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ABSTRACT
Similarity search in database systems is becoming an in-
creasingly important task in modern application domains
such as multimedia, molecular biology, medical imaging,
computer aided engineering, marketing and purchasing as-
sistance as well as many others. In this paper, we show
how visualizing the hierarchical clustering structure of a
database of objects can aid the user in his time consum-
ing task to find similar objects. We present related work
and explain its shortcomings which led to the development
of our new methods. Based on reachability plots, we intro-
duce approaches which automatically extract the significant
clusters in a hierarchical cluster representation along with
suitable cluster representatives. These techniques can be
used as a basis for visual data mining. We implemented
our algorithms resulting in an industrial prototype which
we used for the experimental evaluation. This evaluation is
based on a real world test data set and points out that our
new approaches to automatic cluster recognition and extrac-
tion of cluster representatives create meaningful and useful
results.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications –
data mining, image databases, spatial databases and GIS.

General Terms
Algorithms

Keywords
similarity search, visual data mining, clustering

1. INTRODUCTION
In the last ten years, an increasing number of database ap-
plications has emerged for which efficient and effective sup-
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port for similarity search is substantial. The importance of
similarity search grows in application areas such as multi-
media, medical imaging, molecular biology, computer aided
engineering, marketing and purchasing assistance, etc. [9,
1, 7, 8, 2, 5, 6, 10]. Particularly, the task of finding similar
shapes in 2-D and 3-D becomes more and more important.
Examples for new applications that require the retrieval of
similar 3-D objects include databases for molecular biology,
medical imaging and computer aided design.

Hierarchical clustering was shown to be effective for evalu-
ating similarity models [12, 11]. Especially, the reachability
plot generated by OPTICS [4] is suitable for assessing the
quality of a similarity model. Furthermore, visually analyz-
ing cluster hierarchies helps the user, e.g. an engineer, to
find and group similar objects. Solid cluster extraction and
meaningful cluster representatives form the foundation for
providing the user with significant and quick information.

In this paper, we introduce algorithms for automatically de-
tecting hierarchical clusters along with their corresponding
representatives. In order to evaluate our ideas, we devel-
oped a prototype called BOSS (Browsing OPTICS Plots for
S imilarity Search). BOSS is based on techniques related to
visual data mining. It helps to visually analyze cluster hier-
archies by providing meaningful cluster representatives.

The remainder of the paper is organized as follows: After
briefly introducing reachability plots, we present in Section
2 the application areas of hierachical clustering along with
the corresponding requirements in the industrial and in the
scientific community which motivated the development of
BOSS. In Sections 3 and 4, we introduce the notions of
cluster recognition and cluster representatives respectively,
which form the theoretical foundations of BOSS. In Section
5, we describe the actual industrial prototype we developed
and evaluate its usefulness. The paper concludes in Section
6 with a short summary and a few remarks on future work.

2. HIERACHICAL CLUSTERING
In this section, we outline the application ranges which led
to the development of our interactive browsing tool, called
BOSS. In order to understand the connection between BOSS
and the application requirements we first introduce the reach-
ability plots computed by OPTICS, which served as a start-

brecheis
4th Int. Workshop on Multimedia Data Mining (MDM/KDD'03), Washington, DC, 2003



Figure 1: Reachability plot (right) computed by OP-
TICS for a sample 2-D dataset (left).

ing point for BOSS. The technical aspects related to BOSS
are described later in Section 5.

2.1 Reachabilty Plots
The key idea of density-based clustering is that for each ob-
ject of a cluster the neighborhood of a given radius ε has to
contain at least a minimum number MinPts of objects. Us-
ing the density-based hierarchical clustering algorithm OP-
TICS yields several advantages due to the following reasons.
First, OPTICS is – in contrast to most other algorithms
– relatively insensitive to its two input parameters, ε and
MinPts. The authors in [4] state that the input parame-
ters just have to be large enough to produce good results.
Second, OPTICS is a hierarchical clustering method which
yields more information about the cluster structure than a
method that computes a flat partitioning of the data (e.g.
k-means[13]).

