
Effective and Efficient Distributed Model-based Clustering

Hans-Peter Kriegel, Peer Kröger, Alexey Pryakhin, Matthias Schubert
Institute for Computer Science, University of Munich, Germany

{kriegel,kroegerp,pryakhin,schubert}@dbs.ifi.lmu.de

Abstract

In many companies data is distributed among several
sites, i.e. each site generates its own data and manages
its own data repository. Analyzing and mining these dis-
tributed sources requires distributed data mining techniques
to find global patterns representing the complete informa-
tion. The transmission of the entire local data set is of-
ten unacceptable because of performance considerations,
privacy and security aspects, and bandwidth constraints.
Traditional data mining algorithms, demanding access to
complete data, are not appropriate for distributed applica-
tions. Thus, there is a need for distributed data mining algo-
rithms in order to analyze and discover new knowledge in
distributed environments. One of the most important data
mining tasks is clustering which aims at detecting groups
of similar data objects. In this paper, we propose a dis-
tributed model-based clustering algorithm that uses EM for
detecting local models in terms of mixtures of Gaussian dis-
tributions. We propose an efficient and effective algorithm
for deriving and merging these local Gaussian distributions
to generate a meaningful global model. In a broad experi-
mental evaluation we show that our framework is scalable
in a highly distributed environment.

1 Introduction

Many companies gather terabytes of data containing sig-
nificant, hidden information that needs to be uncovered us-
ing data mining techniques. Nowadays, more and more
companies typically are decentrally organized and spatially
distributed. Each site generates its own data and manages
its own data repository. The challenge, however, is to access
current knowledge from anywhere at any time with a delay
of no more than a few minutes. Analyzing and mining these
distributed sources requires distributed data mining tech-
niques because the wanted patterns should be mined on a
global view of these distributed sources. However, the tradi-
tional approach for a data mining environment is a central-
ized warehouse-based architecture where the relevant data

is regularly uploaded into the warehouse for centralized data
mining. Obviously, this centralized approach causes high
response times and may be limited by network and security
constraints. It does usually not exploit the full capacity of
all distributed resources since the data mining step resides
on the central sever while the computational power of the
clients is idle. In addition, in terms of privacy issues, it
may be inappropriate to send the entire data over a public
network to a global server. Thus, the traditional, central-
ized data mining model is not suitable for most distributed
environments. Thus, a scalable and privacy preserving so-
lution for distributed data mining applications requires the
distributed processing of data [10]. A good distributed data
mining framework performs data mining operations based
on the type and the availability of the distributed resources.
As suggested in [10], a distributed data mining solution con-
sists of the following steps. First, a data mining algorithm
is locally applied to each of the k sites separately and in-
dependently. The results are k local sets of patterns called
local models. Second, the local models are transferred to a
central server. The central server combines the local mod-
els to generate a global model. Third, the global model may
optionally be sent back to local sites.

The data mining technique we focus in this paper is clus-
tering which aims at partitioning the data objects into dis-
tinct groups (clusters) while maximizing the intra-cluster
similarity and minimizing the inter-cluster similarity. Many
clustering algorithms for the centralized approach have
been proposed so far using different clustering notions,
e.g. distribution-(or model-)based, center-based, or density-
based (cf. [7] for an overview). In general, all those meth-
ods are applicable for a distributed solution as far as they
produce a local model in Step 1 of the distributed data min-
ing process that is as compact as possible but provides as
much information as needed for building a global model
in Step 2. Unfortunately, many traditional clustering algo-
rithms produce a clustering that cannot be easily described
by a simple prototype. For example, density-based clus-
tering [3] detects clusters of arbitrary shape. However, de-
scribing a cluster having a complex shape might become
quite expensive possibly causing large transfer rates. Thus,

1

kroegerp
In Proc. 5th IEEE International Conference on Data Mining (ICDM), Houston, TX, 2005

a local model should describe each cluster by a “suitable”
prototype. Obviously, such prototyping should also meet
privacy constraints. We argue, that the EM clustering algo-
rithm provides exactly such prototypes. EM describes the
data set by a set of Gaussian distributions consisting of the
cluster center (mean) and covariance matrix. The latter de-
scribes the density of points around the center of the cluster.
If certain constraints are met, privacy is preserved because
the exact values of the data objects cannot be retrieved from
the distribution.

