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Abstract

Relational learning analyzes the probabilis-
tic constraints between the attributes of en-
tities and relationships. We extend the ex-
pressiveness of relational models by introduc-
ing for each entity (or object) an infinite-
dimensional latent variable as part of a
Dirichlet process (DP) mixture model. We
discuss inference in the model, which is based
on a DP Gibbs sampler, i.e., the Chinese
restaurant process. We extended the Chi-
nese restaurant process to be applicable to
relational modeling. We discuss how infor-
mation is propagated in the network of la-
tent variables, reducing the necessity for ex-
tensive structural learning. In the context of
a recommendation engine our approach re-
alizes a principled solution for recommenda-
tions based on features of items, features of
users and relational information. Our ap-
proach is evaluated in three applications: a
recommendation system based on the Movie-
Lens data set, the prediction of gene func-
tion using relational information and a med-
ical recommendation system.

1 Introduction

Relational learning (Dzeroski & Lavrac, 2001; Raedt &
Kersting, 2003; Wrobel, 2001; Friedman et al., 1999) is
an object oriented approach that clearly distinguishes
between entities (e.g, objects), relationships and their
respective attributes and represents an area of growing
interest in machine learning. A simple example of a
relational system is a recommendation system: based
on the attributes of two entities, i.e. of the user and
the item, one wants to predict relational attributes like
the preference (rating, willingness to purchase, ...) of
this user for this item. In many circumstances, the

attributes of the entities are rather weak predictors
in which case one can exploit the known relationship
attributes to predict unknown entity or relationship
attributes (Yu et al., 2004). In recommendation sys-
tems, the latter situation is often referred to as col-
laborative filtering. Although the unique identifier of
an entity to which a relationship exists might often be
used as a feature, it has the disadvantage that it does
not permit the generalization to new entities. From
this point of view it is more advantageous to intro-
duce a latent variable representing unknown attributes
of the entities, which is the approach pursued in this
paper. Attributes of entities are now children of the
corresponding entity latent variable and attributes of
relationships are children of the latent variables of the
entities participating in the relationship. By introduc-
ing the latent variables the ground network forms a re-
lational network of latent variables. Thus, our hidden
relational model can be viewed on as a direct gener-
alization of hidden Markov models used in speech or
hidden Markov random fields used in vision (such mod-
els are discussed, for example, in Yedidia et al. 2005).
As in those models, information can propagate across
the network of latent variables in the hidden relational
model, which reduces the need to extensive structural
model selection. Structural model selection is a major
problem in relational learning due to the exponentially
many features an attribute might depend on. Thus in-
formation about my grandfather can propagate to me
via the latent variable of my father.

Since each entity class might have a different number
of states in its latent variables, it is natural to allow the
model to determine the appropriate number of latent
states in a self-organized way. This is possible by em-
bedding the model in Dirichlet process (DP) mixture
models, which can be interpreted as a mixture models
with an infinite number of mixture components but
where the model, based on the data, automatically re-
duces the complexity to an appropriate finite number
of components. The DP mixture model also allows
us to view our infinite hidden relational model as a
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generalization of nonparametric hierarchical Bayesian
modeling to relational models (compare also, Xu et
al., 2005). The combination of the hidden relational
model and the DP mixture model is the infinite hidden
relational model.

After presenting related work we will briefly introduce
our preferred framework for describing relational mod-
els, i.e., the directed acyclic probabilistic entity rela-
tionship (DAPER) model. In Section 4 we will de-
scribe infinite hidden relational models and in Sec-
tion 5 we introduce a modified Chinese restaurant
sampling process to accommodate for the relational
structure. In the subsequent sections we describe ex-
perimental results applying infinite hidden relational
models to encode movie preference for users, to pre-
dict the functional class of a gene, and on a medical
example, modeling the relationship between patients,
diagnosis and procedures. In Section 9 we will present
conclusions.