The reachability plots computed by OPTICS help the user
to get a meaningful and quick overview over a large data
set. The output of OPTICS is a linear ordering of the
database objects minimizing a binary relation called reach-
ability which is in most cases equal to the minimum dis-
tance of each database object to one of its predecessors in
the ordering. Instead of a dendrogram, which is the com-
mon representation of hierarchical clusterings, the resulting
reachability plot is much easier to analyse. The reachability
values can be plotted for each object of the cluster-ordering
computed by OPTICS. Valleys in this plot indicate clusters:
objects having a small reachability value are closer and thus
more similar to their predecessor objects than objects hav-
ing a higher reachability value.

The reachability plot generated by OPTICS can be cut at
any level εcut parallel to the abscissa. It represents the
density-based clusters according to the density threshold
εcut: A consecutive subsequence of objects having a smaller
reachability value than εcut belongs to the same cluster. An
example is presented in Figure 1: For a cut at the level ε1

we find two clusters denoted as A and B. Compared to this
clustering, a cut at level ε2 would yield three clusters. The
cluster A is split into two smaller clusters denoted by A1 and
A2 and cluster B decreased its size. Usually, for evaluation
purposes, a good value for εcut would yield as many clusters
as possible.

2.2 Application Ranges
BOSS was designed for three different purposes: visual data
mining, similarity search and evaluation of similarity mod-

els. For the first two applications, the choice of the represen-
tative objects of a cluster is the key step. It helps the user
to get a meaningful and quick overview over a large existing
data set. Furthermore, BOSS helps scientists to evaluate
new similarity models.

2.2.1 Visual Data Mining
As defined in [3], visual data mining is a step in the KDD
process that utilizes visualization as a communication chan-
nel between the computer and the user to produce novel
and interpretable patterns. Based on the balance and se-
quence of the automatic and the interactive (visual) part of
the KDD process, three classes of visual data mining can be
identified.

• Visualization of the data mining result:
An algorithm extracts patterns from the data. These
patterns are visualized to make them interpretable.
Based on the visualization, the user may want to re-
turn to the data mining algorithm and run it again
with different input parameters (cf. Figure 2a).

• Visualization of an intermediate result:
An algorithm performs an analysis of the data not pro-
ducing the final patterns but an intermediate result
which can be visualized. Then the user retrieves the
interesting patterns in the visualization of the inter-
mediate result (cf. Figure 2b).

• Visualization of the data:
Data is visualized immediately without running a so-
phisticated algorithm before. Patterns are obtained by
the user by exploring the visualized data (cf. Figure
2c).

The approach presented in this paper belongs to the sec-
ond class. A hierarchical clustering algorithm is applied to
the data, which extracts the clustering structure as an in-
termediate result. There is no meaning associated with the
generated clusters. However, our approach allows the user
to visually analyze the contents of the clusters. The clus-
tering algorithm used in the algorithmic part is independent
from an application. It performs the core part of the data
mining process and its result serves as a multi-purpose basis
for further analysis directed by the user. This way the user
may obtain novel information which was not even known to
exist in the data set. This is in contrast to similarity search
where the user is restricted to find similar parts respective
to a query object and a predetermined similarity measure.

2.2.2 Similarity Search
The development, design, manufacturing and maintenance
of modern engineering products is a very expensive and
complex task. Effective similarity models are required for
two- and three-dimensional CAD applications to cope with
rapidly growing amounts of data. Shorter product cycles
and a greater diversity of models are becoming decisive com-
petitive factors in the hard-fought automobile and aircraft
market. These demands can only be met if the engineers
have an overview of already existing CAD parts. It would
be desirable to have an interactive data browsing tool which
depicts the reachability plot computed by OPTICS in a user



Figure 2: Different approaches to visual data mining
[3].