We propose a novel distributed clustering algorithm
called DMBC (Distributed Model-Based Clustering). The
local models are acquired using EM clustering. Since the
necessary number of clusters on each site might be strongly
varying, DMBC automatically determines a suitable num-
ber of local clusters based on three privacy and performance
constraints. The constraints control the maximum transfer
volume that is allowed from an individual site and assure
that each local data object is described as good as possible
and prohibit the transfer of clusters that could leas to a vi-
olation of privacy aspects. To combine the local clusters at
the central server, the aggregation step of DMBC can em-
ploy two variants of parametrization to either derive a global
clustering offering k clusters or an arbitrary set of clusters
that are considerably different from each other. In both
cases, DMBC derives a meaningful global mixture model
of Gaussian in efficient time. Our broad experimental eval-
uation shows that DMBC is a scalable solution for cluster-
ing in a distributed environment that achieves comparative
results compared to a centralized EM-based approach.

The rest of the paper is organized as follows. Section 2
discusses related work on distributed clustering and intro-
duces the main concepts of EM clustering. In Section 3 we
describe our novel DMBC algorithm in more detail. Section
4 provides an extensive experimental evaluation of the per-
formance and the accuracy of DMBC. Section 5 concludes
the paper.

2 Related Work

2.1 Distributed and Parallel Clustering

In the following, we will review recent work on parallel
and distributed clustering. Parallel clustering is related to
the problem of distributed clustering because the data ob-
jects are also distributed over several clients where a local
clustering is performed. The local clusterings are merged to
produce the final model. However, parallel clustering meth-
ods can control the assignment of data objects to each site.
Thus, the merge step is usually less complex and implying
different problems than the merge step of distributed data
mining approaches. However, several recent approaches for

distributed data mining are adoptions of parallel clustering
algorithms.

Parallel versions of k-means, k-Harmonic-Means, EM
[2, 5], and DBSCAN [12] are all not applicable within dis-
tributed environments because all methods rely on a cen-
tralized view of the data during or before the clustering is
computed.

In [11] a parallel algorithm is proposed for clustering
web documents distributed randomly over several sites.
Any clustering algorithm can be used to generate local clus-
ters. The entire local clusters are sent back to the server
rather than compact prototypes. Clusters are merged if they
share a given number of documents which is determined
by deriving maximum-sized itemsets from the documents.
Obviously, since all local documents are transferred to the
server, this approach does not consider any privacy issues.

In [8] a distributed version of DBSCAN [3] is pre-
sented. The local clusters are represented by special objects
that have the best representative power. This representa-
tive power is based on two quality measures that take the
density-based clustering concepts into account. For each
representative, a covering radius and a covering number is
aggregated for the global merge step. The performance of
the proposed method is heavily dependent on the number of
representatives. If it is chosen too small, the accuracy sig-
nificantly decreases. Otherwise, the runtime increases due
to high transfer cost. In addition, since real data objects are
sent to the global server, this approach does also not con-
sider any privacy issues.

In [9] a single-link hierarchical clustering algorithm for
vertically distributed data is proposed. However, our new
approach DMBC is focused on horizontally distributed
data.

2.2 Model-based Clustering

Clustering algorithms can also be used to obtain a com-
pact representation of a data set. An efficient and effective
way to represent a local subset of a distributed data set is to
use a mixture of different distribution functions. The most
prominent algorithm that tries to describe the data by mul-
tiple distribution functions is the EM algorithm [1]. In the
following, we describe a variant of this algorithm which is
used by our DMBC algorithm.

Let D be a set of d-dimensional points, i.e. D ⊆ R
d. The

general idea of the EM algorithm is to describe the data by
a mixture model M of k Gaussian distributions, where k is
the only input parameter. Instead of assigning each object
to a cluster as it is the case for k-means-based clustering
algorithms, EM assigns each object to a cluster according
to a weight representing the probability of membership.

Each cluster C ∈ M is a tuple C = (µC , ΣC), where
µC is the mean value of all points in C and ΣC is the d × d

2

covariance matrix of all points in C. To compute the prob-
ability distributions, we need the following concepts.

The probability density of a point �x ∈ D within a Gaus-
sian density distribution C = (µC , ΣC) is computed in the
following way:

NµC ,ΣC (�x) =
1√

(2π)d|ΣC |
e−

1
2 (�x−µC)T(ΣC)−1(�x−µC).

