
A Generic Framework for Efficient Subspace Clustering of

High-Dimensional Data

Hans-Peter Kriegel, Peer Kröger, Matthias Renz, Sebastian Wurst
Institute for Computer Science, University of Munich

{kriegel,kroegerp,renz,wurst}@dbs.ifi.lmu.de

Abstract

Subspace clustering has been investigated exten-
sively since traditional clustering algorithms often fail
to detect meaningful clusters in high-dimensional data
spaces. Many recently proposed subspace clustering
methods suffer from two severe problems: First, the
algorithms typically scale exponentially with the data
dimensionality and/or the subspace dimensionality of
the clusters. Second, for performance reasons, many
algorithms use a global density threshold for clustering,
which is quite questionable since clusters in subspaces
of significantly different dimensionality will most likely
exhibt significantly varying densities. In this paper, we
propose a generic framework to overcome these limi-
tations. Our framework is based on an efficient filter-
refinement architecture that scales at most quadratic
w.r.t. the data dimensionality and the dimensional-
ity of the subspace clusters. It can be applied to any
clustering notions including notions that are based on
a local density threshold. A broad experimental evalua-
tion on synthetic and real-world data empirically shows
that our method achieves a significant gain of runtime
and quality in comparison to state-of-the-art subspace
clustering algorithms.

1 Introduction

One of the primary data mining tasks is cluster-
ing which aims at partitioning the data objects into
groups (clusters) of similar objects. A lot of work
has been done in the area of clustering (see e.g. [10]
for an overview). Many real-world data sets con-
sist of very high dimensional feature spaces. In such
high-dimensional feature spaces features may be irrel-
evant for clustering. In addition, different subgroups
of features may be irrelevant w.r.t. to varying clus-
ters and different clusters in varying subspaces may
overlap. Thus, clusters can no longer be found in the

full-dimensional space. As a consequence, traditional
clustering algorithms usually have scalability and/or
efficiency problems. Usually, global dimensionality re-
duction techniques such as PCA cannot be applied to
these data sets because they cannot account for local
trends of overlapping clusters in the data.

A prominent application for these problems is the
analysis of gene expression data. Gene expression data
contains the expression level of thousands of genes, in-
dicating how active it is, according to a set of samples.
A common task is to find clusters of functionally re-
lated genes, having a similar expression level. Genes
may exhibit several different functionalities that may
be needed in different sets of samples. Thus, the genes
may be clustered differently in varying subsets of sam-
ples. If the samples are patients, another task is clus-
tering the patients into homogeneous groups according
to specific phenotypes such as gender, age or diseases.
Since different genes are responsible for different phe-
notypes, we face the problem that the patients can be
clustered differently in varying subsets of genes.

To cope with the problem of local feature irrele-
vance, the procedure of feature selection deciding about
the relevance of different features has to be linked with
the clustering process more closely. In recent years,
several methods have been proposed that couple the
analysis of feature relevance, i.e. variance along an at-
tribute, with the process of clustering. These existing
methods can be distinguished into: (1) Algorithms that
compute a discrete partitioning of the data objects, i.e.
each object is uniquely assigned to one cluster; an ar-
bitrary subset of attributes may be relevant for the
cluster. (2) Algorithms that automatically detect all
clusters in all subspaces of the original feature space.
Clusters in different subspaces may overlap.

Obviously, algorithms that allow overlapping clus-
ters generate more information than algorithms that
compute a unique assignment because they uncover
the information that objects may be clustered differ-
ently in varying subspaces. As discussed above, our

kroegerp
In Proc. 5th IEEE International Conference on Data Mining (ICDM), Houston, TX, 2005

motivating applications, call for solutions that explic-
itly allow overlapping clusters. Thus, in this paper, we
focus on overlapping clusters. Throughout the rest of
the paper, when we speak of subspace clustering, we
mean the task of finding overlapping clusters.

In this paper, we present FIRES (FIlter REfinement
Subspace clustering), a general framework for efficient
subspace clustering. It is generic in such a way that it
works with all kinds of clustering notions. It starts with
1D clusters that can be constructed with a clustering
method of choice and merges these 1D clusters to gen-
erate approximations of subspace clusters. An optional
refinement step can compute the true subspace clus-
ters, again using any clustering notion of choice and
a variable cluster criterion. Thus, FIRES overcomes
two severe limitations of existing subspace clustering
methods as we will discuss later (cf. Section 2).