2 Related Work

Our approach can be related to some existing work.
(Getoor et al., 2000) refined probabilistic relational
models with class hierarchies, which specialized dis-
tinct probabilistic dependency for each subclass.
(Rosen-Zvi et al., 2004) introduced an author-topic
model for documents. The model implicitly explored
the two relationships between documents and authors
and document and words. (Kemp et al., 2004) showed
a relational model with latent classes. (Carbonetto et
al., 2005) introduced the nonparametric BLOG model,
which specifies nonparametric probabilistic distribu-
tions over possible worlds defined by first-order logic.
These models demonstrated good performance in cer-
tain applications. However, most are restricted to do-
mains with simple relations. The proposed model goes
beyond that by considering multiple related entities.
In addition, the nonparametric nature allows the com-
plexity of the model to be tuned by the model based
on the available data set.

3 The DAPER Model

The DAPER model (Heckerman et al., 2004) formu-
lates a probabilistic framework for an entity relation-
ship database model. The DAPER model consists
of entity classes, relationship classes, attribute classes
and arc classes, as well as local distribution classes
and constraint classes. Figure 1 shows an example of
a DAPER model for a universe of students, courses
and grades. The entity classes specify classes of ob-
jects in the real world, e.g. Student and Course shown
as rectangles in Figure 1. The relationship class repre-

Figure 1: An example of DAPER model over univer-
sity domain from Heckerman et al. (2004).

sents interaction among entity classes. It is shown as a
diamond-shaped node with dashed lines linked to the
related entity classes. For example, the relationship,
Take(s, c) indicates that a student s takes a class c.
Attribute classes describe properties of entities or rela-
tionships. Attribute classes are connected to the cor-
responding entity/relationship class by a dashed line.
For example, associated with courses is the attribute
class Course.Difficulty. The attribute class θ in Fig-
ure 1 represents the parameters specifying the proba-
bility of student’s grade in different configurations (i.e.
course’s difficulty and student’s IQ). The arc classes
shown as solid arrows from “parent” to “child” repre-
sent probabilistic dependencies among corresponding
attributes. For example, the solid arrow from Stu-
dent.IQ to Course.Grade specifies the fact that stu-
dent’s grade probabilistically depends on student’s IQ.
For more details please refer to (Heckerman et al.,
2004). A relationship attribute might have the spe-
cial attribute Exist with Exist= 0 indicating that the
relationship does not exist (Getoor et al., 2003). Given
particular instantiations of entities and relationships a
ground Bayesian network can be formed which consists
of all attributes in the domain linked by the resulting
arc classes.

4 Infinite Hidden Relational Models

4.1 Hidden Relational Models

Figure 2: Infinite hidden relational Model on movie
recommendation.

An example of an hidden relational model is shown
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in Figure 2. The example shows a movie recom-
mendation system with entity classes User and Movie
and relationship class Like. Furthermore, there are
the attributes UserAttributes, MovieAttributes and R
(rating) and various parameters and hyperparameters.
The first innovation in our approach is to introduce for
each entity a latent variable, in the example denoted
as Zu and Zm. They can be thought of as unknown at-
tributes of the entities and are the parents of both the
entity attributes and the relationship attributes. The
underlying assumption is that if the latent variable
was known, both entity attributes and relationship at-
tributes can be well predicted. The most important re-
sult from introducing the latent variables is that now
information can propagate through the ground net-
work of interconnected latent variables. Let us con-
sider the prediction of the relationship attribute R. If
both the associated user and movie have strong known
attributes, those will determine the state of the la-
tent variables and the prediction for R is mostly based
on the entity attributes. In terms of a recommender
system we would obtain a content-based recommen-
dation system. Conversely, if the known attributes
are weak, then the states of the latent variables for
the user might be determined by the relationship at-
tributes in relations to other movies and the states of
those movies’ latent variables. With the same argu-
ment, the states of the latent variables for the movie
might be determined by the relationship attributes in
relations to other users and the states of those users’
latent variables. So by introducing the latent variables,
information can globally distribute in the ground net-
work defined by the relationship structure. This re-
duces the need for extensive structural learning, which
is particularly difficult in relational models due to the
huge number of potential parents. Note that a simi-
lar propagation of information can be observed in hid-
den Markov models in speech systems or in the hidden
Markov random fields used in image analysis (Yedidia
et a., 2005). In fact the hidden relational model can
be viewed as a generalization of both for relational
structures.

