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Abstract

Two major approaches have been proposed to efficiently
process queries in databases: Speeding up the search by us-
ing index structures, and speeding up the search by operat-
ing on a compressed database, such as a signature file.
Both approaches have their limitations: Indexing tech-
niques are inefficient in extreme configurations, such as
high-dimensional spaces, where even a simple scan may be
cheaper than an index-based search. Compression tech-
niques are not very efficient in all other situations. We pro-
pose to combine both techniques to search for nearest
neighbors in a high-dimensional space. For this purpose,
we develop a compressed index, called the IQ-tree, with a
three-level structure: The first level is a regular (flat) direc-
tory consisting of minimum bounding boxes, the second
level contains data points in a compressed representation,
and the third level contains the actual data. We overcome
several engineering challenges in constructing an effective
index structure of this type. The most significant of these is
to decide how much to compress at the second level. Too
much compression will lead to many needless expensive ac-
cesses to the third level. Too little compression will increase
both the storage and the access cost for the first two levels.
We develop a cost model and an optimization algorithm
based on this cost model that permits an independent deter-
mination of the degree of compression for each second level
page to minimize expected query cost. In an experimental
evaluation, we demonstrate that the IQ-tree shows a perfor-
mance that is the "best of both worlds" for a wide range of
data distributions and dimensionalities.

1. Motivation

Many different index structures have been proposed for
high-dimensional data (cf. [6, 12, 15, 16, 21]). Most multi-
dimensional index structures have an exponential depen-
dence (in space or time or both) upon the number of dimen-
sions. In recognition of this fact, an alternative approach is
simply to perform a sequential scan over the entire data set,
obtaining the benefits at least of sequential rather than ran-
dom disk I/O1. Clever bit encodings can then be devised to
make this sequential scan faster (cf. [20]).

The trade-offs between these two classes of techniques
(index structures and scan methods) are not simply ex-
pressed in terms of the number of dimensions. For instance
when data sets are highly skewed, as real data sets often are,
multi-dimensional index techniques remain more effective
than a scan until a fairly high dimension. Similarly, when
there are correlations between dimensions, index tech-
niques tend to benefit.

The question we address in this paper is whether one can
come up with an optimal combination of these two classes
of techniques. Can one devise a single structure that has the
benefits of a traditional multi-dimensional index structure
for low dimensional data sets, and the benefits of a bit-
mapped scan for high dimensional data sets? Can one, fur-
ther, trade off dynamically so that the fraction of the data set
scanned is a function of the portion of data space being con-
sidered, and the extent of skew and correlation in this sub-
space? 

Our solution is the IQ-tree. The basic idea is to construct
a tree structure top-down, but not necessarily to continue di-
viding until leaf nodes with data pointers are reached. In-
stead, at an appropriately chosen stopping point, a bit en-
coding is used to represent the data in the region covered.
The details of this structure are presented in Section 3, along
with the layout of the files on disk, and the proposed algo-
rithms for construction, maintenance and searching. A key
question to address is the selection of a good stopping point
where the trade-off is made between further hierarchical
sub-division and bit encoding. Evaluating this trade-off in-
volves the development of a cost model. All of this is the
subject of Section 4. In Section 5 we present a careful ex-
perimental evaluation of our technique, using both synthetic
and real data sets, and compare it against previous tech-
niques. In particular, we demonstrate that it does show a
performance that is the “best of both worlds” as we expect-
ed. Section 6 has a few extensions and special cases of in-
terest (such as dynamic insertions). Section 7 covers related
work. We end with conclusions in Section 8. 

For concreteness, we focus on the problem of finding
nearest neighbors in a point data set. In Section 2, we dis-
cuss the difference between simply counting page accesses

1. For instance [7] suggests that sequential scan is likely to be the most
effective search algorithm for the nearest neighbor problem in very
high-dimensional spaces.
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as a cost metric and differentiate between sequential and
random I/O for a more careful cost metric. We show that
this difference is likely to be significant in a high-dimen-
sional indexing situation. Based on this understanding, we
present a page access strategy suitable for the nearest neigh-
bor problem. This strategy forms the basis for all the subse-
quent work in this paper.

2. Page access strategy

The actual page access strategy has a significant impact on
the cost of an index look-up. In this section we pin down the
specific access strategy used. Specifically, for the nearest
neighbor problem, we develop a new optimal page access
strategy. Consider an indexed access, say in the course of a
selection query, which results in the need to fetch five data
pages. The simplest implementation is to perform five ran-
dom accesses, one to each of the specified pages on disk.
This is the way most (to our knowledge, all) commercial in-
dex structures are written. This is a reasonable choice for
most ordinary, one-dimensional indexes, where the selec-
tivity is expected to be small - so that only a very small
number of data pages are expected to be selected. However,
when posting lists become large, one can order the list of
data pages to be accessed according to the layout on disk,
and greatly reduce seek times. In fact, modern intelligent
disk drives have the built-in capability to do exactly this. In
the case of high-dimensional index structures, the need for
this sort of batch processing becomes even more acute.
Firstly, due to the poor clustering of pages in high-dimen-
sional data spaces, page selectivities tend not to be very
good, even if a query selects only a small number of tuples.
Secondly, many multi-dimensional index structures require
multiple paths to be followed from root to leaf for a single
given query region. This redundancy additionally increases
the number of pages to be loaded.

There are query types (such as range queries) for which
one can easily determine the set of data pages one has to
load in order to answer the query. We simply have to pro-
cess the affected parts of the directory and record the point-
ers to the data pages. However, for other query types (such
as nearest-neighbor queries) this set of data pages is not
known in advance. We will first present an optimal algo-
rithm for the first case, where all pages are known in ad-
vance, and then extend our algorithm to the second class of
queries, in particular nearest neighbor queries. 