The rest of this paper is organized as follows. We
discuss related work and point out our contributions in
Section 2. The generic FIRES framework is described
in Section 3. Section 4 presents a broad experimental
evaluation of FIRES. Section 5 concludes the paper.

2 Related Work and Contributions

The complexity of the exhaustive search for all sub-
space clusters is O(2d), where d is the data dimen-
sionality. Most subspace clustering algorithms work
bottom-up similar to the Apriori algorithm for finding
frequent itemsets, starting with 1D clusters and merg-
ing these clusters to compute clusters of higher dimen-
sionality. To reduce the search space, the algorithms
usually rely on a downward closure property of density
enabling the Apriori-like search strategy. [13] provides
a review of subspace clustering algorithms.

CLIQUE [2], the pioneering approach to subspace
clustering uses a grid-based clustering notion. The
data space is partitioned by an axis-parallel grid into
equi-sized units of width ξ. Only units which contain
at least τ points are considered as dense. Dense units
satisfy the downward closure property. A cluster is de-
fined as a maximal set of adjacent dense units. Obvi-
ously, the accuracy and the efficiency of CLIQUE heav-
ily depends on the granularity and the positioning of
the grid. On the other hand, a higher grid granularity
results in higher runtimes. Modifications of CLIQUE
include ENCLUS [5] and MAFIA [12].

SUBCLU [11] uses the DBSCAN cluster model of
density-connected sets [8]. It is shown that density-
connected sets satisfy the downward closure prop-
erty. Compared to the grid-based approaches SUB-
CLU achieves a better clustering quality but requires
a higher runtime.

Another recent approach called DOC [14] uses a ran-
dom seed of points to guide a greedy search for sub-
space clusters. DOC measures the density of subspace
clusters using hypercubes of fixed width w and thus
has similar problems like CLIQUE.

Recently, some feature selection techniques have
been proposed, that elaborate the clustering quality
of subspaces [6, 3]. Most of these methods cannot use
an Apriori style approach but use random or greedy
search methods instead, producing incomplete results
or suffering from high runtimes.

Pattern-based clustering [16] aims at grouping
points in clusters that exhibit a similar trend in a sub-
set of attributes rather than points that are dense in
some subspace. This approach is too general for our
focus and usually suffers from high runtimes.

As discussed above, projected clustering algorithms
that do not allow overlapping clusters, e.g. PROCLUS
[1] and PreDeCon [4], are also not considered here.

Our Contributions. The existing subspace cluster-
ing algorithms usually have the following two draw-
backs. First, all methods usually scale exponentially
with the number of features and/or the dimensionality
of the subspace clusters [13]. Second, most subspace
clustering approaches use a global density threshold
for performance reasons. Usually, the global density
threshold provides the downward closure property en-
suring the application of the Apriori style algorithm.
However, it is quite questionable that a global density
threshold is applicable on clusters in subspaces of con-
siderably different dimensionality, since density natu-
rally decreases with increasing dimensionality. In ad-
dition, the density of clusters in a common subspace
may significantly vary.

Here, we propose a framework for efficient sub-
space clustering that (i) scales at most quadratic with
the data dimensionality and the subspace dimensional-
ity, and (ii) allows to use any sophisticated clustering
model, e.g. one that accounts for the subspace dimen-
sionality and for local point density.

3 Efficient Subspace Clustering

In the following, we assume that D is a database of
n points in a d-dimensional feature space, i.e. D ⊆ �d.

3.1 General Idea

Subspace clustering is a complex problem due to the
high complexity of the search and the output space.
The time consuming step is to identify the relevant
attributes of the subspace cluster. We claim that it

2

is desirable to generate subspace clusters of maximum
dimensionality. Since each cluster in a subspace S is
also hidden in each projection of S, this redundancy
can be encapsulated in the subspace cluster of maximal
dimensionality. This reduces the search space and es-
pecially the output space significantly. Our key idea is
to use a filter-refinement architecture to speed up the
subspace finding process, i.e. we efficiently compute
approximations of the subspace clusters which can be
refined to generate the true subspace clusters and are
of maximum dimensionality.