We now complete the model by introducing the param-
eters. First we consider the user parameters. Assume
that Zu has ru states and that πu = (πu

1 , . . . , πu
ru)

are multinomial parameters with P (Zu = i) = πu
i

(πu
i ≥ 0,

∑
i πu

i = 1). The multinomial parame-
ters are drawn from a Dirichlet prior with πu ∼
Dir(·|αu

0/ru, . . . , αu
0/ru).

In the experiments all user attributes are assumed to
be discrete and independent given Zu. Thus, a partic-
ular user attribute Au with r states is a sample from
a multinomial distribution with P (Au = i) = φi and

(φ1, . . . , φr) ∼ Gu
0 = Dir(·|β∗

1 , . . . , β∗
r ).

It is also convenient to re-parameterize

β0 =

r∑
k=1

β∗
k βk =

β∗
k

β0
k = 1, . . . , r

and β = {β1, . . . , βr}. In the application, we assume
a neutral prior with βk = 1/r, which represents our
prior belief in the fact that the multinomial parame-
ters should be equal. β0 is a parameter indicating how
strongly we believe that the prior distribution repre-
sented by β should be true. We finely tune β0 using a
cross validation procedure.

The parameters for the entity class Movie and the re-
lationship class Like are defined in an equivalent way.
Note, that for the relationship attribute R, ru × rm

parameter vectors γ are generated.

4.2 Infinite Hidden Relational Models

The latent variables play a key role in our model and
in many applications, we would expect that the model
might require a large number of states for the latent
variables. Consider again the movie recommendation
system. With little information about past ratings all
users might look the same (movies are globally liked or
disliked), with more information available, one might
discover certain clusters in the users (action movie afi-
cionados, comedy aficionados, ...) but with an increas-
ing number of past ratings the clusters might show in-
creasingly detailed structure ultimately indicating that
everyone is an individual. It thus makes sense to per-
mit an arbitrary number of latent states by using a
Dirichlet process mixture model. This permits the
model to decide itself about the optimal number of
states for the latent variables. In addition, the infinite
hidden relational model can now also be viewed as a
direct generalization of a nonparametric hierarchical
Bayesian approach. For an introduction to Dirichlet
processes see for example Teh et al. (2004) and Tresp
(2006) . For our discussion is suffices to say that we ob-
tain an infinite hidden relational model by simply let-
ting the number of states approach infinity, ru → ∞,
rm → ∞. Although a model with infinite numbers of
states and parameters cannot be represented, it turns
out that sampling in such model is elegant and simple,
as shown in the next section.

In the Dirichlet mixture model, α0 determines the ten-
dency of the model to either use a large number or a
small number of states in the latent variables, which is
also apparent from the sampling procedures described
below. In our experiments, we found that α0 is rather
uncritical and was fixed for all models to be equal to
ten.
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5 Sampling in the Infinite Hidden
Relational Model

Although a Dirichlet process mixture model contains
an infinite number of parameters and states, the sam-
pling procedure only deals with a growing but finite
representation. This sampling procedure is based on
the Chinese restaurant process (CRP) where a state
of a latent variable is identified as a cluster, i.e., a
table in a restaurant. We will now describe how the
CRP is applied to the infinite hidden relational model.
The procedure differs from the standard model by the
sampling of the relational attribute where two CRP
processes are coupled. We omit the description of the
sampling of the attributes which is straightforward,
given parameter samples.

• The first user is assigned to the user cluster 1, Zu
1 = 1;

an associated parameter is generated φ1 ∼ Gu
0 . Sim-

ilarly, the first movie is assigned to the movie clus-
ter 1, Zm

1 = 1; an associated parameter is generated
θ1 ∼ Gm

0 .

• The parameter γ1,1 ∼ GR
0 is drawn for the attributes

of the relation R between the first user cluster and the
first movie cluster.

• With probability 1/(1 + αu
0 ), the second user is also

assigned at the user cluster 1, Zu
2 = 1, and inherits

φ1 and γ1,1; with probability αu
0/(1 + αu

0 ) the user is
assigned at cluster 2, Zu

2 = 2, and new parameters are
generated φ2 ∼ Gu

0 and γ2,1 ∼ GR
0 .