Let tseek be the time to seek to a specified location on
disk. Let txfer be the time to transfer one block from disk.
Suppose an index selects n disk blocks out of a total N in the
file and we know the position of each block denoted by pi,

. We assume this list to be sorted according to the
position on disk1. We can apply the following algorithm:
We seek to the position p0 of the first block on disk. Then,
we look at the following block at location p1. If p1 is “close
enough”, it is better to scan through and read all the blocks
in positions (p0+1) to p1. Else, it is less expensive to seek.

After having made this decision, we continue with location
p2 and so on. Whenever seeking to the following block is
less time-consuming than over-reading the blocks in be-
tween, we seek to this block, else we continue reading.
Thus:

If then over-read
else seek

Figure 1 depicts an example solution. In the extreme cases,
our algorithm chooses either to load the whole database in
a single scan (if n is relatively large with respect to N) or to
load all pages with random accesses (if n is relatively small
with respect to N). However, also intermediate steps of par-
tially scanning the database may occur. With this intermedi-
ate solution, we stand to benefit for even quite selective
queries as long as the pages accessed have a tendency to
cluster. 

In [19], Seeger et al. solved a more general problem. In
particular, they considered the fact that only a limited buffer
in main memory might be available and therefore, not an ar-
bitrarily large chunk of data can be read from disk. Further-
more, they proved that this algorithm is optimal i.e., it min-
imizes the time needed to load given n blocks. 

2.1. Nearest neighbor search
In the case of nearest neighbor search we do not know in ad-
vance exactly which blocks to examine. In this case we can
adapt the algorithm proposed in [13] by Hjaltason and
Samet, which has been proven in [3] to load a minimal num-
ber of pages. The algorithm examines blocks in an expand-
ing radius from the given query point until all remaining
blocks are farther away (minimum distance) than the near-
est data point found. The algorithm therefore keeps a prior-
ity list Q[0..n-1] of pages to be loaded from disk. The list or-
ders the data pages according to increasing distance from
the query point and can be generated in a pre-processing
step. 
hjaltason_samet_nearest_neighbor (Index ix, Point q) {

float nndist = ∞ ;
pl.init (ix) ; // initialize pl with all page descriptions

// from the directory ordered by MINDIST
while (nndist ≥ MINDIST (pl.top) ) {

page = load (pl.top) ;
foreach Point p ∈  page

if (distance (p,q) < nndist)
nndist = distance (p,q) ; nn = p ;

pl.pop () ;
} }

1. Note that although disk surfaces are two-dimensional objects, a one-
dimensional view of having a linear file is a very accurate model.
Experiments show that how “far” a seek proceeds forward or back-
ward in the file has only negligible influence on the time consumed. 
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Figure 1: Optimal strategy to fetch blocks from disk (range q.)



We know that in any case we have to load the first page
on the list bQ[0] in order to guarantee a correct answer to the
query. For all other pages, there exists a certain probability
that the page has to be loaded. This probability can be esti-
mated using a cost model for nearest-neighbor queries. In
Section 2.2, we describe the details of the cost model we are
using for this purpose. 

Thus, we face the following situation: We are given a list
of n blocks; for each block bi, , we know the po-
sition pi of the block on disk and a probability li that the
block has to be loaded during query processing. We also
know that the probability lQ[0] equals 100%. All pages that
have already been processed, have an access probability of
0%, because no page needs to be accessed for a second time.

The basic idea of our nearest neighbor algorithm is to
load in each processing step not only page pQ[0] but also
other pages with positions near by pQ[0] (such as pQ[0]+1,
pQ[0]-1 etc.), if their access probabilities are high.

In order to determine a good strategy for loading the de-
sired blocks, we have to trade off the corresponding costs.
If we decide to load an additional page, we pay a transfer
cost. In contrast, if we decide not to load the additional
page, we run into the risk that we have to access the page
later, which causes the corresponding transfer cost plus an
additional random seek operation. Taking together, we have
to balance between direct cost and potential savings when
deciding whether to read an additional page or not.

Loading a page with an access probability li, causes the
following increment to the total estimated cost:

. (1)

If ci is negative, then the estimated savings is greater than
the additional transfer cost. 

Our algorithm behaves as follows: We start from the first
block bQ[0] in the list which has a probability of 100% and
therefore must be loaded anyway. Then, we consider the
next block bQ[0]+1 and determine the corresponding access
probability lQ[0]+1 and cost balance cQ[0]+1. If the cost bal-
ance is negative, we note to load the sequence
[bQ[0], bQ[0]+1] and continue searching for additional pages
to be loaded together with our sequence. Otherwise, we de-
termine the cost balance of the subsequent page cQ[0]+2. If
the sum of the balances cQ[0]+1 + cQ[0]+2 is negative, we
can note to load the sequence [bQ[0], bQ[0]+1, bQ[0]+2]. Oth-
erwise we determine the cost balance of the next page and
try to make the cumulated cost balance negative in one of
the following steps. Our algorithm stops when the cumulat-
ed cost balance is higher than the seek cost. The same pro-
cedure is performed with the pages preceding the pivot page
bQ[0].

When the sequence of blocks around bQ[0] with mini-
mum cost balance is determined, we actually load and pro-
cess the sequence of pages. As the nearest neighbor distance
may change, the priority list is pruned i.e., all pages with a
distance larger than the nearest neighbor distance are dis-
carded. All pages in the sequence are also deleted from the
priority list, and a new pivot page bQ[0] is determined.

Note that we slightly simplified the description of the
following algorithm in order to maintain readability:

time_optimized_nearest_neighbor (Index ix, Point q) {
int first, last, i ;
float a, ccb, nndist = ∞ ;
pl.init (ix) ; // initialize pl with all page descriptions

// from the directory ordered by MINDIST
while (nndist ≥ MINDIST (pl.top) ) {

first = last = page_index (pl.top) ;
ccb = 0.0 ; //cumulated cost balance
i = last + 1 ;
do {

// forward search for pages to load additionally
if (is_processed_already (bi))

a = 0 ;
else

a = determine_probability (bi) ;
ccb += txfer - a * (tseek + txfer) ;
if (ccb < 0) {

last = i ;
ccb = 0.0 ;

}
i ++ ;

} while (ccb < tseek) ;
ccb = 0.0 ;
i = first - 1 ;
do {

// backward search for additional pages
...