Our framework FIRES (FIlter REfinement Subspace
clustering) consists of the following three steps:
1. Preclustering: First, all 1D clusters called base-
clusters are computed. This is similar to existing sub-
space clustering approaches and can be done using any
clustering algorithm of choice.
2. Generation of Subspace Cluster Approxima-
tions: In a second step, the base-clusters are merged
to find maximal-dimensional subspace cluster approx-
imations. However, we do not want to merge them in
an Apriori style but use an algorithm that scales at
most quadratic w.r.t. the number of dimensions.
3. Postprocessing of Subspace Clusters: A third
step can be applied to refine the cluster approximations
retrieved after the second step.

The key benefits of our method are (1) the dramat-
ically reduced runtime and (2) the possibility to apply
a clustering model that can detect clusters of different
densities to Step 1 and 3.

3.2 Preclustering

Similar to existing subspace clustering approaches,
FIRES first generates clusterings in each dimension of
the data space. Thereby we assume that the cluster-
ings of each dimension suffice to identify all higher-
dimensional subspace clusters. For this preprocessing
step, we can choose any clustering method, e.g. DB-
SCAN [8], k-means [10], SNN [7] or grid-based cluster-
ing. In the following we call the 1D clusters resulting
from the pre-clustering base-clusters, denoted by C1.

For the preclustering we propose a filter step which
drops irrelevant base-clusters, that do not contain any
vital subspace cluster information. Small base-clusters
do not likely include significant subspace clusters, be-
cause they usually indicate a sparse area in the higher-
dimensional space. For this reason we compute the
average size savg of all base-clusters and skip those
base-clusters whose size is smaller than 25% of savg.
The threshold of 25% is empirically determined and
has shown best results in our experiments.

subspace

cluster

cC

cB

cA

base-cluster cAB

cAC

Figure 1. Overlapping subspace clusters

3.3 Generation of Subspace Cluster Approxima-
tions

Approximations of maximal-dimensional subspace
clusters are determined by suitably merging the base-
clusters derived from our preprocessing step. Out of
all merge possibilities, whose number is exponential in
the number of base-clusters, we have to find the most
promising merge candidates by searching for all base-
clusters which contain nearly the same objects. In the
following, we call capp subspace cluster approximation
of a subspace cluster csub, iff capp is built by merg-
ing all base-clusters sharing objects with csub. Those
objects which are shared by a set SB of base-clusters
must be close in all dimensions of the base-clusters in
SB, and thus, must be close in the subspace spanned
by SB. Consequently, a good indication for the exis-
tence of a subspace cluster is if the intersection between
base-clusters is large. In the following, we denote base-
clusters to be similar if they share a sufficiently high
number of objects. The similarity between base-clusters
c1, c2 ∈ C1 is defined as sim(c1, c2) = |c1 ∩ c2|.

In contrast to functions commonly used to mea-
sure the similarity between sets, such as the Jaccard-
Distance, our similarity function is insensitive to noise.
This is necessary because the base-clusters usually con-
tain, besides true subspace-cluster objects, a lot of
noise in higher-dimensional space.

Before starting with the merge phase, we have to
detect promising merge candidates, possibly hidden in
the set of base-clusters. Different subspace clusters
may overlap in one or more dimensions, thus one base-
cluster can include objects of multiple subspace clus-
ters. In our approach, we try to merge similar base-
clusters. The example depicted in Figure 1 shows two
subspace clusters cAB and cAC , indicated by the base-
clusters cA, cB and cC . The base-cluster cA is similar
to the base-cluster cB and to cC . However cB and
cC are obviously not similar. In order to avoid that
we merge all three base-clusters cB, cC , and cA, we
have to split cA into two separate instances, such that

3

one instance mainly contains the objects of cAB and
the other contains the objects of cAC . More generally,
each base-cluster which includes more than one over-
lapping subspace cluster, should be split into multiple
base-clusters in such a way, that each of them contains
at most one of the subspace clusters. In the example
of Figure 1 the base-cluster cA is similar to two base-
clusters which are from the same dimension. In this
special case, we can easily detect that cA indicates two
subspace clusters, since two base-clusters of the same
dimension must be disjunctive. However, it may hap-
pen that one base-cluster of dimension D includes sep-
arate subspace clusters which may differ in all dimen-
sions except for D. In our approach, we apply simple
heuristics for the decision when to split base-clusters.
First, we search for the most-similar-cluster of a split
candidate, which is defined as follows:

Definition 1 (Most Similar Cluster) Let c ∈ C1;
the most similar base-cluster MSC(c) ∈ C1 of c (c �=
MSC(c)) fulfills the following constraint:
∀cp ∈ C1 : sim(c, MSC(c)) ≥ sim(c, cp).