The combined density for k clusters can then be com-
puted by:

P (�x) =
k∑

i=1

wCi · NµCi
,ΣCi

(�x),

where wCi is the fraction of points that belongs to cluster
Ci = (µCi , ΣCi), i.e. wCi is the weight of Ci.

Then, the probability that a point �x ∈ D belongs to a
cluster C can be computed by the rule of Bayes:

P (C|�x) = wC
NµC ,ΣC (�x)

P (�x)
.

The log-likelihood of a mixture model M =
(C1, . . . , Ck) of k Gaussian distributions which describes
how good the model approximates the actual data set can
be computed by:

E(M) =
∑
�x∈D

log (P (�x)).

The higher the value of E(M), the more likely it is that
the data set D corresponds to the mixture M . Thus, the
aim of the EM algorithm is to optimize the parameters of
M in a way that E(M) is maximized. For that purpose, the
algorithm proceeds in four steps:

1. Initialization Since the clusters, i.e. Gaussian distri-
butions C1, . . . , Ck, are unknown at the beginning, a set of
k initial clusters are generated randomly. For that purpose,
each point �x ∈ D is randomly assigned to one cluster Ci.
An initial model is produced by computing µC and ΣC for
each cluster C ∈ M .

2. Expectation Based on the current model, the parame-
ters µC and ΣC can be computed for each cluster C ∈ M
and the log-likelihood E(M) of this mixture model M is
obtained.

3. Maximization In this step, E(M) is improved via a
recomputation of the parameters for each of the k clusters.
Given a mixture model M , the parameters µC , ΣC , and wC

of each cluster C ∈ M are recomputed. The resulting mix-
ture M ′ has an equal or higher log-likelihood than M , i.e.

E(M) ≤ E(M ′). For improving the mixture, the parame-
ters are recomputed as follows:

wC =
1
|D|

∑
�x∈D

P (C|�x),

µC =
∑

�x∈D �x · P (C|�x)∑
�x∈D P (C|�x)

,

ΣC =
∑

�x∈D P (C|�x)(�x − µC)(�x − µC)T∑
�x∈D P (C|�x)

.

4. Iteration Step 2 and 3 are iterated until the log-
likelihood of the improved mixture model M ′ differs
from the log-likelihood of the previous mixture M by a
smaller value than a user specified threshold ε, i.e. until
|E(M) − E(M ′)| < ε.

The result of the EM algorithm is a set of k d-
dimensional Gaussian distributions, each represented by the
mean value µ and the covariance matrix Σ and a weight w.
The assignment of a point �x ∈ D to a cluster C is given by
the probability P (C|�x). We thus can compute how likely a
point is assigned to each of the k clusters.

The log-likelihood of the result of the EM algorithm is
usually dependent on the initial mixture model, i.e. on the
model assumed in step 1, and on the number of clusters
k. In [4] a method for producing a good initial mixture is
presented which is based on multiple sampling. It is em-
pirically shown that using this method, the EM algorithm
achieves accurate clustering results.

3 Distributed Model-based Clustering

In the following, we will refer to the clustering gener-
ated by the centralized approach as centralized clustering
and call the clusters that are part of the global clustering
centralized clusters.

3.1 Problem Analysis

As discussed above, the centralized solution has several
drawbacks which led to the distributed approach where the
data is clustered locally at each site. Afterwards only the in-
formation about the local clusters are transfered to a central
server. The server can now reconstruct the global clustering
which should be as similar to the centralized clustering as
possible, by combining the local clusters. For this recombi-
nation, we can distinguish the following cases:
Case 1: All objects of a global cluster are found on a single
local site. In this case, the global cluster can be spotted
easily at the local site and should be added to the global
clustering on the central site.

3

Case 2: The objects of a global cluster are spread over sev-
eral sites. In this case, we have to distinguish:
Case 2(a): All objects are rather well described by some
local cluster. In this subcase, a good clustering algorithm
should discover which local clusters belong to the same
global cluster and merge them at the central site.
Case 2(b): Some of the objects of a global cluster are
locally considered as noise or as members of local clus-
ters that are built from object predominantly belonging to
other global clusters. These objects contribute to the wrong
global cluster or noise.
Case 2(c): A cluster is distributed over several sites and
none of them contains enough data objects for deriving a
local cluster. In this case, the objects of the global clus-
ter are considered as noise or parts of other clusters at each
client site. Only by combining the local objects the global
cluster would become visible.

