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1. Introduction

Relational learning is an area of growing interest in machine learning (Dzeroski & Lavrac, 2001; Friedman et al.,
1999; Raedt & Kersting, 2003). Xu et al. (2006) introduced the infinite hidden relational model (IHRM)
which views relational learning in context of the entity-relationship database model with entities, attributes and
relations (compare also (Kemp et al., 2006)). In the IHRM, for each entity a latent variable is introduced. The
latent variable is the only parent of the other entity attributes and is a parent of relationship attributes. The
number of states in each latent variable is entity class specific. Therefore it is sensible to work with Dirichlet
process (DP) mixture models in which each entity class can optimize its own representational complexity in a
self-organized way. For our discussion it is sufficient to say that we integrate a DP mixture model into the IHRM
by simply letting the number of hidden states for each entity class approach infinity. Thus, a natural outcome
of the IHRM is a clustering of the entities providing interesting insight into the structure of the domain.

Figure 1 left shows an IHRM of a movie recommendation system. In the system, there are entity classes User,
Movie and relationship class Like. In addition there are User Attributes, Movie Attributes and Relationship
Attributes R with various parameters and hyperparameters. In the IHRM, for each entity an infinite-dimensional
latent variable is introduced (Zu and Zm). They can be thought of as unknown attributes of users and movies,
and are the parents of user attributes, movie attributes and relationship attributes. The underlying assumption
is that if the latent variable was known, these attributes can be well predicted. The most important result of
introducing the latent variables is that information can propagate through the ground network (Figure 1 right)
of inter-connected latent variables. Let us consider the prediction of relationship attribute R for user i and movie
j. If both user i and movie j have strong known attributes Au

i and Am
j , these will determine the state of latent

variables Zu
i and Zm

j , and prediction for R is mostly based on Au
i and Am

j . In terms of a recommender system
we would obtain a content-based recommendation system. Conversely, if the known attributes Au

i are weak, the
states of Zu

i for user i might be determined by its relations with other movies and the states of those movies’
latent variables. This also applies for the movie j. Again in terms of a recommender system we would obtain a
collaborative-filtering system. So with the help of the latent variables, information can distribute globally in the
ground network defined by the relationship structure. This reduces the need for extensive structural learning,
which is particularly difficult in relational models due to the huge number of potential parents.

Figure 1. Left: an IHRM for movie recommendation system with the DAPER representation. Right: the ground network.

As in other approaches to relational learning, inference is executed in a large interconnected ground network.
Thus being able to perform efficient inference is critical for the success of the IHRM. The main contribution in
this paper is the analysis of four inference methods: blocked Gibbs sampler with truncated stick-breaking (TSB),
blocked GS with the Dirichlet-multinomial allocation (DMA) and the corresponding mean field solutions. These
methods are evaluated in two domains: movie recommendation system and prediction of gene functions.
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2. Inference based on Gibbs Sampling

Inference in (Xu et al., 2006) is based on the Chinese restaurant process (CRP), which is a collapsed version
of Pólya urn sampling. The sampler updates latent variables one at a time which potentially slows down the
method. Blocked sampling (Ishwaran & James, 2001) typically shows better mixing. Thus we extend the efficient
blocked sampler with truncated stick-breaking (TSB) or Dirichlet-Multinomial allocation (DMA) to the IHRM.

We now introduce some notations. Let the number of entity classes be C, and let Gc
0 and αc

0 denote the base
distribution and concentration parameter for entity class c. In an entity class c, there are N c entities ec

i indexed
by i, and Kc mixture components θc

k indexed by k. θc
k are the parameters of distributions of the entity attributes

Ac. The number of relationship classes is B and Gb
0 is the base distribution for a relationship attribute Rb. For

a relationship class b between two entity classes ci and cj , there are Kci × Kcj correlation mixture components
φb

k,` indexed by hidden states k for ci and ` for cj . φb
k,` are the parameters of distributions of relationship

attributes. Here we restrict ourselves that the entity and relationship attributes are drawn from exponential
family distributions. Gc

0 and Gb
0 are the conjugate priors with the hyperparameters βc and βb.