} while (ccb < tseek) ;
pages = load_page_sequence (bfirst, blast) ;
foreach Point p ∈  pages

if (distance (p,q) < nndist)
nndist = distance (p,q) ; nn = p ;

for (i = first ; i <= last ; i++)
pl.delete (bi) ;

} }

2.2. Access probability of data pages
Given a query point and a data page, we need the access
probability of this page for a nearest neighbor query. Note
that we know the bounding boxes of the data pages because
this information usually is stored in the directory of the in-
dex.

The nearest neighbor algorithm accesses a page bi if and
only if the pages processed before bi contain no data point
that is closer to the query point than the minimum bounding
rectangle of bi. The bi-sphere is defined as the sphere
around the query point that touches bi. Therefore, the access
probability of bi corresponds to the probability that none of
the pages in the priority list contains a point in the bi-sphere.
Note that the pages intersecting with the bi-sphere are exact-
ly all the pages with a higher priority than bi. This is depict-
ed in Figure 2, where the following situation is visualized:
In the first step, our algorithm has already processed the
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Figure 2: The bi-sphere and pruning probability of a page



page b6. Our next pivot page is b3 (access probability
100%). As b4 is on the following position on disk, we deter-
mine the access probability of b4. Page b4 is accessed if the
b4-sphere contains no data point. For this probability we
have to determine the volume that is underlaid in grey in the
figure. Only the pages b3, b5 and b2, which have higher pri-
ority than b4, intersect with the b4-sphere. Page b6 is ig-
nored, because it has been processed before.

The probability that neither of the intersection volumes
contains a data point corresponds to the product of the sin-
gle probabilities not to contain a point in the intersection.
We have to consider all pages which are located in the pri-
ority list before bi. Assume j such that i = Q[j]:

. (2)

The probability that no point is in the intersection volume
Vint(bk) is determined by the intersection volume, the vol-
ume of the MBR of the corresponding page region VMBR(bk)
and the number of points stored in the page M(bk):

(3)

The intersection volume of a page region given by its lower
and upper bounds ((lb0, ..., lbd-1), (ub0, ..., ubd-1)) and the bi-
sphere given by the center point q and the radius r of the bi-
sphere which corresponds to the distance between q and bi
can be determined by the following volume integration:

. (4)

In the case of the maximum metric, the volume integral can
be transformed into the following formula applying the
maximum function to the lower bounds and the minimum
function to the upper bounds in each dimension:

(5)

For Euclidean and other metrics, the volume can be estimat-
ed using approximations. Note that the model can also be
extended to k-nearest neighbor queries: Instead of deter-
mining the probability that a point is located in a single vol-
ume Vint, we have to determine the probability density func-
tion of the number of points in Vint. Combining these
probability density functions, we can determine the proba-
bility that bk can be pruned in case of a k-nearest neighbor
query. The details of the extended model are left out due to
space restrictions.

3. The IQ-tree 
The data space is divided into a set of partitions represented
by the minimum bounding rectangles (MBRs) of the points
located in the corresponding region of the data space. The
MBRs are utilized for query processing, as usual, to restrict
the search to relevant parts of the data space. 

In high-dimensional query processing, however, we face
the problem that the number of relevant parts thus selected
may be rather large, resulting in a large number of data pag-
es to be read from disk. Therefore, at the “data level” of que-

ry processing, the IQ-tree employs the strategies developed
for efficient file scanning and for optimizing page accesses. 

Additionally, compressed representations of the data
points, using appropriate bit encodings, are processed in-
stead of the exact geometry of the points. Only if a query
condition cannot be evaluated based on the compressed rep-
resentation of a point, is the exact geometry of that point
consulted. 

To minimize additional accesses to the exact geometry
of points, the bit encodings of data points must be chosen
very carefully. For skewed distributions the point density in
some parts of the data space is higher than in other parts.
Choosing just enough bits to separate the points in areas of
low density would result in a poor encoding of points locat-
ed in areas of high density, since many of them would then
share the same compressed representation. On the other
hand, choosing a more fine grained encoding, i.e. using
more bits, to separate also the points in areas of high densi-
ty, would unnecessarily increase the size of all approxima-
tions, thereby decreasing the efficiency of the technique. 

Therefore, to get an optimal quantization with respect to
accuracy and compression rate of the representations, the
IQ-tree determines a separate encoding scheme for each
partition, depending on the actual point density in the parti-
tion. Consequently, in some parts of the data space points
may be represented more accurately than points located in
other parts of the data space, using however as few bits as
possible in each partition. Note that, in contrast to the VA-
file (cf. section 5 or [20]), our quantizations are relative to
the geometry of the MBR of the corresponding data page.
Thus, we need even less bits to encode with the same accu-
racy. This strategy is similar to the concept of “actual coded
data regions” proposed in [12].

3.1. Structure of the IQ-tree
The structure of an IQ-tree is illustrated in Figure 3. The
tree consists of three levels organized in three distinct files.
The first level, called the directory, stores directory pages,
which contain exact (floating point) representations of
MBRs. The second level consists of so called quantized
data pages, i.e. data pages containing the data points in
compressed form. The third level file consists of data pages
containing the exact data. 

Paccess bi( ) Pno point in int bQ k[ ]( )
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Figure 3: Structure of the IQ-tree
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Each MBR stored in the directory refers to a quantized
data page which in turn refers to a data page containing ex-
act coordinates of points. These MBRs describe the mini-
mum rectangular region containing the points which are
stored in the corresponding data pages. 