friendly way together with appropriate representatives of the
clusters. This clear illustration would support the user in his
time-consuming task to find similar parts. From the indus-
trial user’s point of view, this browsing tool should meet the
following two requirements:

• The hierarchical clustering structure of the dataset is
revealed at a glance. The reachability plot is an in-
tuitive visualization of the clustering hierarchy which
helps to assign each object to its corresponding cluster
or to noise. Furthermore, the hierarchical representa-
tion of the clusters using the reachability plot helps the
user to get a quick overview over all clusters and their
relation to each other. As each entry in the reach-
abiltity plot is assigned to one object, we can easily
illustrate some representatives of the clusters belong-
ing to the current density threshold εcut (cf. Figure
3).

• The user is not only interested in the shape and the
number of the clusters, but also in the specific parts
building up a cluster. As for large clusters it is rather
difficult to depict all objects, representatives of each
cluster should be displayed. To follow up a first idea,
these representatives could be simply constructed by
superimposing all parts belonging to the regarded clus-
ter (cf. Figure 4). We can browse through the hierar-
chy of the representatives in the same way as through
the OPTICS plots.

This way, the cost of developing and producing new parts
could be reduced by maximizing the reuse of existing parts,
because the user can browse through the hierarchical struc-
ture of the clusters in a top-down way. Thus the engineers
get an overview of already existing parts and are able to
navigate their way through the diversity of existing variants
of products, such as cars.

2.2.3 Evaluation of Similarity Models

Figure 3: Browsing through reachability plots with
different density thresholds εcut.

Figure 4: Hierarchically ordered representatives.

In general, similarity models can be evaluated by comput-
ing k-nearest neighbour queries (k-nn queries). As shown in
[12], this evaluation approach is subjective and error-prone
because the quality measure of the similarity model depends
on the results of a few similarity queries and, therefore, on
the choice of the query objects. A model may perfectly re-
flect the intuitive similarity according to the chosen query
objects and would be evaluated as “good” although it pro-
duces disastrous results for other query objects.

A better way to evaluate and compare several similarity
models is to apply a clustering algorithm. Clustering groups
a set of objects into classes where objects within one class
are similar and objects of different classes are dissimilar to
each other. The result can be used to evaluate which model
is best suited for which kind of objects. It is more objective
since each object of the data set is taken into account to
evaluate the data models.

3. CLUSTER RECOGNITION
In this section, we address the first task of automatically
extracting clusters from the reachability plots. After a brief
discussion of recent work in that area, we propose a new
approach for hierarchical cluster recognition based on reach-
ability plots.

3.1 Recent Work
To the best of our knowledge, there are only two methods
for automatic cluster extraction from hierarchical represen-
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tations such as reachability plots or dendrograms — both
are also based on reachability plots. Since clusters are rep-
resented as valleys (or dents) in the reachability plot, the
task of automatic cluster extraction is to identify significant
valleys.

The first approach proposed in [4] called ξ-clustering is based
on the steepness of the valleys in the reachability plot. The
steepness is defined by means of an input parameter ξ. The
method suffers from the fact that this input parameter is
difficult to understand and hard to determine. Rather small
variations of the value ξ often lead to drastic changes of
the resulting clustering hierarchy. As a consequence, this
method is unsuitable for our purpose of automatic cluster
extraction.

The second approach was proposed recently by Sander et al.
[14]. The authors describe an algorithm called cluster tree

that automatically extracts a hierarchical clustering from a
reachability plot and computes a cluster tree. It is based
on the idea that significant local maxima in the reachabil-
ity plot separate clusters. Two parameters are introduced
to decide whether a local maximum is significant: The first
parameter specifies the minimum cluster size, i.e. how many
objects must be located between two significant local max-
ima. The second parameter specifies the ratio between the
reachability of a significant local maximum m and the aver-
age reachabilities of the regions to the left and to the right of
m. The authors in [14] propose to set the minimum cluster
size to 0.5% of the data set size and the second parameter
to 0.75. They empirically show, that this default setting
approximately represents the requirements of a typical user.