• Equivalently, the second movie is generated. With
probability 1/(1+αm

0 ), the second movie is assigned at
the movie cluster 1, Zm

2 = 1, and inherits θ1 and γ1,1;
with probability αm

0 /(1+αm
0 ) the movie is assigned at

cluster 2, Zm
2 = 2, and new parameters are generated

θ2 ∼ Gm
0 , γ1,2 ∼ GR

0 and γ2,2 ∼ GR
0 (if the second

user cluster has appeared so far).

• We continue this process, after Nu users and Nm

movies have been generated, Ku user clusters and Km

movie clusters appear, Nu
i users are assigned to the

user cluster i, Nm
j movies are assigned to the movie

cluster j.

• New user:

– The user Nu + 1 is assigned with probability
Nu

i
Nu+αu

0
to a previously existing cluster i and

inherits φi and {γi,l}K
m

l=1 . Thus: Zu
Nu+1 = i,

Nu
i ← Nu

i + 1;

– With probability
αu

0
Nu+αu

0
the user is assigned to

a new cluster Ku + 1. Thus: Zu
Nu+1 = Ku + 1,

Nu
Ku+1 = 1.

– For the new user cluster, new parameters are
generated: φKu+1 ∼ Gu

0 and γKu+1,l ∼ GR
0 ,

l = 1 : Km. Ku ← Ku + 1.

• New movie:

– The generative process for the movie Nm + 1 is
equivalent.

– The movie Nm + 1 is assigned with probability
Nm

j

Nm+αm
0

to a previously existing cluster j and

inherits θj and {γl,j}K
u

l=1. Thus: Zm
Nm+1 = j,

Nm
j ← Nm

j + 1;

– With probability
αm

0
Nm+αm

0
the movie is assigned

to a new cluster Km +1. Thus: Zm
Nm+1 = Km +

1, Nm
Km+1 = 1.

– For the new movie cluster, new parameters are
generated: θKm+1 ∼ Gm

0 and γl,Km+1 ∼ GR
0 ,

l = 1 : Ku. Km ← Km + 1.

The previous procedure generates samples from the
generative model. Now we consider sampling from a
model given data, i.e. given a set of movie attributes,
user attributes and ratings. We assume that the model
has U users and M movies and that some instances of
Au, Am, R are known. The goal is now to generate
samples of the parameters φ, θ, γ, the latent variables
Zu and Zm, which allows us to then make predictions
about unknown attributes. We exploit Gibbs sampling
inference based on the Chinese restaurant procedure
as described in the Appendix. Note, that since the
attributes appear as children, unknown attributes can
be marginalized out and thus removed from the model,
greatly reducing the complexity. Although the DP
mixture model contains an infinite number of states,
in the Gibbs sampling procedure only a finite num-
ber of states is ever occupied, providing an estimate of
the true underlying number of clusters (Tresp, 2006).
Details on the Gibbs sampler can be found in the Ap-
pendix.

6 Experiment on MovieLens

We first evaluate our model on the MovieLens data
which contains movie ratings from a large number of
users (Sarwar et al. 2000). The task is to predict
whether a user likes a movie. There are two entity
classes (User and Movie) and one relationship class
(Like: users like movies). The User class has sev-
eral attribute classes such as Age, Gender, Occupa-
tion. The Movie class has attribute classes such as
Published-year, Genres and so on. The relationship
has an additional attribute R with two states: R = 1
indicates that the user likes the movie and R = 0 in-
dicates otherwise. The model is shown as Figure 2.
In the data set, there are totally 943 users and 1680
movies. In addition, user ratings on movies are orig-
inally recorded on a five-point scale, ranging from 1
to 5. We transfer the ratings to be binary, yes if a
rating higher than the average rating of the user, and
vice versa. Model performance is evaluated using pre-
diction accuracy. The experimental results are shown
in Table 1. First we did experiments ignoring the at-
tributes of the users and the items. We achieved an
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Table 1: The accuracy of predicting relationships be-
tween Users and Movies

Method Accuracy(%)
E1: Collaborative filtering 1 64.22
E2: Collaborative filtering 2 64.66
E3: Infinite hidden relational model
without attributes