Because of the last two subcases, it is quite difficult, if not
impossible, to develop an efficient distributed clustering al-
gorithm that transmits local clusters and exactly rebuilds
the centralized clustering for all cases. Since some of the
centralized clusters may only be discovered if the noise ob-
jects of several sites are combined, the clustering algorithm
would have to transmit all objects that are not well described
by any local cluster as well as the clusters. However, trans-
mitting all these objects has two major drawbacks. First,
privacy preservation gets almost impossible by transmit-
ting single data objects. Second, with large amounts of
noise, it becomes necessary to transmit large amounts of
data as well and thus, the advantages of distributed cluster-
ing might get lost. However, since there is no other solution
for this dilemma, a good distributed clustering algorithm
should at least offer the possibility to adjust to the users
preferences on privacy, performance and the degree of how
good the derived distributed clustering corresponds to the
centralized clustering. In the following, we will refer to
the degree of how good a distributed clustering corresponds
to the centralized clustering as the agreement of both clus-
terings. Note, that a good distributed clustering algorithm
cannot guarantee an agreement of 100% in all scenarios as
discussed above.

In the following, we describe a method, called Dis-
tributed Model-based Clustering (DMBC) that is based on
the EM clustering of local sites. Instead of transmitting the
complete local data set, we only transmit a number of lo-
cal Gaussians and their weights to the central site. Since a
Gaussian distribution is represented only by a mean vector
and a covariance matrix, the amount of transferred informa-
tion is much smaller. Therefore, the needed bandwidth is
much smaller. Furthermore, the Gaussians derived by EM
are always built according to all underlying data objects and
drawing detailed conclusions about individual data objects
is not possible in almost all settings. Since we will addition-

ally control the remaining cases, the privacy of local data
objects is preserved. Thus, our method avoids the problem
of building a global clustering and still derives a mixture of
Gaussian distributions achieving a high agreement with the
centralized clustering.

The DMBC algorithm proceeds in 4 steps:
Step 1: The local data on each client site is clustered using
EM. Thus, the data at each client site is now represented by
a small but descriptive set of Gaussian distributions and a
distribution of weights over these Gaussians. The number
of clusters for the EM algorithm is optimized automatically
with respect to the parametrization controlling the privacy
level and the transfer volume.
Step 2: The local Gaussians and weights are transmitted
to the central site.
Step 3: Similar local Gaussians are joined to find a com-
pact global distribution. Thus, each cluster in a global EM
clustering is only represented by a single Gaussian.
Step 4: The calculated global clustering can optionally be
transmitted back to the client sites.

3.2 Computation of Local Models

To cluster the data at each client site, we employ the EM
algorithm as described in section 2.2. The most important
aspect of this step is the question how to choose the param-
eter k, i.e. the number of Gaussians that is used to describe
the local data distribution. Since the data distribution can
strongly vary between each site, simply selecting a global
value for k as the expected number of global clusters might
be rather inappropriate. Therefore, our algorithm automat-
ically determines a particular value ki for each site Si. Let
us note that ki not only influences the transfer volume, but
also the privacy and exactness of the clustering as well. The
larger ki, the higher is the probability that a Gaussian is
strongly influenced by only a few data sets. In this case,
the privacy can be seriously jeopardized because it might
be easy to approximate the instances that are represented
by this Gaussian. On the other hand, a large number of ki

usually increases the tendency that all local data objects are
well represented by a local Gaussian. To conclude, a very
high value for ki will increase the agreement between our
derived clustering and the global clustering, but it will also
increase the transferred data volume.

To find a clustering containing an appropriate number of
clusters, we first of all introduce the parameter kmax de-
scribing the maximum number of Gaussians for each local
site. kmax limits the maximum transfer from a local site to
the central site in step 2 and thus can be derived from the
available bandwidth. To measure the degree that all data
objects are well represented by the given clustering, we in-
troduce the function cover(Ci,j).

Definition 1 (Cover) Let M = C1, . . . , Ck be a mixture

4

localEM(Database D, Integer kmax)
maxcover = 0;
bestClustering = ∅;
for k := 1 to kmax do

M := EM(D, k);
if cover(M) = |D| then

return M ;
end if
if cover(M) > maxcover then

maxcover = cover;
bestClustering = M;

end if
end for
return bestClustering;

Figure 1. Algorithm for local clustering.

of Gaussians describing the density distribution within D.
Furthermore, let t ∈ [0, . . . , 1] be a probability threshold.
Then, the cover of the model M , denoted by Cov(M), is
defined as follows:

Cov(M) = |{ �x |�x ∈ D ∩ ∃ Ci ∈ M : P (Ci|�x) ≥ t}|

Intuitively, the cover is the number of data objects that
provide at least a probability of t for some Gaussian in the
clustering. Let us note that Cov(M) is related but different
to the log-likelihood E(M) that is optimized by the EM
algorithm.