Although the second method is rather suitable for automatic
cluster extraction from reachability plots, it has one major
drawback. Many real-world data sets consist of narrowing
clusters, i.e. clusters each consisting of exactly one smaller
sub-cluster (which may also be a narrowing cluster).

Since the algorithm cluster tree runs through a list of all
local maxima (sorted in descending order of reachability)
and decides at each local maximum m, whether m is signifi-
cant to split the objects to the left of m and to the right of m
into two clusters, the algorithm cannot detect such narrow-
ing clusters. These clusters cannot be split by a significant
maximum. Figure 5 illustrates this fact. The narrowing
cluster A consists of one cluster B which is itself narrow-
ing consisting of one cluster C (the clusters are indicated by

dashed lines). The algorithm cluster tree will only find
cluster A since there are no local maxima to split clusters B
and C.

3.2 Drop-Down Clustering
Our new approach for automatic extraction of clusters from
a reachability plot has some affinity to [14]. We also require
a minimum cluster size and, although we do not require this
explicitly, can install a ratio between the reachabilities at
the boundary of a cluster and inside a cluster.

Since our method works in a top-down fashion, we call it
Drop-Down Clustering. The idea behind is the successive
use of the visual interpretation of the cluster ordering —
as described in Figure 1 — which is based on the fact that
the reachability plot can be cut by any level εcut to the
abscissa to extract a clustering. Starting from an initial
clustering we simply drop the εcut-value in order to find
substructures. Since it is not practical to test each possible
εcut-value, we have to extract interesting values for a cut
from the reachability values of the objects.

The Drop-Down Clustering algorithm starts by generating
an initial root clustering. This does not contain all elements
of the plot, as clusters separated by noise are assumed to
be not related. Basically, a set of clusters forms the ba-
sis for a set of hierarchal clusters. This initial clustering is
generated as follows: The objects in the reachability plot
are sorted by descending reachability distance while retain-
ing relative order among equal elements. The sorted list is
now scanned until two objects are found whose indices are
more than MinPts apart, indicating that every element in-
between these two is smaller than either, thus constituting
a dip in the graph. A top level cluster has been found, and
all elements included in this cluster are removed from the
sorted list. The scan can now continue until all elements
have been removed or viewed.

The second part of the algorithm now separately analyzes
each cluster found during the initial clustering. The extrac-
tion of further (sub-)clusters is a recursive procedure. The
procedure starts with a set of elements from the reachabil-
ity graph which is sorted by descending reachability values
where elements having the same reachability value are ar-
ranged according to the cluster ordering. Figure 6 shows a
sample cluster and its associated sorted element list. The
first two elements of this sorted list are the edges containing
all other elements (shown by the elements denoted by “*”
in Figure 6). Starting at the third element, this list is se-
quentially tested for an object not adjacent to an edge. If an
object is adjacent to an edge, the adjoining edge is moved to
this object, shrinking the “pool” in the reachability graph.
Should an object not be adjacent to either edge, then it
must be inside the “pool” indicated by a local “bump” in
the reachability graph (for instance the element denoted by
the “+” in the sorted list in Figure 6). Three cases can be
distinguished:

1. There exists a subcluster extending from the left edge
to the bump

2. There exists a subcluster from the bump to a succeed-
ing element of the same height



Figure 6: Drop-Down-Clustering.

3. There exists a subcluster from the bump to the right
edge

Should a subcluster be found, it may be added to the re-
sulting cluster hierarchy, after which it is then recursively
processed to discover potential substructures. All discov-
ered subclusters must conform to the following constraints:

1. The minimum cluster size constraint of MinPts objects
must be satisfied, i.e. there are at least MinPts objects
located between the start point and the end point of
the cluster (e.g. Cluster B in Fig. 5 must contain at
least MinPts objects).