69.97

E4: Infinite hidden relational model 70.3
E5: Content based SVM 54.85

accuracy of 69.97% (E3). This is significantly better
in comparison to approaches using one-sided collabo-
rative filtering by generalizing across users (E1) lead-
ing to an accuracy of 64.22% or by generalizing across
items (E2) leading to an accuracy of 64.66%. When
we added information about the attributes of the users
and the model, the prediction accuracy only improved
insignificantly to 70.3% (E4): the reason is that the
attributes are weak predictors of preferences as indi-
cated by the bad performance of the SVM prediction
(54.85% accuracy, E5) which is solely based on the
attributes of the users and the items.

7 Experiment on Medical Data

The second experiment is concerned with a medi-
cal domain. The proposed model is shown in Fig-
ure 3(a). The domain includes three entity classes
(Patient, Diagnosis and Procedure) and two relation-
ship classes (Make: physician is making a diagnosis
and Take:patient taking a procedure). A patient typi-
cally has both multiple procedures and multiple diag-
noses. The Patient class has several attribute classes
including Age, Gender, PrimaryComplaint. To reduce
the complexity of Figure 3(a), patient characteristics
are grouped together as PatientAttributes (these at-
tributes are not aggregated in learning and inference).
The DiagnosisAttributes contain the class of the diag-
nosis as specified in the ICD-9 code and the Procedure-
Attributes contain the class of the procedure as speci-
fied in the CPT4 code. Both the relationships between
the patients and the procedures and the relationships
between the patients and the diagnoses are modeled as
existence uncertainty. Rpa,pr = 1 means that the pa-
tient received the procedure and Rpa,pr = 0 indicates
otherwise. Equivalently, Rpa,dg = 1 means that the
patient received the diagnosis and Rpa,dg = 0 indicates
otherwise. In the data, there are totally 14062 pa-
tients, 703 diagnoses and 367 procedures. The infinite
hidden relational model contains three DPs, one for
each entity class. We compare our approach with two
models. The first one is a relational model using refer-
ence uncertainty (Getoor et al., 2003) without a latent
variable structure. The second comparison model is a

content based Bayesian network. In this model, only
the attributes of patients and procedures determine if
a procedure is prescribed.

We test model performances by predicting the appli-
cation of procedures. ROC curve is used as evaluation
criteria. In the experiment we selected the top N pro-
cedures recommended by the various models. Sensi-
tivity indicates how many percent of the actually be-
ing performed procedures were correctly proposed by
the model. (1-specificity) indicates how many of the
procedures that were not actually performed were rec-
ommended by the model. Along the curves, the N was
varied from left to right as N = 5, 10, . . . , 50.

In the experiment we predict a relation between a pa-
tient and a procedure given her first procedure. The
corresponding ROC curves (averaged over all patients)
for the experiments are shown in Figure 4. The infinite
hidden relational model (E3) exploiting all relational
information and all attributes gave best performance.
When we remove the attributes of the entities, the
performance degrades (E2). If, in addition, we only
consider the one-sided collaborative effect, the perfor-
mance is even worse (E1). (E5) is the pure content-
based approach using the Bayesian network. The re-
sults show that entity attributes are a reasonable pre-
dictor but that the performance of the full model can-
not be achieved. (E4) shows the results of relational
model using relational uncertainty, which gave good
results but did not achieve the performance of the in-
finite hidden relational model. Figures 5 shows the
corresponding plots for a selected class of patients; pa-
tients with prime complaint respiratory problem. The
results exhibit similar trends.

Figure 4: ROC curves for predicting procedures.

8 Experiment on Gene Data

The third evaluation is performed on the yeast genome
data set of KDD Cup 2001 (Cheng et al. 2002). The
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Figure 3: Infinite hidden relational model for (a) a medical database and (b) a gene database.