The pseudo code of the algorithm localEM to derive
a local clustering is depicted in Figure 1. The algorithm
chooses the smallest clustering M that achieves a maximum
cover by successively increasing k and testing the cover of
the resulting clustering.

At last, we have to control the level of privacy, we need
to ensure. Thus, we have to measure how far it is possible to
draw conclusions about individual data sets from the found
clustering C. Therefore, we define the so-called privacy
score (PScore):

Definition 2 (Privacy Score) Let Ci ∈ M be a cluster that
is described by a d-dimensional Gaussian determined by the
variance vector µi and a covariance matrix Σi. Then, the
privacy-score, denoted by PScore(Ci), is defined as fol-
lows:

PScore(Ci) =
d∑

j=1

Σj,j

The idea of the PScore(Ci) is quite simple. Only if the
variance in each dimension is very small, it is possible to
draw conclusions about the underlying feature vectors. Let
us note that the local cluster description of a cluster deter-
mined by the EM algorithm is always built using the com-
plete data set. As a result, it is impossible to derive detailed

information about single feature vectors even for clusters
having small weights if the variance values are large enough
for at least a single dimension. Thus, we define a privacy
threshold τp that is the lower limit for the PScore(Ci) of
a cluster Ci that is allowed to be transferred. If a cluster
Ci has a smaller privacy-score, i.e. PScore(Ci) < τp, we
do not transmit the cluster because it would be possible to
conclude that there is at least one feature vector stored on
the local site that strongly resembles the transferred mean
value.

To conclude, at each site we determine the smallest
EM clustering providing a maximum cover and afterwards
transfer all clusters that do not violate the predefined level
of privacy.

3.3 Computation of the Global Model

The purpose of this step is to combine the locally derived
clusters to a distributed clustering describing the complete
data distribution in a best possible way. The difficulty in this
step is to find out which of the clusters are likely to describe
the same global cluster. To find out which of the given lo-
cal clusters should be joined, first of all we need a measure
that describes the likelihood of two local Gaussians C1 and
C2 to model the same global cluster. Simply, using the dis-
tance between mean vectors is not applicable here because
the significance of this distance strongly decreases with in-
creasing variance values. Therefore, we define a new mea-
sure that considers the dependency between variance and
mean value, called mutual support.

Definition 3 (Mutual Support) Let C1, C2 be two Gaus-
sian determined by a mean vector µi and a covariance ma-
trix Σi. Then the mutual support of C1, C2 is given by:

MS(C1, C2) =
∫ +∞

−∞
Nµ1,Σ1(�x) · Nµ2,Σ2(�x)d�x

Let us note that �x is a d-dimensional feature vector and thus
MS(�x) is defined using the integral over all d dimensions.
The mutual support has several characteristics that makes it
well suited for measuring the similarity between two Gaus-
sians. The larger the variance values become, the less steep
are the probability density functions of the Gaussians and
the less important is the distance between the mean val-
ues. Comparing a low variance distribution with a high
variance Gaussian, will display a small mutual support. In
the comparably small range where a low-variance distribu-
tion displays strong density the high-variance distribution
provides only moderate density and in the large area where
the high-variance distribution displays still moderate den-
sity, the density of the low-variance distribution decreases
the product very strongly. Thus, the mutual support of two

5

globalMerge(SetOfLocalClusters C, Integer k)
for each pair (Ci, Cj) ∈ C do

compute MS(Ci, Cj);
end for
sort the pairs w.r.t. descending mutual support;
mark the first |C| − k pairs of clusters;
build the transitive closure over the pairs having some

common clusters and unite them into a common
global cluster;

Figure 2. Algorithm for global clustering.

Gaussians specified by very similar mean values but quite
different covariance matrices is also rather small.

After finding a method to compare two local Gaussians,
we now start to determine which of the local clusters should
be merged. To determine a distributed clustering from a set
of local clusters C with a number of k global clusters, we
can now proceed as described in Figure 2.