Gibbs Sampling with TSB In the method, the posterior distributions of parameters θc
k and φb

k,` are explicitly
sampled in the form of truncated stick breaking representation (TSB). The advantage is that given the posterior,
we can independently sample the latent variables in a block, which highly accelerates the computation. The
Markov chain is thus defined not only on the latent variables Zc

i , but also the parameters: πc, θc and φb. Note,
that there are additional parameters Kc in block GS, which specify the positions to truncate the DPs. In practice,
we set Kc as the number of entities of class c, Kc will be automatically reduced to a suitable value based on the
complexity of the data in the sampling process. Taking some initial values for Z, πc, θc and φb, the following
steps are repeated until convergence:

1. For each entity class c,

(a) Update hidden variable Zc
i for each entity i independently:

P (Zc
i = k|Dc

i , Z−i, π
c, θc, {φb′

}B′

b′=1) ∝ πc
kP (Ac

i |Zc
i = k, θc)

∏
b′

∏
j′

P (Rb′

i,j′ |Zc
i = k, Z

cj′
j′ , φb′

). (1)

Where Dc
i denotes all information about the entity i, including its attributes Ac

i and relations Rb′

i,j′ .

(b) Update πc as follows:

i. Sample vc
k independently from Beta(λc

k,1, λ
c
k,2) for k = {1, . . . , Kc − 1} with

λc
k,1 = 1 +

Nc∑
i=1

δk(Zc
i ), λc

k,2 = αc
0 +

Kc∑
k′=k+1

Nc∑
i=1

δk′(Zc
i ), (2)

and set vc
Kc = 1. Where δk(Zc

i ) equals to 1 if Zc
i = k and 0 otherwise.

ii. Compute πc
1 = vc

1, πc
k = vc

k

∏k−1
k′=1(1− vc

k′), k > 1.

2. Update the parameters from their posteriors given the sampled Z: θc
k ∼ P (·|Ac, Zc, Gc

0) and φb
k,` ∼ P (·|Rb, Z, Gb

0).

Gibbs Sampling with DMA The Dirichlet-Multinomial allocation (DMA) approximation to DP (Green &
Richardson, 2000; Yu et al., 2005) has a similar truncation form as TSB, but differs in that the prior P (πc|αc

0) now
takes an exchangeable Kc-dimensional Dirichlet distribution Dir(αc

0/Kc, . . . , αc
0/Kc), not a stick-breaking prior

as in TSB. Therefore, the blocked sampling with DMA is the same as that with TSB except in step 1.b, where
we directly sample the mixing weight πc from the posterior Dir

(
αc

0
Kc +

∑Nc

i=1 δ1(Zc
i ), . . . , αc

0
Kc +

∑Nc

i=1 δK(Zc
i )

)
.

3. Mean Field Approximations

Since the proposed IHRM model has multiple DPs which interact through the relations, blocked sampling is still
slow due to the slow exchange of information between DPs. Thus we explore two variational inference methods,
which both assume a specific form for the posterior of all the unobservable variables, and maximize the lower
bound of data log likelihood via coordinate ascent algorithm.

Mean-Field with TSB Blei and Jordan (2005) introduce a mean-field method to approximate the posterior of
unobserved variables using a factorized variational distribution q. We now extend it to IHRM and define q as

q({Zc, V c, θc}C
c=1, {φb}B

b=1) =

[ C∏
c

Nc∏
i

q(Zc
i |ηc

i )

Kc∏
k

q(V c
k |λc

k)q(θc
k|τ c

k)

][ B∏
b

Kci∏
k

K
cj∏
`

q(φb
k,`|ρb

k,`)

]
. (3)
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Where ci and cj denote the entity classes involved in the relationship class b. k and ` denote the hidden states
for ci and cj . {ηc

i , λ
c
k, τ c

k , ρb
k,`} are variational parameters. q(Zc

i |ηc
i ) is a multinomial distribution. q(V c

k |λc
k) is a

Beta distribution. q(θc
k|τ c

k) and q(φb
k,`|ρb

k,`) are distributions with the same forms as Gc
0 and Gb

0, respectively.

