. In the experimental evaluation, we
demonstrated that our new approach is able to efficiently cluster metric objects.
We showed that if several slaves are available, the benefits achieved by the full
computational power of the slaves easily outweigh the additional costs of par-
titioning and merging by the master. In our future work, we will demonstrate
that also other data mining algorithms can beneficially be parallelized based on
lower-bounding distance functions.
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