Let the base-cluster cS be the split candidate and
let cT be the most similar cluster of cS , i.e. cT =
MSC(cS). If the number of objects shared by both
clusters cS and cT is very high, then the shared ob-
jects probably indicate a subspace cluster. If there is
another subspace cluster hidden in cS , the number of
the remaining objects o ∈ (cS − cT) must also be large.
We simply split cS , iff both, the number of objects
shared by cS and cT and the number of the remaining
objects in cS − cT exceed a specific threshold. Let savg

be again the average size of all base-clusters, then we
split cS into cS1 = (cS ∩ cT) and cS2 = (cS − cT), iff
|cS ∩ cT | ≥ 2

3savg ∧ |cS − cT | ≥ 2
3savg.

After detecting all base-clusters, we have to identify
the most promising merge candidates. Our similar-
ity function does not suffice to identify them, because
it penalizes small clusters and prefers large clusters.
In addition, our goal is not to merge only two base-
clusters, but to consider a set of base clusters to be
merged simultaneously. Thus, we need a relative simi-
larity measure to identify suitable merge candidates.

Definition 2 (k-Most-Similar-Clusters) Let c ∈
C1. We call MSCk(c) ⊆ C1 the k-most-similar-
clusters, iff it is the smallest subset of C1 that contains
at least k base-clusters, where the following condition
holds: ∀cp ∈ MSCk(c), ∀cq ∈ C1 − MSCk(c) :
sim(c, cp) > sim(c, cq).

The k-most-similar-clusters of cA contain those k
base-clusters, that share the most objects with cA.

In our approach, we try to merge those base-clusters
which are all mostly similar to each other, i.e. that
share many of their k-most-similar-clusters. This
avoids that a set of well fitting base-clusters will be
destroyed if we add a merge candidate which is similar
to one of the base-clusters but does not fit well to the
entire set. Thus, in order to obtain base-cluster sets
with homogeneous similarity between their elements,
we prefer to merge base-clusters where many of their
k-most-similar-clusters are equal.

Definition 3 (Best-Merge-Candidates) Let c ∈
C1 and k, µ ∈ �+ (µ ≤ k). The best-merge-candidates
BMC(c) of c are defined by the set:
BMC(c) := {x ∈ C1| |MSCk(c) ∩ MSCk(x)| ≥ µ}.

Merging all best-merge-candidates should suffice to
filter out unfitting merge candidates and seems very
promising to find high quality subspace clusters. How-
ever, due to the limiting parameter k this method may
be too restrictive, and thus, important cluster informa-
tion may be lost. We by-pass this problem by allowing
to merge best-merge-candidate sets. Two base-clusters
are merged, if they share at least one base-cluster which
fulfills the properties of a best-merge-cluster, which is
defined in the following:

Definition 4 (Best-Merge-Cluster) Let c ∈ C1

and minClu ∈ �+, then c is called best-merge-cluster,
iff |BMC(c)| ≥ minClu.

The generation of subspace cluster approximations
proceeds as follows: We first generate all best-merge-
clusters. Then we group all pairs of best-merge-clusters
cA and cB, iff cA ∈ BMC(cB) and vice versa. Finally,
we add all best-merge-candidates to these groups. The
resulting set of base-clusters form our subspace cluster
approximations.

3.4 Postprocessing

Significant subspace clusters should achieve a good
trade-off between dimensionality and cluster size. How-
ever, the information of the base-clusters does not suf-
fice to generate correct and complete subspace clus-
ters. Therefore, we require postprocessing steps in
order to achieve good results. We propose two steps
which are subsequently applied to all subspace-cluster
approximations: (1) “Pruning” improves the quality
of the mergeable-cluster-set by identifying and remov-
ing “meaningless” base-clusters. (2) “Refinement” re-
moves noise and completes the subspace clusters.

4

Pruning. There may be clusters in the subspace
cluster approximations which do not contain relevant
information of the corresponding subspace cluster. In
order to eliminate these irrelevant clusters, we need a
notion of the quality of a cluster C w.r.t. its dimen-
sionality dim(C) and the number of objects shared by
all its base clusters size(C) = |⋂i=1..n ci ∈ C|. We de-
fine the quality of a subspace cluster C as score(C) =
f(size(C)) · dim(C), where f : � → �

+
0 denotes a

weighting function for the cluster size. Obviously the
size of the corresponding subspace cluster should have
less weight than its dimensionality. In our experiments,
we achieved the best results with f(x) =

√
x.