Based on Jensen’s inequality, we can obtain a lower bound of the log likelihood of the data given the variational
distribution q. Then we use a coordinate ascent algorithm to optimize the lower bound and yields the following
updates for the variational parameters:

λc
k,1 = 1 +

Nc∑
i=1

ηc
i,k, λc

k,2 = αc
0 +

Nc∑
i=1

Kc∑
k′=k+1

ηc
i,k′ , (4)

τ c
k,1 = βc

1 +

Nc∑
i=1

ηc
i,kT(Ac

i ), τ c
k,2 = βc

2 +

Nc∑
i=1

ηc
i,k, (5)

ρb
k,`,1 = βb

1 +
∑
i,j

ηci
i,kη

cj

j,` T(Rb
i,j), ρb

k,`,2 = βb
2 +

∑
i,j

ηci
i,kη

cj

j,`, (6)

ηc
i,k ∝ exp

(
Eq[log V c

k ] +

k−1∑
k′=1

Eq[log(1− V c
k′)] + Eq[log P (Ac

i |θc
k)] +

∑
b

∑
j

∑
`

η
cj

j,`Eq[log P (Rb
i,j |φb

k,`)]

)
. (7)

Where τ c
k are parameters of exponential family distributions q(θc

k|τ c
k), we decompose τ c

k such that τ c
k,1 contains the first

dim(θc
k) components and τ c

k,2 is a scalar. ρb
k,`,1 and ρb

k,`,2 are defined equivalently. T(Ac
i ) denotes the sufficient statistic

of the exponential family distribution P (Ac
i |θc

k). It is clear that Equation 4 and Equation 5 updates the variational

parameters for entity class c, and follow equations in (Blei & Jordan, 2005). Equation 6 updates the variational parameters

for relationship attributes, which is computed on the involved entities. The most interesting updates are Equation 7, where

the posteriors of entity-component assignment are coupled together. These essentially connect the DPs.

Mean-Field with DMA The other variational algorithm extends to the DMA approximation of DP (Green
& Richardson, 2000; Yu et al., 2005). The basic difference from the above approximation is that we directly
assume a variational distribution Dir(πc|λc) to the mixing weights πc, instead of Kc Beta distributions q(V c

k |λc
k).

A similar coordinate ascent algorithm is derived as the one based on TSB, except the updates for λc and ηc:

λc
k =

αc
0

Kc
+

Nc∑
i=1

ηc
i,k; ηc

i,k ∝ exp

(
Eq[log πc

k] + Eq[log P (Ac
i |θc

k)] +
∑

b

∑
j

∑
`

η
cj

j,`Eq[log P (Rb
i,j |φb

k,`)]

)
. (8)

The coupling of entity assignments ηc
i,k remains the same as the one based on TSB.

4. Experimental Analysis

We demonstrate the proposed inference algorithms in two domains, including movie recommendation system
and prediction of gene functions. For space limitation, we only list some results on the MovieLens data. There
are in total 943 users and 1680 movies, and we obtain 702 users and 603 movies after removing low-frequent
objects. The average number of ratings of each user is 112. We used data from 546 users for training and 156
users for testing. The performances of all algorithms are analyzed from 3 points: prediction accuracy for ratings,
convergence time and clustering effect.

We compare the following methods: Chinese restaurant process Gibbs sampling (CRPGS), truncated SB Gibbs
sampling (TSBGS), Dirichlet-multinomial allocation Gibbs sampling (DMAGS), and the two corresponding
mean field methods TSBMF and DMAMF, as well as Pearson-coefficient collaborative filtering. For TSBMF
and DMAMF we consider α0 = {5, 10, 100, 1000}, and obtain the best prediction when α0 = 100. For CRPGS,
TSBGS and DMAGS α0 is 100. For the variational methods, the change of variational parameters between two
iterations is monitored to determine the convergence. For the Gibbs samplers, the convergence was analyzed by
three measures: Geweke statistic on likelihood, Geweke statistic on the number of components for each entity
class, and autocorrelation. Table 1 shows that the two blocked Gibbs samples converge approximately by a
factor 5 faster than CRPGS. The mean field methods are again by a factor around 10 faster than the blocked
Gibbs samplers and thus almost two orders of magnitude faster than CRPGS. CRPGS is much slower than the
other two Gibbs samplers mainly due to the large time cost per iteration shown as Table 1. The reason is that
CRPGS samples the hidden variables one by one, which causes two additional time costs. First, the expectations
of attribute parameters and relational parameters have to be updated when sampling each user/movie. Second,
the posterior of hidden variables have to be computed one by one, thus we can not use fast matrix multiplication
technology to accelerate the computation. The prediction results are measured with prediction accuracy (shown
in Table 1). For each test user, we respectively select 5, 10, 15 and 20 ratings as the known ratings, and predict
the remaining ones. The results are denoted as Given5, Given10, Given15 and Given20 in Table 1. All methods
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Table 1. Performances of the proposed inference methods on MovieLens data.