Quantized data pages have a fixed block size which
means that, depending on the length of the bit encoding, dif-
ferent numbers of points can be stored and represented in a
single quantized data page. Consequently, the correspond-
ing data pages on the third level have a variable size. Recall
that the exact geometry of a point will be consulted only oc-
casionally, if a query condition cannot be evaluated on the
approximation of the point. 

A number of g bits per dimension is used to approximate
the location of points in a data page by virtually dividing the
MBR along each dimension into 2g partitions of equal size.
The points contained in the corresponding region of the
space are then represented by the bit encodings of the virtu-
al grid cells in which they are located. The quantization fac-
tor g will, in general, vary from page to page, depending on
the point density in MBR. Note, however, that if a page
should be quantized using 32 bit, then we actually do not
compute the grid cell approximations of the points. Instead,
we use the 32 bits in the quantized data page to store the ex-
act (floating point) representation. In this case, an explicit
(and redundant) exact representation on the third level is
omitted.

3.2. Searching
An IQ-tree could be seen as having a 2-tier directory con-
sisting of a big linear root node and a second level contain-
ing boxes around actual data points. Thus, the search algo-
rithms designed for a standard multi-dimensional search
tree can be applied without significant changes. 

The general condition for guiding a search is: If a specif-
ic area on a certain level of the tree cannot be excluded from
the search then we have to follow the pointer associated
with the corresponding MBR and recursively go down a
level in the tree. This condition can be applied to MBRs for
sets of points as well as to box approximations of single
points. The condition also guarantees a minimum number of
accesses to the exact representations of points, i.e. exact co-
ordinates are loaded only if a point is a true answer or if the
query condition cannot be evaluated using its compressed
representation. 

For instance, when evaluating nearest neighbor queries,
the box approximations of points are inserted into the prior-
ity list just like regular MBRs of data pages. The exact rep-
resentation of a point p must be consulted only if the ap-
proximation bp of p becomes the pivot “page” of the priority
list pl. This means that bp has currently the minimal distance
dmin to a query point q, among all other boxes and MBRs in
pl. Then, bp can never be pruned from pl because no dis-
tance between q and other points can be smaller than dmin.
From this it follows that there is no strategy to avoid loading
the exact coordinates of p. Even if the exact distances be-
tween q and all other points were now known, we only
know that the distance between p and q is in a range dmin to
dmax depending on the actual position of p within bp. If there
exists a point which is closer to q than dmax we must load
the coordinates of p to decide which one is closer. In the oth-

er case, if there is no such point, we must load p because p
then is the nearest neighbor of q. There is also no reasonable
strategy to delay the lookup of p if bp is the pivot page be-
cause the true distance between p and q is the smallest pos-
sible (and therefore is the most efficient) pruning distance
available in the current state of the algorithm. 

3.3. Construction and maintenance
To build an IQ-tree, we first have to perform a top-down
partitioning of the data space until the points in each parti-
tion will fit into a quantized data page using a 1 bit repre-
sentation. For that purpose, the partitioning scheme pro-
posed in [4] is used. This strategy is effective for fast bulk-
loading of high-dimensional index structures such as the X-
tree, and can be applied easily using a block size corre-
sponding to a 1 bit quantization factor for each page. This
yields an initial IQ-tree which is optimal with respect to
compression rate, but which may perform poorly with re-
spect to accuracy of representation since too many points on
each data page may share the same bit encoding. 

For the best query performance based on the IQ-tree ar-
chitecture, obviously, the compression rate and the accuracy
of the representations have to be optimized simultaneously.
Therefore, we must now search for a refinement of the ini-
tial partitions using, where necessary, more bits for the
quantization of data pages. Note that increasing the number
of bits to represent the points on a data page will require
more space, and therefore, less of data can be stored in a
quantized data page with constant block size. Consequently,
if the number of bits for the encoding of the points is in-
creased, the partition must also be split. In these cases, we
apply the same split heuristic as for the construction of the
initial IQ-tree, i.e. we split the page along the dimension
where the MBR has its largest extension.

An X-tree splits until all points fit into pages using a 32-
bit (exact) representation, whereas a VA-file uses a constant
number of bits to represent the data. In contrast, the IQ-tree
is designed to adjust the splits as well as the degree of quan-
tization to the actual distribution of the data, and thereby to
optimize query performance. To be able to optimize, we
need a cost estimate and we obtain this through the cost
model given in section 3.4. The reader not interested in the
details of the cost model may continue reading in section
3.6.

3.4. Cost model
The cost of query processing TQP on an IQ-tree consists of
the following components:

(1.) cost for loading the first level directory T1st
(2.) cost for optimized loading and processing parts of

the second-level directory T2nd
(3.) cost for accessing the exact geometry T3rd

All three cost components depend on our decision whether
to use a quantized second-level for a subset of our data or
not, and to quantize at what resolution.

Of all components of our cost model, the cost for the re-
finement step are the most sensitive to the data distribution
and are most significant to the total query cost. Therefore,
we spend the highest effort in the estimation of the refine-
ment cost adapting the cost estimation as good as possible
to the specific situation of the actual data distribution. In our



description, we start from a uniform, independent distribu-
tion. We extend our model then to allow for correlations by
the concept of the fractal dimension. 

We assume in our model that the distribution of the query
points follows the distribution of the data points i.e., every
data point is a potential query point.

Estimating cost for the refinement step
We are given a data page with a minimum bounding rectan-
gle MBR = (lb0, ..., lbd-1, ub0, ..., ubd-1) and a number m of
data points P0, ... Pm-1. Let g be the number of bits used to
quantize the data vectors. We want to determine the number
of look-ups to the exact geometry. 