The pruning removes a merge candidate c ∈ C1 of a
subspace-cluster approximation C if the following con-
dition holds:

score(C − {c}) > score(C)∧

∀cp ∈ C : cp �= c ⇒ score(C − {cp}) ≤ score(C − {c}).
After removing the merge-candidate c, we continue
the top-down pruning with the remaining merge can-
didates, until we achieve the best score. The score-
function avoids that large high-dimensional subspace
clusters degenerate to low-dimensional clusters.

Refinement. The subspace cluster csub which is ap-
proximated by capp can be built from the base-clusters
c1, .., cn merged in capp. Two building methods can be
distinguished, the union csub = c1 ∪ .. ∪ cn and the in-
tersection csub = c1 ∩ .. ∩ cn. Obviously, both variants
do not yield the true subspace cluster csub. Due to the
fact that the base-clusters contain a lot of noise in a
higher dimensional subspace, the intersection variant
seems to produce more accurate approximations than
the union variant. However the intersection merge has
significant draw-backs because the detected subspace
cluster would be too strict, thus many promising can-
didates would be lost. Furthermore, parts of the true
subspace cluster can be outside of the approximation
which would lead to uncomplete results.

We achieve better subspace cluster results when ap-
plying an additional refinement step. First, we use the
union of all base-clusters in order to avoid that po-
tential cluster candidates are lost or become uncom-
plete. Then, we cluster again the merged set of ob-
jects in the corresponding subspace. Thereby, we can
apply any clustering algorithm, e.g. DBSCAN, SNN-
clustering, k-means, grid-based clustering or even hi-
erarchical clustering. We propose the use of SNN to
detect clusters of different density, or the use of DB-
SCAN. Thereby the density threshold is adjusted to
the subspace dimensionality, i.e. the minPts-value is

0%

20%

40%

60%

80%

100%

FIRES SUBCLU CLIQUE

algorithm

p
re

c
is

io
n

Cluster 1
(320 points)

Cluster 2
(313 points)

Cluster 3
(354 points)

Noise (1653
points)

Overall

Figure 2. Comparison of accuracy.

kept constant and we adjust the ε-range as follows:
ε = ε1n/ d

√
n, where ε1 denotes the ε-value in the 1D

subspace.

4 Evaluation

We evaluated FIRES in comparison with CLIQUE
and SUBCLU. All tests were run on a LINUX work-
station featuring a 2.4 GHz CPU and 3.6 GB RAM.

4.1 Accuracy

To measure the effectiveness of FIRES, SUBCLU
and CLIQUE, we measure the ratio of points found in
each cluster/noise and the points that should be in the
according cluster/noise. We do not consider the redun-
dant projections of all subspace clusters generated by
the Apriori style of SUBCLU and CLIQUE but only
concentrate on the true clusters hidden by the data
generator. We apply DBSCAN to generate the base-
clusters using a parameter setting as suggested in [8]
and as refinement method with paramter settings for
ε and minpts as proposed in Section 3.4. Figure 2 il-
lustrates results of FIRES in comparison to SUBCLU,
and CLIQUE applied on a synthetic dataset contain-
ing three clusters of significantly varaying dimension-
ality and density. For each method, the result with
the best parameter setting is presented. It can be ob-
served that FIRES clearly outperfoms SUBCLU and
CLIQUE w.r.t. accuracy. Only FIRES finds the third
cluster having the lowest density in a 10D subspace
with a satisfying precision. Both, CLIQUE and SUB-
CLU, miss out major parts of this cluster.

In Figure 3 we evaluate the impact of different algo-
rithms to generate the base-clusters on the final accu-
racy. We compare DBSCAN, k-means, and a CLIQUE-
like approach, which partitions each dimension into in-
tervals of equal size. An interval is considered as dense
if it contains more than minPts points. Neighboring

5

0%

20%

40%

60%

80%

100%

120%

DBSCAN Grid K-Means

preclustering method

p
re

c
is

io
n

Cluster 1

Cluster 2

Cluster 3

Noise

Overall

Figure 3. Comparison of preclustering.

dense cells are linked to form base-clusters. The param-
eters for each method are optimized to achieve a fair
comparison. Again, the used data set contains three
clusters in subspaces of different dimensionality and
exhibits significantly different densities. Obviously, us-
ing DBSCAN as preclustering method yields the best
results. Using k-means, cluster 2 cannot be detected.
The grid-based approach has problems with cluster 3,
which has the highest subspace dimensionality.