Another alternative for deriving a joined distributed clus-
tering is to specify a threshold parameter τ and join all clus-
ters displaying a mutual support of at least τ . In this case, all
pairs of clusters (Ci, Cj) are marked if MS(Ci, Cj) ≥ τ .
Again we first of all, find the marked pairs of clusters that
are connected by common clusters and afterwards merge all
clusters in this connected set. Therefore, both approaches
are independent of the order the clusters are merged. After
determining which clusters have to be joined, we still need
to derive a common Gaussian from a connected set of local
clusters. Therefore, we derive a new mean µC for a set of
Gaussian clusters C = {C1, . . . , Cm} that are specified by
µi and Σi in the following way.

µC =
∑m

k=1(wCk
· λ(Ck) · µk)∑m

k=1(wCk
· λ(Ck))

.

Here, λ(Ck) = Cov(Ml) where cluster Ck has its origin
on site l, i.e. λ(Ck) denotes the cover of site l. The entries
of the covariance matrix for the ith line and the jth column
are calculated as following:

Σi,j
C =

∫ +∞
−∞ (

∑m
k=1 wCk

λ(Ck)Nµk,Σk
(�x) · (�xi − µi

C)(�xj − µj
C))d�x∑m

k=1(
∫ +∞
−∞ wCk

λ(Ck)Nµk,Σk
(�x))d�x)

Let us note that we again need to employ a multiple in-
tegral to calculate the new covariance matrix because we do
not have the actual data distribution at each site. Therefore,
we assume that the local density given by each local clus-
tering is a well enough description of this distribution. To
consider the number of data objects that are stored at each
site, we additionally weight the influence of each distribu-
tion with the cover we transmitted from this site.

The weight of C can be determined as

wC =

∑
Ci∈C wCi · λ(Ci)∑

Ci∈C λ(Ci)
.

3.4 Scaling to High Dimensional Data Sets

If we apply DMBC as proposed in the previous subsec-
tion on higher dimensional data sets (d > 2), we face the
problem that, in order to compute both the mutual support
as well as the covariance matrix of a merged cluster, we
have to evaluate multiple integrals.

Thus, in order to be scalable for higher dimensional data
sets, we propose a variant of DMBC that uses variances in-
stead of covariances for cluster representation. In particu-
lar, we assume the attributes to be indepent of each other
and represent a cluster C by its mean vector µC and its d-
dimensional variance vector σC . The i-th value of σC , de-
noted by σi

C , indicates the variance of the Gaussian along
attribute i.

As a consequence, the resulting Gaussians form
ellipsoid-shaped clusters that are constrainted to be axis-
parallel. We will see later in the experimental evaluation,
that this simplification does not cause a significant loss of
quality. However, the benefits of this modification are the
following. First, we are able to solve the integral of the
mutual support analytically. Second, to compute the vari-
ance vector of a merged cluster, we need to solve only one
integral rather than multiple integrals. Third, the transfer
cost for each local cluster are reduced from O(d2) for the
covariance matrix to O(d) for the variance vector.

In fact, the mutual support of a pair of clusters C =
{C1, C2} can be computed as

MS(C1, C2) =
d∏

i=1

∫ +∞

−∞
Nµi

1,σi
1
(�x) · Nµi

2,σi
2
(�x)d�x

The following lemma enables us to solve this integral
over d-dimensions analytically.

Lemma 1 Let C1 = (µC1 , σC1) and C2 = (µC2 , σC2) be
local clusters. Then

MS(C1, C2) =
d∏

i=1

1√
2π · (σi

1 + σi
2)

· exp− (µi
1 − µi

2)
2

2 · (σi
1 − σi

2)

Proof. Let Nµi
1,σi

1
(�x) · Nµi

2,σi
2

= ϑi · Nµ,σ . If we replace
µ and σ by:

µ =
µi

1 · σi
2 + µi

2 · σi
1

σi
2 + σi

1

and σ =
σi

2 · σi
1

σi
2 + σi

1

and apply the logarithm to the equation, it follows that

ϑi =
1√

2π · (σi
1 + σi

2)
· exp− (µi

1 − µi
2)

2

2 · (σi
1 − σi

2)

6

Thus, we obtain

MS(C1, C2) =
d∏

i=1

∫ +∞

−∞
Nµi

1,σi
1
(�x) · Nµi

2,σi
2
(�x)d�x =

d∏
i=1

ϑi ·
∫ +∞

−∞
Nµi,σi(�x)d�x =

d∏
i=1

ϑi · 1

�

The j-th component of the variance vector of the global
cluster C which evolved from the merge of m clusters Ci is
given as:

σj
C =

√√√√√
∫ +∞
−∞ (

∑m
i=1 wCiλ(Ci)Nµj

i ,σj
i
(�xj)) · (�xj − µj

C)2d �xj

∑m
i=1(

∫ +∞
−∞ wCiλ(Ci)Nµj

i ,σj
i
(�xj))d �xj

Note that for component σj
C we compute only a 1-

dimensional integral over dimension j.