Under uniformity/independence assumption, we can de-
fine the local point density  by using the volume of the
page region:

. (6)

From the point density, we can estimate the nearest neigh-
bor distance, which is valid in the corresponding region of
the data space. The radius is chosen such that the corre-
sponding volume of the hypersphere contains an expecta-
tion of one data point1:

(7)

Depending on the metric we apply to the data, we have to
use different formulas for Vsphere. In case of the Euclidean
metric, it corresponds to the well-known formula for the
volume of a d-dimensional hyper-sphere:

(8)

with the gamma-function , which is the extension of
the faculty operation into the domain of real numbers:

,  and . In
case of the maximum metric, it is simply the d-dimensional
hypercube:

. (9)

The probability with which a point stored in the data page
must be refined corresponds to the Minkowski sum of the
query volume and the volume of the cell approximating the
data point. The Minkowski sum is the enlargement of the
cell by the query volume, as depicted in Figure 4. The vol-
ume of the quantization cell is given by:

. (10)

The Minkowski sum can be exactly determined for the max-
imum metric:

(11)

For the Euclidean metric, it can be approximated by the
following formula, where a is the geometrical mean of the
side lengths of the mbr of the data page2:

(12)

with .

Under the uniformity and independence assumption, the
Minkowski sum divided by the volume of the data space
corresponds to the refinement probability of a data point.
The expectation of the number of refinements per query is
this probability multiplied with the number of data points P.

We can drop the assumptions of uniformity and indepen-
dence by the concept of the fractal dimension [2, 3, 8, 9].
The fractal dimension takes correlation effects into account.
In essence, correlated data points are not spread over the
complete d-dimensional data space but concentrate on a
lower-dimensional part of the data space (which is not an
actual subspace of the data space, unless the correlation is
linear). The fractal dimension DF is the actual dimension of
the subpart where the data is located.

If a volume containing correlated points becomes en-
larged, the most important observation is that the number of
enclosed points does not grow linearly with the volume en-
largement. Rather, the number of enclosed points grows, as
if the volume object had the dimension DF rather than d.
This can be exploited in our formulas in the following way:
The point density  is replaced by a fractal point density

, which is determined according to the adapted volume:

. (13)

The same adaptation is required for the estimation of the
nearest neighbor distance:

. (14)

The formulas for the cell size and the Minkowski sum
are basically unaffected by correlation effects. However, as

1. In order to adapt the cost model to k-nearest neighbor queries, one sim-
ply has to determine the volume in which an expected number of k
points is located. To keep the formulas simple, we omitted this step in
the presentation of the cost model.
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Figure 4: Estimating access probabilities by using the con-

cept of the Minkowski sum
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we assume the query distribution to follow the distribution
of the data points, the Minkowski sum doesn’t any longer
directly correspond to the access probability of the exact
point data. Rather, the access probability is determined by
the fraction of all query points located in the Minkowski en-
largement. It is determined by the following formula:

(15)

The cost for loading the second level directory comprises
the probability with which a whole data page is accessed,
together with the estimate of the reading cost incurred by
our optimized nearest neighbor algorithm.

Estimating cost for the second-level directory
There are numerous cost models published for determining
an expectation of the number of page accesses [1, 3, 9, 10,
17]. We only present a short description of the particulari-
ties in our situation. Further details of the applied cost mod-
el are presented in [8]. Our cost estimate for the second lev-
el directory T2nd takes also correlation effects into account.
We are given a number n of data pages and a number N of
points and we have to determine the number k of pages to
be read at least. The cost incurred by optimized reading is
determined later. The volume of a page region is estimated
such that it contains an expectation of  points:

. (16)

Likewise, the volume of the nearest neighbor sphere is to
contain an expectation of one point:

. (17)

The Minkowski sum of the nearest neighbor sphere and the
MBR is multiplied with n to estimate k:

(18)

The Minkowski sum is computed as described above. If
, the Minkowski sum must be adapted to take

boundary effects into account. The details are provided in
[8].

Now we know that we have to read k out of n pages in
the approximation level and thus, we have to develop a cost
estimate for optimized reading of these pages. We know the
cost for a random seek operation tSeek and for the transfer of
pages tX-fer and determine probabilities for the distances be-
tween two pages to be loaded depending on n and k. For this
purpose, assume that the k pages are uniformly distributed
over the file.

The probability that the distance between two pages to
load is greater or equal to some parameter a is given by

. (19)

From this, the probability with which the distance is equal
to a, can be derived:

(20)

As the maximum number of pages which can be over-read
corresponds to the quotient , we assume that
for every distance greater than the quotient a seek is per-
formed (causing the cost ), whereas for every
smaller distance a continuous read is performed causing the
cost .Taken together, the cost formula is:

(21)

Estimating cost for the first-level directory
The cost for loading the first level directory is linear in the
number of data pages, as every data page has exactly one
entry in the first level directory comprising mbr, and the ad-
dress of the second level page.

(22)

Properties of the cost functions
The estimated cost for query processing is

(23)

We are interested in the monotonicity of the cost compo-
nents when changing the resolution g. We will show analyt-
ically that the refinement cost T3rd is monotonically de-
creasing and that the derivative of T3rd is monotonically
increasing. For example, proceeding from 1 bit to 2 bits al-
ways improves the refinement cost, and the improvement is
stronger than the improvement when going from 2 bits to 4
bits.

We present here the analysis under the simplifying as-
sumption that splits decrease all side lengths of the MBR by
the same factor. (A similar analysis is also possible for the
case that some side lengths are affected more than others,
but is not presented here due to space limitations). Under
this assumption, equation (15) can be rewritten to

(24)

with suitable parameters ci which are all positive. This can
be rewritten into a sum with suitable parameters  which
are also positive:

(25)

If we differentiate the refinement probability according to
the chain rule, and the product rule, we obtain the following
result:

(26)
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As all si are obviously negative, the derivative as such is
negative, and the refinement probability is monotonically
decreasing. If we apply again chain rule and product rule to
build a second derivative , all sum-
mands are again turned into positives. Therefore, the second
derivative of Prefinement is positive and its first derivative is
monotonically increasing.

The cost for the scan of the first-level directory is obvi-
ously linear in the number of data pages. For the cost of op-
timized processing of the second-level directory, we cannot
state anything about the behavior because sometimes split-
ting is beneficial to query processing, sometimes not.