2. The current cluster has at least MinPts objects less
than the cluster of its parent node in the hierarchy
(e.g. Cluster B in Fig. 5 must have at least MinPts
objects less than cluster A).

Let us note, that we could also claim a minimum ratio
of reachabilities at the boundary of a cluster and inside a
cluster as postulated in [14] or increment/decrement the re-
quired minimum cluster size.

Obviously, the Drop-Down algorithm is able to extract nar-
rowing clusters. First experimental comparisons with the
methods in [14] and [4] are presented in Section 5.

4. CLUSTER REPRESENTATIVES
In this section, we present three different approaches to de-
termine representative objects for clusters computed by OP-
TICS. In the following, we assume that DB is a database
of multimedia objects, dist : DB × DB ⇒ R is a met-
ric distance function on objects in DB and Nε(o) := {q ∈
DB | dist(o, q) ≤ ε} where o ∈ DB and ε ∈ R. A cluster
C ⊆ DB is represented by a set of k objects of the cluster
(k should be a user defined integer), denoted as Rep(C).
We want to point out, that a representative must be a real
object of the data set. A simple approach could be to su-
perimpose all objects of a cluster to build the representative
as it is depicted in Figure 4. However, this approach has
the huge drawback that it is limited to image data and the
representatives on a higher level of the cluster hierarchy will
be rather unclear.

4.1 Extensions of the Medoid-Approach
Many partitioning clustering algorithms are known to use
medoids as cluster representatives. The medoid of a cluster
C is the closest object to the mean of all objects in C. The
mean of C is also called centroid. For k > 1 we could choose
the k closest objects to the centroid of C as representatives.

The choice of medoids as cluster representative is somehow
questionable. Obviously, if C is not of convex shape, the
medoid is not really meaningful.

An extension of this approach coping with the problems
of clusters with non-convex shape is the computation of k
medoids by applying a k-medoid clustering algorithm to the
objects in C. The clustering using a k-medoid algorithm is
rather efficient due to the expectation that the clusters are
much smaller than the whole data set. This approach can
also be easily extended to cluster hierarchies. At any level we
can apply the k-medoid clustering algorithm to the merged
set of objects from the child clusters or — due to perfor-
mance reasons — merge the medoids of child clusters and
apply k-medoid clustering on this merged set of medoids.

4.2 Minimizing the Core-Distance
The second approach to choose representative objects of hi-
erarchical clusters uses the density-based clustering notion
of OPTICS. To compute the reachability, OPTICS deter-
mines for each object the so called core-disctance:

Definition 1. (core-distance)
Let o ∈ DB, MinPts ∈ N, ε ∈ R, and MinPts-dist(o) be
the distance from o to its MinPts-nearest neighbor. The
core-distance of o wrt. ε and MinPts is defined as follows:

Core-Dist(o) :=

{
∞ if |Nε(o)| < MinPts
MinPts-dist(o) otherwise.

The core-distance of an object indicates the density of the
surronding region. The smaller the core-distance of an ob-
ject o, the denser the region surrounding o. This observation
led us to the choice of the object having the minimum core-
distance (Core-Dist(o)) as representative of the respective
cluster. Formally, Rep(C) can be computed as:

Rep(C) := {o ∈ C | ∀x ∈ C : Core-Dist(o) ≤ Core-Dist(x)}.
We choose the k objects with the minimum core-distances
of the cluster as representatives.

The straightforward extension for cluster hierarchies is to
choose the k objects from the merged child clusters having
the minimum core-distances.

4.3 Maximizing the Successors
Based on the core-distance, the reachability distance (or
short: reachability) is defined as:

Definition 2. (reachability)
Let o ∈ DB, MinPts ∈ N and ε ∈ R. The reachability of o
wrt. to ε MinPts relative to an object p ∈ DB is defined as
follows:

Reach-Dist(p, o) := max (Core-Dist(p),distance(p, o))
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Figure 7: Sample successor graph for a cluster of
seven objects.