4 Experimental Evaluation

We implemented our versions of DMBC in Java and
run several tests on a workstation featuring two 1.8 GHz
Opteron processors and 8 GByte main memory.

The test bed consists of one artificial 2-dimensional data
set (denoted as DS1) and two real word data sets (denoted as
DS2 and DS3). The latter two are derived from 68,040 im-
ages of the corel image feature collection of the UCI KDD
archive1. DS2 contains 9-dimensional color moments of
images in HSV color space (mean, standard deviation and
skewness). DS3 comprises a description of the corel images
based on co-occurrence textures with 16 dimensions.

The experimal results of DMBC on the synthetic DS1
(Figure 3) demonstrates that our algorithm is capable to
handle cases 1, 2(a)-(c) described in Section 3.1: DMBC
finds the global cluster “A” the objects of which are exis-
tent on only one single client, i.e. client 2 (Case 1). DMBC
finds the global clusters “B”, “D”, and “E” the objects of
which are rather well described by local clusters on all sites
(Case 2(a)). DMBC finds the global cluster “C” the objects
of which are distrubuted over all sites such that none of the
sites exhibit a local cluster (Case 2(c)). Several objects of
clusters “D” and “E” are prototypes for Case 2(b) because
they are members of local clusters that are built from objects
predominantly belonging to another global cluster.

In order to demonstrate the robustness of our clustering
algorithm w.r.t. the number of clusters on each client site,
we performed distributed clustering with a predetermined
number of clusters. We measured the agreement between

1http://kdd.ics.uci.edu/

Site 1 Site 2 Site 3

Server Site

A

B

C

D

E

Figure 3. Results of DMBC on DS1.

the distributed clustering and the results of the centralized
EM algorithm using the Rand Index [6], also known as
Rand Statistics.

On the 2-dimensional synthetic data set (DS1) shown in
Figure 3 DMBC achieved a Rand index of approximately
99.9%, indicating a high agreement of our method with the
centralized clustering. For data DS2 and DS3 we used the
variant of DMBC based on variances (cf. Section 3.4). As
shown in Figure 4, DMBC achieves high Rand Index val-
ues, i.e. our distributed approach produces a high level of
agreement with the results of centralized clustering algo-
rithms on all numbers of clusters. This also indicates that
the variant proposed in Section 3.4 using variances instead
of covariances does produce accurate results, too.

We evaluated the scalability of the proposed algorithm
w.r.t. the number of clusters on each client site. The results
are depicted in Figure 4(a). As it can be observed, in all
settings, the Rand Index is near the optimal value. Thus, the
agreement between the centralized clustering and the global
distributed clustering is very high.

In addition, we investigated the scalability of the pro-
posed algorithm w.r.t. the number of client sites. Figure
4(b) presents the agreement using the Rand Index between
results calculated by our approach and the centralized clus-
tering algorithm. The number of client sites involved in the
distributed clustering was varying from 2 to 10. The high
value of the Rand Index in all experiment evaluations shows
that our algorithm is scalable w.r.t. the number of client sites
and delivers results that do not differ from that of the global

7

(a) (b)

(c) (d)

10

20

30

40

50

60

70

80

90

100

R
a
n

d
 I
n

d
e
x
,
%

2 20 50 100

Cluster

Data Set 2 Data Set 3

10

20

30

40

50

60

70

80

90

100

R
a
n

d
 I
n

d
e
x
,
%

2 5 10

Client Sites

0

0,2

0,4

0,6

0 20 40 60 80 100

Cluster

T
ra

n
s

m
is

s
io

n
 R

a
te

,
%

Data Set 2 Data Set 3

0

0,02

0,04

0,06

0 2 4 6 8 10

Client Sites

T
ra

n
s

m
is

s
io

n
 R

a
te

,
%

Figure 4. Results of DMBC on DS2 and DS3.