3.5. Optimal quantization
In the previous section, we developed the cost formulas for
access cost on the three directory levels which are now used
for optimization. We showed that these cost functions fulfil
monotonicity properties facilitating a local optimization.

We are given an initial set of P partitions , ,
such that each partition could be stored using a 1-bit repre-
sentation. Now, each partition could either be split into two
sub-partitions or could be stored using the 1-bit representa-
tion. If we decide to split, we can store each sub-partition
with a 2-bit representation or we can choose to split either
(or both) sub-partitions further. This process recursively
continues until we reach the 32-bit representation i.e., the
exact representation. If one records the whole process, one
gets a binary tree, the split-tree, rooted at the initial parti-
tions. Figure 5 depicts this scenario. A solution to the parti-
tioning problem is defined as follows:
Definition 1. (Solution)

A solution to the partitioning problem is a set S of parti-
tions such that for all leaves x in all split trees there exists
exactly one node  such that the path from x to the root
node of x contains s. 

In other words, if we want to have a valid solution and
we decide to split a partition, then both of the sub-partitions
must be quantized and stored on disk, or further split. The
optimal solution is the solution that picks nodes such that
estimated query cost is minimized. More formally:
Definition 2. (Optimal Solution)

A solution O is defined to be optimal, if the total query
cost as predicted by our cost model are minimal among all
solutions:

.

The choice of stopping
point along one path from
the root is not indepen-
dent of choices made
along other paths. There-
fore it appears at first as if
we have no choice but to
test all the potential solu-
tions. As there are
458,330 potential solu-
tions how to quantize a
single initial partition, we

get the very large number of 458,330P potential solutions to
test. Obviously, this naive algorithm is not feasible.

However, taking more knowledge about the specific cost
model into account, we can do better: Some part of the cost
(or cost savings) implied by a split is independent from
which particular partition is split. Separating this out, the to-
tal cost/benefit of a split can be considered the sum of

• constant cost (equal for each partition)
• variable cost (varying for each partition)

Which properties of these cost benefits/disadvantages do
we know? As in the constant part of the cost, a complex cost
model is involved, we cannot assume any properties. How-
ever, we know that the variable cost for the refinement step
decreases monotonically if we split, and that this decrease
itself decreases. In other words, the first split of a partition
bears more cost savings than the following split which in
turn has a higher cost savings than its succeeding split. This
allows us to construct an algorithm that in any step simply
splits the one partition that has the largest cost benefit with
respect to variable cost. As all partitions share the same con-
stant cost disadvantage, it is guaranteed that no other parti-
tion will lead to the global optimum. In the following, we
will present the details of our algorithm and prove that it is
optimal. 

Our optimization algorithm starts from a set of initial
partitions provided by the construction algorithm. Then, us-
ing the cost model, we order these partitions according to
their cost benefit (variable cost) and store them in a sorted
list. We can do so because all partitions share the constant
cost and vary only in the variable cost. We split the partition
and get two sub-partitions that we insert at the appropriate
place in the list. We pick again the top element of the list and
split it, and so on. Unfortunately, we are not allowed to stop
the process if the variable cost benefit induced by a split op-
eration is less than the constant cost disadvantage. This is
due to the fact that we do not know the behavior of the con-
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stant cost. It actually might be the case that for a split there
is less variable benefit than constant gain, however, if we
further split, this ratio flips. In other words, there may exist
several local optima that differ from the global optimum.
Therefore, we have to continue splitting until we reach the
32-bit representation. In each step of the algorithm we
record the expected total query cost according to our cost
model. Finally, we simply pick the optimum solution and
undo all useless split operations. This algorithm reduces the
computational cost from 458,330P test-and-partition opera-
tions to  operations, which is exactly the cost to build
a regular hierarchical index. More formally, we get the fol-
lowing algorithm:
optimal_partitioning(InitialSetOfPartitions SP) {

ListOfPartitions LP, opt_LP;
Partition p, p1, p2;
float total_cost, minimal_cost;
LP := SP.sort_according_to_variable_cost_benefit();
minimal_cost := ∞;
while (!LP.empty()) {

// select the partition p having maximal cost benefit
p = LP.get_top_element();
// check if p fits into a page using 32-bit representat.
if (p.fits(32))

p = p.set_cost_benefit(-∞);
else 

LP = LP.remove(p);
p.split(&p1, &p2);
p1.determine_benefits();
LP.insert_and_resort(p1);
p2.determine_benefits();
LP.insert_and_resort(p2);
total_cost = LP.total_cost();
if (total_cost < minimal_cost) {

opt_LP := LP
minimal_cost := total_cost

}
}
// undo all splits until the state recorded in opt_LP
...

}

3.6. Proof of optimality
As we already mentioned, our algorithm leads to an optimal
solution of the partitioning problem according to
Definition 1 and 21. We will prove this fact in the rest of the
section. This will be done in two steps: We first show that
among all solutions to the problem resulting in l partitions,
our solution bears minimal cost. Then, we show that our al-
gorithm is optimal.

Lemma 1. In order to determine which of two solutions s1
and s2 both comprising l  partitions bears
less cost it is sufficient to compare the variable cost of s1
and s2.
Proof. The constant cost only depend on the number of par-
titions of a solution. As s1 and s2 share the same constant
cost, we only have to consider the variable cost to determine
which of the solutions bears less cost. q.e.d.