The result of OPTICS is an ordering of the database mini-
mizing the reachability relation. At each step of the order-
ing, the object o having the minimum reachability wrt. the
already processed objects occurring before o in the ordering
is choosen. Thus, if the reachability of object o is not∞, it is
determined by Reach-Dist(p, o) where p is an object located
before o in the cluster ordering. We call p the predecessor
of o.

Definition 3. (successors)
Let DB be a database of objects. For each object o ∈ DB

in a cluster ordering computed by OPTICS, the set of succes-
sors is defined as S(o) := {s ∈ DB|o is the predecessor of s}.

Let us note, that objects may have no predecessor, e.g. each
object having a reachability of ∞ does not have a predeces-
sor, including the first object in the ordering. On the other
hand, some objects may have more than one successor. In
that case, some other objects have no successors.

The relationship of an object o to its successors S(o) is that
the reachability of s ∈ S(o) is determined by Reach-Dist(o, s).
We can model this relationship within each cluster as a di-
rected successor graph where the nodes are the objects of
one cluster and a directed edge from object o to s repre-
sents the relationship s ∈ S(o). Each edge (x, y) can further
be labeled by Reach-Dist(x, y). A sample successor graph is
illustrated in Figure 7.

For the purpose of computing representatives of a cluster,
the objects having many successors are interesting. Roughly
speaking, these objects are responsible for the most density-
connections within a cluster. The reachability values of
these “connections” further indicate the distance between
the objects.

Our third strategy selects the representatives of clusters by
maximizing the number of successors and minimizing the
according reachabilities. For this purpose, we compute for
each object o of a cluster C, having at least one successor,
the Sum of the I nvers Reachability distances of the succes-
sors of o within C, denoted by SirC(o):

SirC(o) :=


0 if S(o) = ∅∑
s∈S(o),
s∈C

1

1+Reach-Dist(o,s)
otherwise.

Since 1 + Reach-Dist(o, s) ≥ 1 holds for the denominator,
the impact of the number of successors is weighted over the
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Figure 8: BOSS distributed architecture

significance of the reachability values.

Based on SirC(o), the representatives can be computed as
follows:

Rep(C) := {o ∈ C | ∀x ∈ C : SirC(o) ≥ SirC(x)}.

If we want to select k representatives for C we simply have
to choose the k objects with the maximum SirC values.

5. INDUSTRIAL PROTOTYPE AND EVAL-
UATION

5.1 BOSS
The development of the industrial prototype BOSS is a first
step towards developing a comprehensive, scalable and dis-
tributed computing solution designed to make the efficiency
of OPTICS and the analytical capabilities of BOSS available
to a broader audience. Envisioned is a client/server system
allowing users to provide their own data locally, along with
an appropriate similarity model (cf. Figure 8).

The data provided by the user will be comprised of the ob-
jects to be clustered, as well as a data set to visualize these
objects (e.g. VRML files for CAD data or JPEG images
for multi-media data). Since this data resides on the user’s
local computer and is not transmitted to the server there
are only physical constraints on its size and type. In order
for BOSS to be able to interpret this data, the user must
supply his own similarity model with which the reachability
data can be calculated.

The independence of the data processing and the data spec-
ification enables maximum flexibility. Further flexibility is
introduced through the support of external visual represen-
tation. As long as the user is capable of displaying the vi-
sualization data in a browser, e.g. by means of a suitable
plug-in, the browser will then load web pages generated by
BOSS displaying the appropriate data. Thus, multimedia
data such as images or VRML files can easily be displayed.
By externalizing the visualization procedure we can resort
to approved software components, which have been specifi-
cally developed for displaying objects which are of the same
type as the objects within our clusters.



Figure 10: Sample cluster hierarchy.