Prediction Accuracy
Given5 Given10 Given15 Given20 Time (s) Time(s/iter.) #Comp.u #Comp.m

CRPGS 65.13 65.71 66.73 68.53 164993 109 47 77
TSBGS 65.51 66.35 67.82 68.27 33770 17 59 44
DMAGS 65.64 65.96 67.69 68.33 25295 17 52 34
TSBMF 65.26 65.83 66.54 67.63 2892 19 9 6
DMAMF 64.23 65.00 66.54 66.86 2893 19 8 12
Pearson 57.81 60.04 61.25 62.41 - - - -

Table 2. Clustering result of CRP-based Gibbs sampler on MovieLens data.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
My Best Friend’s Wed-
ding (1997) G.I. Jane
(1997) The Truth About
Cats and Dogs (1996)
Phenomenon (1996) Up
Close and Personal (1996)
Tin Cup (1996) Bed of
Roses (1996) Sabrina
(1995) Clueless (1995)......

Big Night (1996) Antonia’s
Line (1995) Three Colors: Red
(1994) Three Colors: White
(1994) Cinema Paradiso(1989)
Henry V (1989) Jean de
Florette (1986) A Clockwork
Orange (1971) Citizen Kane
(1941) Mr. Smith Goes to
Washington (1939)......

Swingers (1996) Get
Shorty (1995) Mighty
Aphrodite (1995) Welcome
to the Dollhouse (1995)
Clerks (1994) Ed Wood
(1994) The Hudsucker
Proxy (1994) What’s Eat-
ing Gilbert Grape (1993)
Groundhog Day (1993)......

Event Horizon (1997)
Batman and Robin (1997)
Escape from L.A. (1996)
Batman Forever (1995)
Batman Returns (1992)
101 Dalmatians (1996)
The First Wives Club
(1996) Nine Months
(1995) Casper (1995)......

achieved comparably good; the best results are achieved by the Gibbs samplers. The IHRM outperforms the
traditional collaborative filtering method, especially when there are a few known ratings for the test users.

IHRM also provides cluster assignments for all entities involved. The columns #Comp.u and #Comp.m in
Table 1 denote the number of clusters for User class and Movie class, respectively. The mean field solutions have
a tendency to converge to a smaller number of clusters than Gibbs samplers. Further analysis shows that the
clustering results of the methods are actually similar. First, the sizes of most clusters generated by the Gibbs
samplers are very small, e.g., there are 72% (72.55%, 75.47%) user clusters with less than 5 members in CRPGS
(DMAGS, TSBGS). Intuitively, the Gibbs samplers tend to assign the outliers to new clusters. Second, we
compute the rand index (0-1) of the clustering results of the methods, e.g. the values are 0.8071 between CRPGS
and TSBMF, 0.8221 between TSBGS and TSBMF, which also demonstrates the similarity of the clustering
results. Table 2 illustrates the movies with highest posterior probability in the 4 largest clusters generated from
CRPGS. It is quite surprising that the clustering result is highly interpretable.

5. Conclusions

The IHRM and the related IRM (Kemp et al., 2006) are novel and principled approaches to relational learning
but the full potential can only be developed in combination with fast inference. The blocked samplers proposed
in this paper are more than a factor of five faster than the originally proposed Chinese restaurant Gibbs sampler.
Another factor of 10 in speed up can be achieved by using variational methods. Thus the presented work makes
the IRHM applicable to considerably larger domains. In addition we analyzed the clustering structure discovered
in the experiment and found interpretable clusters in the movie recommendation and gene domains.
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