Figure 5: ROC curves for predicting procedures on
a subset of patients with prime complaint respiratory
problem.

goal is to evaluate the proposed algorithm to model the
dependencies between relationships instantiated from
various relationship classes. The genomes in several or-
ganisms have been sequenced. Genes code for proteins,
the proteins localize in various parts of the cells and
interact with one another to perform crucial functions.
Traditionally, the functions of genes/proteins are pre-
dicted by comparing with characterized genes/proteins
in sequence similarity. But only 52% of 6449 yeast
proteins have been characterized. Of the remaining,
only 4% show strong similarity with the known ones
at the sequence level. It is therefore necessary to inte-
grate other information to characterize genes/proteins.
The goal of our experiment is to predict functions of
genes based on the information not only at the gene-
level but also at the protein-level. The data set con-
sists of two relational tables that are produced from
the original seven relational tables. One table speci-

fies a variety of properties of genes or proteins. These
properties include chromosome, essential, phenotype,
motif, class, complex and function. Chromosome ex-
presses the chromosome on which the gene appears.
Essential specifies whether organisms with a muta-
tion in this gene can survive. Phenotype represents
the observed characteristics of organisms with differ-
ences in this gene. Class means the structural cate-
gory of the protein for which this gene codes. Motif
expresses the information about the amino acid se-
quence of the protein. The value of property complex
specifies how the expression of the gene can complex
with others to form a larger protein. The other table
contains the information about interactions between
genes. A gene typically has multiple complexes, phe-
notypes, classes, motifs and functions, respectively but
only one property essential and one property chromo-
some. An example gene is shown in Table 2. To keep
the multi-relational nature of the data, we restore the
original data structure. There are six entity classes
(Gene, Complex, Phenotype, Class, Motif and Func-
tion) and six relationship classes (Interact: genes in-
teract with each other, Have: genes have functions,
Observe: phenotype are observed for the genes, Form:
which kinds of complex is formed for the genes, Belong:
genes belong to structural classes, Contain: genes con-
tain characteristic motifs). Gene class has attribute
classes such as Essential, Chromosome, etc. The at-
tributes of other entity classes are not available in the
data set. A hidden attribute is added into each entity
class. All relationships are modeled as existence un-
certainty. Thus each relationship class has additional
attribute R with two states. The state of R indicates
whether the relationship exists or not. The task of
function prediction of genes is therefore transformed
to the relationship prediction between genes and func-
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Table 2: An example gene

Attribute Value
Gene ID G234070
Essential Non-Essential
Class 1, ATPases 2, Motorproteins
Complex Cytoskeleton
Phenotype Mating and sporulation defects
Motif PS00017
Chromosome 1
Function 1, Cell growth, cell division and DNA

synthesis 2, Cellular organization 3,
Cellular transport and transprotmech-
anisms

Localization Cytoskeleton

tions. The data set totally contains 1243 genes. A
subset (381 genes) is withheld for testing in the KDD
Cup 2001. The remaining 862 genes are provided to
participants. In the data, there are 56 complexes, 11
phenotypes, 351 motifs, 24 classes and 14 functions.
There are two main challenges in the gene data set.
First, there are many types of relationships. Second,
there are large numbers of objects, but only a small
number of known relationships.

The proposed model applied to the gene data is shown
in Figure 3(b). The existence of any relationship de-
pends on the hidden states of the corresponding enti-
ties. The information about a variety of relationships
of Gene is propagated via the hidden attribute of Gene.
The model is optimized using 862 genes, and is applied
on the testing data. The experiment results are shown
in Table 3. There were 41 groups that participated in
the KDD Cup 2001 contest. The algorithms include
naive Bayes, k-nearest neighbor, decision tree, neural
network, SVM, and Bayesian networks, etc. and tech-
nologies such as feature selection, boosting, cross val-
idation, etc., were employed. The performance of our
model is comparable to the best results. The winning
algorithm is a relational model based on inductive logic
programming. The infinite hidden relational model is
only slightly worse (probably not significantly) if com-
pared to the winning algorithm.

Table 3: Prediction of gene functions

Model Accuracy (%) True Positive
Rate (%)

Infinite model 93.18 72.8
Kdd cup winer 93.63 71.0

In the second set of experiments, we investigated the
influence of a variety of relationships on the prediction
of functions. We perform the experiments by ignoring
a specific kind of known relationships. The result is

shown in Table 4. When a specific type of known re-
lationship is ignored, lower accuracy indicates higher
importance of this type of relationship. One observa-
tion is that the most important relationship is Com-
plex, specifying how genes complex with another genes
to form larger proteins. The second one is the interac-
tion relationships between genes. This coincide with
the lesson learned from KDD Cup 2001 that protein
interaction information is less important in function
prediction. This lesson is somewhat surprising since
there is a general belief in biology that the knowledge
about regulatory pathways is helpful to determine the
functions of genes.