5.2 Evaluation
A main motivation for the development of BOSS has been
the need to evaluate and compare different similarity mod-
els. This necessitates two steps, namely extracting a cluster
structure, or cluster hierarchy structure, from which an in-
terpretation of the data set can be attained with the help
of representatives of the clustering results. In the following,
three cluster recognition algorithms will vie among them-
selves, after which the three approaches for generating rep-
resentatives will be evaluated on a single set of data (cf.
Figure 9).

5.2.1 Cluster Recognition
Automatic cluster recognition is clearly very desirable when
analyzing large sets of data. In this case, we will be looking
at a subset of a database of CAD objects representing car
parts. The results are depicted in Figure 9.

This data exhibits the commonly seen quality of unpro-
nounced but nevertheless to the observer clearly visible clus-
ters. The ξ-clustering approach (a) successfully recognizes a
number of clusters while missing out on significant clusters.

The Drop-Down clustering has no trouble finding the intu-
itive cluster structure as indicated by the hierarchy at (b).
The perhaps overzealous classification of concentric clusters
means increased subsequent analysis, but aids in the auto-
matic representation of recognized density patterns.

The cluster tree algorithm (c) has difficulty with the over-
all flatness of the graph, as it needs a considerable height
difference between crest and trough to produce concise re-
sults.

5.2.2 Cluster Representation
After a cluster recognition algorithm has analyzed the data,
it is now possible to get a quick visual overview of the data.
With the help of representatives, large sets of objects may
be characterized through a single member of the set. We
determine a sample cluster from the plot depicted in Figure
9 extracted by the Drop-Down algorithm to evaluate the dif-
ferent approaches for determining k cluster representatives.

Figure 11: Object Viewer.

In our first tests, we set k = 1. The hierarchy containing
the sample cluster is displayed in Figure 10 in more detail.

Some of the objects contained in a cluster are displayed in
Figure 11. The three annotated objects are the representa-
tives computed by the respective algorithms. Both the Max-
imum Successor and Minimum Core Distance approaches
give good results. Despite the slight inhomogeneity of the
cluster, both representatives sum up the majority of ele-
ments within this cluster. This cannot be said of the repre-
sentative computed by the commonly used medoid method,
which selects an object from the trailing end of the cluster.

5.2.3 Summary
The results of our first experiments show, that our new ap-
proaches for the automatic cluster extraction and for the
determination of representative objects have the potential
to outperform existing methods. It theoretically and empir-
ically turned out, that our Drop-Down extraction algorithm
seems to be more practical than recent work for automatic
cluster extraction from hierarchical cluster representations.
We also empirically showed that our approaches for the de-
termination of cluster representatives is most likely more
suitable than the simple (extended) medoid approach.

6. CONCLUSIONS
In this paper, we proposed hierarchical clustering combined
with automatic cluster recognition and selection of repre-
sentatives as a promising visualization technique. Its areas
of application include visual data mining, similarity search
and evaluation of similarity models. We surveyed three
approaches for automatic extraction of clusters. The first
method, ξ-clustering, fails to detect some clusters present
in the clustering structure and suffers from the sensitivity
concerning the choice of its input parameter. The algo-
rithm cluster tree is obviously unsuitable in the presence
of narrowing clusters. We proposed a new method similar
to cluster tree, called Drop-Down clustering. This algo-
rithm is able to extract narrowing clusters and is evaluated



Figure 9: Sample Clustering of Car Parts (MinPts = 5, ξ = 2%).

to deliver a good recognition of the intuitive clustering struc-
ture. Furthermore, we presented three different approaches
to determine representative objects for clusters. The com-
monly known medoid approach is shown to be unsuitable
for real-world data, while the approaches minimizing the
core-distance and maximizing the successors both deliver
good results. Finally, we described our industrial prototype,
called BOSS, that implements the algorithms presented in
this paper. It was used to evaluate the cluster recognition
and representation methods.

In our future work, we plan to evaluate our algorithms with
more data from various sources, utilizing the flexible frame-
work which BOSS provides. Based on the results we may
refine and extend the proposed methods in order to provide
a useful visualization technique for industrial and scientific
applications.
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