Lemma 2. Among all solutions resulting in exactly l
 partitions, our proposed solution leads

to minimal cost.
Proof. Let O be the solution computed by our algorithm.
Assume there exists a solution S which is different of O and
leads to less cost. According to Lemma 1 this means that S
has a higher variable cost benefit than O. According to the
properties of the variable cost, nodes that are higher in the
split tree have a higher cost benefit than their subnodes. In
other words, the first split of a partition bears more cost sav-
ings than the next which in turn bears more cost savings
than its successor. Therefore, if the split of a partition bears
a cost benefit of b, no subpartition can have a benefit greater
than b. As in any step of our algorithm, we split the partition
that has maximal cost benefit, and as no sub-partition can
have a higher cost benefit than its parent, we are guaranteed
to pick in each step the set of nodes that has a maximal total
cost benefit. Thus, there cannot exist a partition that is not
in our solution but has a higher cost benefit than any parti-
tion included in our solution. Therefore, a different solution
S can only have less cost benefit. Thus, our solution is opti-
mal. q.e.d.
Theorem 1. The solution of our algorithm is optimal. 
Proof. As we test all values of l, , and for
each value, we generate the optimal solution having l parti-
tions, we are guaranteed to pick the optimal solution. q.e.d.

An index structure must allow dynamic updates, and the
IQ-tree is no exception. The actual insert and delete algo-
rithms are standard, and not described here. The one new
twist is that we may need to do some additional work to con-
tinue to maintain optimality of our representation. For in-
stance, when an update modifies the variable cost for a
page, it may turn out to be preferable to undo the split for
this page, and to split a different page instead. Similarly,
when an insert causes a data page overflow, we have to de-
cide whether to split the page or to quantize it at coarser
granularity. The technique is conceptually simple, though
some careful book-keeping is required. Details are omitted
here for lack of space. 

4. Experimental evaluation
In this section, we present an extensive experimental evalu-
ation of the IQ-tree using data sets which are typical for a
broad range of applications:

• uniform data of varying dimensionality (UNIFORM)
• 16-dimensional data from a CAD application. Each 

point represents the Fourier coefficients of the curva-
ture of a CAD object (CAD)

• 16-dimensional data containing color histograms of a 
set of pixel images (COLOR)

• 9-dimensional data describing the weather on a num-
ber of stations distributed around the world 
(WEATHER)

For each experiment we separated from database a set of
query points, thus not contained in the database, but follow-
ing the distribution of the respective data set. Then, the per-
formance of each technique was measured by the average
total time (in seconds) over all these query points for a near-
est neighbor search. The experiments were performed on
HP 9000/780 workstations running HP-UX 10.20. 

1. We only claim that our algorithm finds an optimal solution with respect
to a given cost model and a given split algorithm.
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4.1. Impact of the particular concepts
In the first set of experiments, we used uniform data of
varying dimensionality to demonstrate the impact of the dif-
ferent concepts introduced for the IQ-tree. For that purpose,
we also implemented reduced versions of the IQ-tree: one
without quantization, one without optimized page access
strategy, and a version implementing none of these con-
cepts. 

The results are depicted in figure 7. As expected, quanti-
zation of the data points pays off only for dimensions larger
than 8 whereas our optimized page access strategy for a
nearest neighbor search improves the performance for all
dimensions, with the performance gain increasing with
growing dimension. For high-dimensional data however,
we can roughly say that each of the concepts, i.e. quantiza-
tion and optimized nearest neighbor search, contribute
equally to the performance of the IQ-tree. 

4.2. Performance comparison
For comparison we use two well known techniques for
nearest neighbor search in high-dimensional spaces: the
VA-file [20] as the best known compression technique and
the X-tree [6] as the best known index structure for that pur-
pose. For the VA-file a number of bits per dimension must
be specified to determine the compression rate. Therefore,
we first tested the VA-file with different numbers of bits per
dimension (between 2 and 8) and then selected the compres-
sion rate for which the VA-file performed best. We also im-
plemented the sequential scan as a reference technique. 

First, we applied the VA-file, the X-tree and the sequen-
tial scan to the UNIFORM data set used in section 4.1 to see
how they perform with increasing dimension of the data
space, compared to the IQ-tree. Figure 8 depicts the results.

For dimensions smaller than 8 the performance of the X-
tree and the IQ-tree is nearly indistinguishable. In such data
sets both trees outperform the VA-file and the sequential
scan. With increasing dimension, however, the performance
of the X-tree degenerates and becomes even worse than the
performance of the sequential scan for dimensions larger
than 12. This effect does not occur for the IQ-tree and the
VA-file. They both perform well for high-dimensional data
due to their data compression technique. In this setting, the
IQ-tree performs up to 26 times faster than the X-tree and
up to 3 times faster than the VA-file.

As expected, the performance of the IQ-tree is close to
the performance of the X-tree for lower dimensions and
shows a rather constant improvement of the performance of
the VA-file when increasing the dimension of the data
space. Note that the runtime for the IQ-tree is about 3 times
faster than the runtime of the VA-file even for 16-dimen-
sional uniformly distributed data points. This is due to the
fact that the IQ-tree does not only utilize quantization, but
additionally has a tree structure from which it can benefit
even if the selectivity of the tree decreases. 

To verify this fact we conducted another set of experi-
ments using our 16-dimensional UNIFORM data set, now
varying the number of objects in the database. Figure 9
shows the results. 

As before, the IQ-tree and the VA-file beat the X-tree
and the sequential scan by at least an order of magnitude.
The IQ-tree runs faster than the VA-file for this data set by
a factor of 1.6 up to 3, and this factor increases when in-
creasing the number of objects in the database. This can be
explained by the fact that even in this setting of 16-dimen-
sional uniformly distributed data points, the IQ-tree has at
least some selectivity with respect to the queries. Therefore
the cost for a nearest neighbor search increases slower for
the IQ-tree than for the VA-file. 

The above experiments on uniformly distributed data
sets confirm the claimed properties of the IQ-tree in a set-
ting which is well understood but which may be of limited
practical impact. Therefore, we performed similar experi-
ments using our real world data sets, CAD, COLOR and
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WEATHER described above. In all experiments we varied
the number of objects and not the dimension, since the di-
mension of a real world data set is fixed. 

The results for the CAD data set are depicted in
figure 10. In this data set the points are moderately clus-
tered, and as a consequence, the X-tree performs well on
this data set. It runs up to 2 times faster than the VA-file al-
though the dimension of the data set is high. The IQ-tree, on
the other hand, even beats the X-tree. The IQ-tree runs up to
3 times faster than the X-tree and up to 5 times faster than
the VA-file. The runtime of the sequential scan is out of
question. 