acting algorithm.
We also investigated the transfer cost w.r.t. the number

of clusters on each client site and w.r.t. the number of client
sites. The results are depicted in Figure 4(c) and 4(d). As
transfer cost we measured the ratio of the number of bytes
that are transfered using DMBC and of the number of bytes
that are transfered using the centralized approach. As it
can be seen, the transfer cost is in general very low. Even
for a very large number of clusters, DMBC needs less than
1% of the bytes transfered by the centrailized approach. In
addition, we can observe, that the transfer cost increases
only linearly w.r.t. the number of local clusters and w.r.t.
the number of client sites. Compared to other existing dis-
tributed clustering approaches, e.g. the density-based dis-
tributed approach in [8], where the local transfer cost is at
least 15% of the local data in order to achieve a high agree-
ment, our DMBC reduces the transfer cost dramatically.

Last, we investigated the robustness of DMBC w.r.t. the
probability threshold t which affects the cover of the local
models. As the results (not shown due to space limitations)
suggest, DMBC is rather robust w.r.t. a broad range of val-
ues for t. In fact, we observed a Rand Index over 98% when
varying the values of t from 0.05 up to 0.45.

To sum up, our experiments demonstrated the robust-
ness, the efficiency, and the applicability of both of our pro-
posed variants for distributed model-based clustering.

5 Conclusion

In this paper, we proposed a distributed version for
EM clustering called distributed model-based clustering
(DMBC). Our method applies the EM algorithm at the lo-
cal sites generating a model containing a set of Gaussian

distributions. Each Gaussian is represented by its mean and
its covariance matrix or — for higher dimensions the vari-
ance vector. We also proposed a merge step of the local
Gaussians that can handle covariances as well as variances.
Compared to recent approaches for pure distributed cluster-
ing, DMBC enables respecting an arbitrary level of privacy
and dramatically reduces the transfer costs. Our experimen-
tal evaluation demonstrates the robustness, the efficiency,
and the applicability of both of our proposed variants for
distributed clustering.

For future work we will examine the use of other distri-
bution functions instead of Gaussian for clustering.

References

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. ”Maximum
Likelihood from Incomplete Data via the EM Algorithm”.
Journal of the Royal Statistical Society, Series B, 39(1):1–
31, 1977.

[2] I. S. Dhillon and D. S. Modha. ”A Data-Clustering Algo-
rithm On Distributed Memory Multiprocessors”. In Proc.
KDD-WS on High Performance Data Mining, 1999.

[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. ”A Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”. In Proc. Int. Conf. on Knowledge
Discovery and Data Mining (KDD), pages 291–316, 1996.

[4] U. Fayyad, C. Reina, and P. Bradley. ”Initialization of Itera-
tive Refinement Clustering Algorithms”. In Proc. Int. Conf.
on Knowledge Discovery in Databases (KDD), 1998.

[5] G. Forman and B. Zhang. ”Distributed Data Clustering can
be Efficient and Exact”. SIGKDD Explorations, 2, 2000.

[6] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. ”On Clus-
tering Validation Techniques”. Journal of Intelligent Infor-
mation Systems, 2/3(17):107–145, 2001.

[7] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Academic Press, 2001.

[8] E. Januzaj, H.-P. Kriegel, and M. Pfeifle. ”Scalable Density-
Based Distributed Clustering”. In Proc. Europ. Conf.
PKDD, 2004.

[9] E. Johnson and H. Kargupta. ”Hierarchical Clustering from
Distributed, Heterogeneous Data”. In M. Zaki and C. Ho,
editors, Large-Scale Parallel KDD Systems, volume 1759 of
Lecture Notes in Computer Science (LNCS). Springer Ver-
lag, 1999.

[10] B.-H. Park and H. Kargupta. ”Distributed Data Mining: Al-
gorithms, Systems, and Applications”. In N. Ye, editor, The
Handbook of Data Mining. Lawrence Erlbaum Associates
Publishers, 2003.

[11] M. Sayal and P. Scheuermann. ”A Distributed Algorithm
for Web-Based Access Patterns”. In Proc. KDD-WS on Dis-
tributed and Parallel Knowledge Discovery, 2000.

[12] X. Xu, J. Jäger, and H.-P. Kriegel. ”A Fast Parallel Clus-
tering Algorithm for Large Spatial Databases”. Data Min-
ing and Knowledge Discovery, an International Journal,
3(3):263–290, 2003.

8