Table 4: The importance of a variety of relationships
in function prediction of genes

Ignored relationships Accuracy(%) Importance
Complex 91.13 197
Interaction 92.14 100
Class 92.61 55
Phenotype 92.71 45
Attributes of gene 93.08 10
Motif 93.12 6

9 Conclusions and Extensions

We have introduced the infinite hidden relational
model. The model showed encouraging results on a
number of data sets. We hope that infinite hidden re-
lational model will be a useful addition to relational
modeling by allowing for flexible inference in a rela-
tional network reducing the need for extensive struc-
tural model search. Implicitly, we have assumed a
particular sampling scheme, i.e., that entities are in-
dependently sampled out of unspecified populations.
In this context our model permits generalization but
it might fail if this assumption is not reasonable or if
the sampling procedure changes in the test set. We
have focussed on an explicit modeling of the relation
between pairs of entities but our model can easily be
generalized if more than two entities are involved in a
relation. As part of our future work we will explore and
compare different approximate inference algorithms.
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Appendix: Inference based on Gibbs Sampling

We assume that users are assigned to the first Ku states of
Zu and movies are assigned to the first Km states of Zm.
We can do this without loss of generality by exploiting
exchangeability. Note, that Ku ≤ U and Km ≤ M . If
during sampling a state becomes unoccupied that state is
removed from the model and indices are re-assigned. To
simplify the description of sampling we will assume that
this does not occur and that currently no state is occupied
by exactly one item (just to simplify book keeping).

Gibbs sampling updates the assignment of users and
movies to the states of the latent variable and re-samples
the parameters. In detail:

1. Pick a random user j. Assume that for Nu
k users,

Zu = k without counting user j.

(a) Then, we assign state Zu
j = k with Nu

k > 0 with
probability proportional to

P (Zu
j = k|{Zu

l }Ul6=j , D
u
j , φ, γ, Zm) ∝

Nu
k P (Du

j |φk, γk,∗, Z
m)

(b) Instead, a new state Ku + 1 is generated with
probability proportional to

P (Zu
j = Ku + 1|{Zu

l }Ul6=j , D
u
j , φ, γ, Zm) ∝

αu
0P (Du

j )

(c) In the first case, the j-th model inherits the pa-
rameters assigned to state k: φk, γk,1, . . . γk,Km

(d) In the latter case: new parameters are generated
following

P (φKu+1|Du
j )

and

P (γKu+1,l|Du
j , Zm), l = 1, . . . , M

2. Pick a random movie i. Updates the latent variables
of Zm

i . The sampling is equivalent to the sampling of
Zu, above.

3. Occasionally (typically less often than the updates for
the latent variables): Update the parameters, φ, θ, γ
from posterior distribution based on all the data as-
signed to the corresponding a state, resp. pairs of
states.

In the algorithm, we used the following definitions (terms
involving entity attributes or relationship attributes which
are not known drop out of the equations)

P (Du
j |φk, γ, Zm) = P (Au

j |φk)

M∏
l=1

P (Rj,l|γk,Zm
l

)

P (φ|Du
j ) ∝ P (Au

j |φ) Gu
0 (φ)

P (γ|Du
j ) ∝

M∏
l=1

P (Rj,l|γ) GR
0 (γ)

The algorithm easily generalizes to multiple relations as
described in Section 7 and Section 8. Au

j denotes all known
attributes of user j. Definitions for the movies are equiva-
lent.

The most expensive term in the algorithm is in step 1 (a)
which scales proportional to the number of known entity
and relational attributes of the involved entity and is pro-
portional to the number of occupied states.

We are currently exploring various sampling schemes and
deterministic approximations. An extensive comparison
will be available on the web shortly. The results reported
in this paper were obtained by using the deterministic ap-
proximation described in Tresp and Yu, 2004.
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