Figure 11 shows the results for the COLOR data set
which is only very slightly clustered. Again, the IQ-tree per-
forms best compared to the other techniques: up to 2.6 times
faster than the VA-file and up to 6.6 times faster than the X-
tree. It is also worth noting that, although the dimension of
the data is high and the data set is only slightly clustered, the
X-tree performs better than the sequential scan. 

In the last set of experiments, the WEATHER data set
was used. This data set is highly clustered and also has a
rather low fractal dimension. As we can see in figure 12 the
results for this data set clearly show the benefits of a hierar-
chical indexing scheme. The performance of the X-tree and
the IQ-tree are nearly the same for this data set. Both index-
ing techniques outperform the VA-file up to a factor of 11.5
which again increases when increasing the number of points
in the database.

To summarize, the IQ-tree outperforms all competing
techniques because it combines the “best of both worlds (in-
dexes and compression techniques)”, i.e. it benefits from a
tree structure and also implements a local quantization tech-
nique which is applied to the data pages of the tree. 

Note again, that for each data set we manually deter-
mined the optimal number of bits per dimension for the VA-
file. That means the performance of the VA-file could be
even worse than depicted if a non-optimal number of bits is
selected. A main advantage of our technique, in contrast, is
that it automatically adapts the compression rate to the char-
acteristics of the respective data set.

5. Related work
In the recent literature, a variety of index structures suitable
for high-dimensional data spaces have been proposed. Most
of the work extended existing index structures that have
been proposed for geographic applications such as the R-
tree [11] or the K-D-B-tree [18]. 

Lin, Jagadish and Faloutsos presented the TV-tree [16]
which is an R-tree-like index structure. The central concept
of the TV-tree is the telescope vector (TV). Telescope vec-
tors divide attributes into three classes: attributes which are
common to all data items in a subtree, attributes which are
ignored and attributes which are used for branching in the
directory. The major drawback of the TV tree is that infor-
mation about the behavior of single attributes, e.g. their se-
lectivity, is required.

Another R-tree-like high-dimensional index structure is
the SS-tree [21] which uses spheres instead of bounding
boxes in the directory. Although the SS-tree clearly outper-
forms the R*-tree, spheres tend to overlap in high-dimen-
sional spaces. 

The SR-tree, a variant of the SS-tree has been proposed
by Katayama and Satoh in [15]. The basic idea of the SR-
tree is to use both hyperrectangles and hyperspheres as an
approximation in the directory. Thus, a page region is de-
scribed by the intersection of both objects. 

In [14], Jain and White introduced the VAM-Split R-tree
and the VAM-Split KD-tree. VAM-Split trees are rather
similar to KD-trees, however in contrast to KD-trees, split
dimensions are not chosen in a round robin fashion but de-
pending on the maximum variance. VAM Split trees are
built in main memory and then stored to secondary storage.

Figure 10: Experiment on CAD
(16 dimensions, varying the number of points)
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Figure 11: Experiment on COLOR
(16 dimensions, varying the number of points)
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Figure 12: Experiment on WEATHER
(9 dimensions, varying the number of points)
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Therefore, the size of a VAM-Split tree is limited by the
available main memory.

In [6], the X-tree has been proposed which is an index
structure adapting the algorithms of R*-trees to high-di-
mensional data using two techniques: First, the X-tree intro-
duces an overlap-free split algorithm which is based on the
split history of the tree. Second, if the overlap-free split al-
gorithm would lead to an unbalanced directory, the X-tree
omits the split and the according directory node becomes a
so-called supernode. Supernodes are directory nodes which
are enlarged by a multiple of the block size.

A further approach, the pyramid technique [5], is based
on a one-dimensional transformation by partitioning the
data space into pyramids, meeting at the center of the data
space. This method accelerates hypercube range queries,
and is, under some conditions, not subject to the ‘dimen-
sionality curse’.

Most recently, the VA-file [20] was developed, an index
structure that actually is not an index structure. The authors
prove in the paper that under certain assumptions, above a
certain dimensionality no index structure can process a
nearest neighbor query efficiently. Thus, they suggest to
speed-up the sequential scan rather than trying to fight a war
that they say is already lost. The basic idea of the VA-file is
to keep two files: a bit-compressed (quantized) version of
the points and the exact representation of the points. Both
files are unsorted, however, the ordering of the points in the
two files is identical. Query processing is equivalent to a se-
quential scan of the compressed file with some look-ups to
the second file whenever this is necessary. In particular a
look-up occurs, if a point cannot be pruned from the nearest
neighbor search only based on the compressed representa-
tion. 

6. Conclusions

In this paper, we presented the IQ-tree, a new index com-
pression technique for high-dimensional data spaces. The
IQ-tree makes use of data compression techniques and in-
volves these techniques in a regular multi-dimensional in-
dex structure. The technical challenge is to determine an op-
timal compression rate for each page. We proposed an
algorithm that computes such an optimal quantization and
we proved the optimality of our algorithm. Furthermore, we
presented a new page scheduling strategy for nearest neigh-
bor algorithms that, based in a new cost model, can avoid
many random seeks. 

To demonstrate the practical impact of our technique and
also to empirically show the superiority of the IQ-tree, we
ran a variety of experiments on various synthetic and real
data sets. Our experiments show a large performance gain
compared to the X-tree and the VA-file as representatives of
both approaches we unified in the IQ-tree. This holds for
any configuration we investigated. The maximum speed-up
observed in our experiments was 26 compared to the X-tree
and 11.5 compared to the VA-file. Thus, the IQ-tree com-
bines the advantages of hierarchical search and a fast linear
search. It automatically adapts to both situations, showing a
better overall behavior than competing structures for low-,
medium, and high-dimensional data spaces. 
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