We evaluated the impact of parameterization by
changing one of the three parameters k, µ and minClu
at a time, while the other two are fixed at an optimized
value. The results are illustrated in Figure 4. The pa-
rameter µ is not critical as far as it is not set too low.
If it is set too low, some clusters are still found with
high precision but some of the clusters are not found
at all. Roughly the same can be said about the pa-
rameter k. If k is reduced, the precision drops slightly,
whereas precision drops significantly if k is increased.
In our experiments, we observed that we achieve good
results if µ not differs significantly from k. The third
parameter minClu turned out to be stable through-
out the range of tested settings, i.e. the precision of
FIRES is very high at any tested minClu value. Accu-
racy only decreases very slightly when we increase the
value for minClu. However, we made the observation,
that reducing minClu increases the number of gener-
ated subspace clusters because we get a larger number
of best-merge-clusters.

We found out that DBSCAN with self-adapting pa-
rameters is slightly more accurate than SNN (detailed
results are not shown due to space limitations). Never-
theless, if the densities of clusters in subspaces of equal
dimensionality differ significantly, SNN achieves bet-
ter results than DBSCAN. However, SNN clustering
requires considerably a higher runtime than DBSCAN,
and thus, we decided to use DBSCAN in our remaining
tests. The next experiment compared the effectiveness
of the results using and leaving out certain aspects of
our postprocessing step. We compared the results of

using both steps (pruning and refinement), using only
one of the two steps, and using none of them. The re-
sults (not shown due to space limitations) suggest that
applying no postprocessing decreases the accuracy of
FIRES considerably. Clearly the best results can be
achieved when using both steps of postprocessing. The
reason for this is that the pruning step removes base-
clusters — i.e. dimensions — from the cluster approxi-
mation that reduce the quality of the subspace cluster.
Without any dimensions that do not belong to the clus-
ter, the refinement finds only those points within the
approximation that really belong to the cluster.

4.2 Scalability

We compared the scalabilty of FIRES, CLIQUE and
SUBCLU on synthetic data sets.

For evaluating the scalability w.r.t. the number of
points in the dataset (cf. Figure 5(a)) we use 25D
datasets each contains one 5D subspace cluster. We
analyse the time FIRES needed for base-clusters gen-
eration and the time needed for the merge-step. Obvi-
ously, FIRES scales slightly superlinear w.r.t. the num-
ber of points in the dataset, more than CLIQUE but
less than SUBCLU. This is due to the use of DBSCAN
as method for preclustering and refinement. The run-
time of CLIQUE scales linear because of the rather sim-
ple but efficient grid-based clustering model. However,
the computation of subspaces is obviously the bottle-
neck for the overall runtime. Since FIRES scales better
in comparison to CLIQUE w.r.t. data dimensionality,
on higher dimensional datasets, the number of points
may become a less critical parameter. Due to the linear
scalability of the merge step of FIRES, one can use a
simpler, e.g. grid-based, clustering model rather than
DBSCAN to speed-up FIRES.

We investigate the scalability w.r.t. the data di-
mensionality using datasets of 1,000 points each con-
taining one 5D subspace cluster. As it can be seen from
Figure 5(b), the runtimes of both, CLIQUE and SUB-
CLU, increase clearly superlinear, whereas the runtime
of FIRES increases only linear. Our experiments show
that FIRES is the only method that can efficiently be
applied to a dataset with more than 1,000 dimensions.

The impact of the highest dimensionality of a
subspace cluster on the runtime is evaluated using
datasets of 1,000 50D points. From Figure 5(c) we
observe FIRES again clearly outperfoms SUBCLU and
CLIQUE.

Last, we evaluate the runtime of FIRES using dif-
ferent preclustering. We compare DBSCAN, k-means
and the grid-based approach on a 10D dataset, one 5D
subspace cluster and a varying number of points in the

6

0%

20%

40%

60%

80%

100%

1 2 3 4

µ

a
v
e
ra

g
e
 p

re
c
is

io
n

0%

20%

40%

60%

80%

100%

3 4 5 6

k

a
v
e
ra

g
e
 p

re
c
is

io
n

0%

20%

40%

60%

80%

100%

1 2 3 4

minClu

a
v
e
ra

g
e
 p

re
c
is

io
n

Figure 4. Impact of parameterization on the accuracy of FIRES.

0

100

200

300

400

500

600

700

800

900

1000

1000 2000 3000 4000 5000

num ber of points

ti
m

e
 i

n
 s

CLIQUE

SUBCLU

FIRES (all)

FIRES (DBSCAN)

FIRES (merge)

(a) Number of points

0

100

200

300

400

500

600

700

10 20 30 40 50

dimension

ti
m

e
 i

n
 s

CLIQUE

SUBCLU

FIRES

(b) Data dimensionality

0

200

400

600

800

1000

1200

1400

5 10 15 20 25

dimension of cluster-subspace

ti
m

e
 i

n
 s

CLIQUE

SUBCLU

FIRES

(c) Subspace dimensionality

Figure 5. Scalabilty of FIRES, SUBCLU, and CLIQUE.

datasets. The results (not shown due to space limita-
tions) illustrate that the runtime of FIRES using any of
these algorithms is still approximately quadratic w.r.t.
to the number of points in the dataset, but FIRES
with k-means as well as with the grid-based approach
is clearly faster than with DBSCAN. This experiment
shows that the runtime can be decreased significantly if
applying simpler but more efficient clustering methods
for preclustering and/or postprocessing.

4.3 Real-World Data

We applied FIRES to two real-world gene expres-
sion datasets. The first data set called “Bio1” [15]
contains the expression level of about 4,000 genes mea-
sured at 24 different time slots during yeast mitotic
cell cycle. The task is to find clusters of functionally
related genes. The second dataset called “Bio2” [9]
contains the expression levels of 72 patients suffering
acute myeloid leukemia (AML) and acute lymphoblas-
tic leukemia (ALL). For each patient, approximately
7100 genes are measured. The task is to find groups of
patients with homogeneous phenotypes. The patients
are labeled according to their leukemia type. For some
of them information on additional phenotypes such as
gender is provided.

Some sample clusters FIRES found on the Bio1
dataset are visualized in Figure 6. Biological criteria
for interesting and meaningful clusters are genes that
have similar function, participate in a common path-
way, and/or build larger complexes. Based on these cri-
teria, we evaluated the clusters FIRES generates using
the public yeast genome database SGD1. As it can be
seen, in both datasets FIRES uncovers subspace clus-
ters that fulfill at least one of the biological criteria and
thus are biologically meaningful and relevant. On the
first dataset, one cluster contains the genes CKB1 and
CKA2, both subunits of the protein kinase CK2. In
the same cluster, DFR1 and ARO1 are two genes par-
ticipating in the chorismate pathway. A second cluster
contains four genes with the same biological function
(YIP1, SED5, BFR2, and SEC21). A third cluster con-
tains three genes that are part of the large ribosomal
complex (RPL12B, RPL14A, and RPL16A). CLIQUE
and SUBCLU could not reproduce these clusters.

The results of FIRES on the Bio2 dataset were also
very interesting. The data set is problematic since it
has only a very few number of points (72) but a very
high dimensionality (7070). In general, the 72 patients
may be clustered rather differently, depending on dif-

1http://www.yeastgenome.org/

7

ORF Gene Annotation

Cluster 1
YGL019W CKB1 subunit of CK2
YOR061W CKA2 subunit of CK2
YOR236W DFR1 chorismate pathway
YDR127W ARO1 chorismate pathway

Cluster 2
YGR172C YIP1 ER to Golgi transport
YLR026C SED5 ER to Golgi transport
YDR299W BFR2 ER to Golgi transport
YNL287W SEC21 ER to Golgi transport

Cluster 3
YDR418W RPL12B part of ribosome
YIL133C RPL16A part of ribosome
YKL006W RPL14A part of ribosome

Figure 6. Results on Bio1.

ferent phenotypes. FIRES generated a lot of subspace
clusters of varying dimensionality that may represent
partitionings according such certain phenotypes. Un-
fortunately, most clusters could not be evaluated since
more information on the patients is not known. How-
ever, three clusters found by FIRES provide very inter-
esting insights. One cluster consists of 16 patients 15 of
which suffer from ALL. In fact, all these ALL patients
are marked as B-cell ALL patients. No T-cell ALL per-
son is in that cluster. A second cluster contained 25
patients, 18 male and only three female. The gender of
the remaining four patients is not annotated. A third
cluster contained 27 of 32 ALL (of both, B-cell and T-
cell type) patients. Let us point out that the response
time of FIRES on this very high dimensional dataset
was quite low with around 15 seconds. Both SUBCLU
and CLIQUE produced memory overflows due to a high
number of candidate subspaces.

5 Conclusions

In this paper, we proposed the new filter-refinement
subspace clustering algorithm FIRES, which overcomes
both problems of existing subspace clustering methods
including inadequate scalabilty w.r.t. data dimension-
ality and/or subspace dimensionality and the use of
a global density threshold. FIRES efficiently computes
maximum dimensional cluster approximations from 1D
clusters that can be refined to obtain the true clus-
ters. Any clustering notion can be incooperated into
FIRES in order to account for clusters of varying den-
sity. A thorough experimental evaluation has shown
that the effectiveness of FIRES is significantly better
than that of well-known algorithms such as SUBCLU
and CLIQUE. In addition, FIRES clearly outperforms
SUBCLU and CLIQUE in terms of scalability and run-
time w.r.t. data dimensionality and subspace dimen-

sionality. We demonstrated the usability of FIRES
finding interesting and biologically meaningfull clusters
in several different gene expression datasets.

References

[1] C. C. Aggarwal and C. Procopiuc. ”Fast Algorithms
for Projected Clustering”. In Proc. ACM SIGMOD,
1999.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Ragha-
van. ”Automatic Subspace Clustering of High Dimen-
sional Data for Data Mining Applications”. In Proc.
ACM SIGMOD, 1998.

[3] C. Baumgartner, K. Kailing, H.-P. Kriegel, P. Kröger,
and C. Plant. ”Subspace Selection for Clustering High-
Dimensional Data”. In Proc. ICDM, 2004.

[4] C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kröger.
”Density Connected Clustering with Local Subspace
Preferences”. In Proc. ICDM, 2004.

[5] C.-H. Cheng, A.-C. Fu, and Y. Zhang. ”Entropy-
Based Subspace Clustering for Mining Numerical
Data”. In Proc. ACM SIGKDD, 1999.

[6] M. Dash, K. Choi, P. Scheuermann, and H. Liu. ”Fea-
ture Selection for Clustering – A Filter Solution”. In
Proc. ICDM, 2002.

[7] L. Ertöz, M. Steinbach, and V. Kumar. ”Finding Clus-
ters of Different Sizes, Shapes, and Densities in Noisy,
High Dimensional Data”. In Proc. SIAM Data Mining,
2003.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. ”A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise”. In Proc. KDD,
1996.

[9] T. R. Golub et al. ”Molecular Classification of Can-
cer: Class Discovery and Class Prediction by Gene
Expression Monitoring”. Sience, 286:531–537, 1999.

[10] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Academic Press, 2001.

[11] K. Kailing, H.-P. Kriegel, and P. Kröger. ”Density-
Connected Subspace Clustering for High-Dimensional
Data”. In Proc. SIAM Data Mining, 2004.

[12] H. Nagesh, S. Goil, and A. Choudhary. ”Adaptive
Grids for Clustering Massive Data Sets”. In Proc.
SIAM Data Mining, 2001.

[13] L. Parsons, E. Haque, and H. Liu. Subspace cluster-
ing for high dimensional data: A review. SIGKDD
Explorations, 6(1):90–105, 2004.

[14] C. M. Procopiuc, M. Jones, P. K. Agarwal, and M. T.
M. ”A Monte Carlo Algorithm for Fast Projective
Clustering”. In Proc. ACM SIGMOD, 2002.

[15] P. Spellman et al. ”Comprehensive Identification
of Cell Cycle-Regulated Genes of the Yeast Saccha-
romyces Cerevisiae by Microarray Hybridization.”.
Molecular Biolology of the Cell, 9:3273–3297, 1998.

[16] J. Yang, W. Wang, H. Wang, and P. S. Yu. ”Delta-
Clusters: Capturing Subspace Correlation in a Large
Data Set”. In Proc. ICDE, 2002.

8

