
Collaborative Ordinal Regression

Shipeng Yu spyu@dbs.ifi.lmu.de

Institute for Computer Science, University of Munich, Germany

Kai Yu kai.yu@siemens.com
Volker Tresp volker.tresp@siemens.com

Corporate Technology, Siemens AG, Information and Communications, Munich, Germany

Hans-Peter Kriegel kriegel@dbs.ifi.lmu.de

Institute for Computer Science, University of Munich, Germany

Abstract

Ordinal regression has become an effective
way of learning user preferences, but most
research focuses on single regression prob-
lems. In this paper we introduce collabora-
tive ordinal regression, where multiple ordi-
nal regression tasks are handled simultane-
ously. Rather than modeling each task in-
dividually, we explore the dependency be-
tween ranking functions through a hierar-
chical Bayesian model and assign a common
Gaussian Process (GP) prior to all individual
functions. Empirical studies show that our
collaborative model outperforms the individ-
ual counterpart in preference learning appli-
cations.

1. Introduction

In recent years there has been quite some work on
learning from ranking relations, which, in the litera-
ture, is often referred to as ordinal regression (McCul-
lagh, 1980; Cohen et al., 1999; Herbrich et al., 2000;
Crammer & Singer, 2002). In this paper we are inter-
ested in probabilistic conditional models with a gen-
erative process for ranking data. Some recent work in
this direction include (Chu & Ghahramani, 2005a) in
which Gaussian Processes (GP) are applied to ordinal
regression, and (Burges et al., 2005; Chu & Ghahra-
mani, 2005b) where a probabilistic model for pairwise
preferences is employed.

Although ordinal regression research has often been

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

motivated from user preference learning using the fea-
tures of items or products (e.g., movies or books), a
unified framework is still missing which can explore
the correlation among different ranking functions and
reflect the social effects of user preferences. The prob-
lem differs from traditional collaborative filtering (see,
e.g., Rennie & Srebro, 2005), because the item fea-
tures should be elegantly explored in the new frame-
work. Web page ranking can also be viewed as an
ordinal regression problem, since a ranked list of web
pages should be returned for a given query (Burges
et al., 2005). In this context it is interesting to ex-
plore the correlations across different queries, which
can also be viewed as the problem of learning a set
of related ranking functions. Instead of treating the
ranking functions individually, we would like to model
them jointly to uncover the dependency between them.
We call this problem collaborative ordinal regression.

In this paper we propose a Bayesian approach to col-
laborative ordinal regression. The preference labels
for one regression task are assumed to be generated
from a latent function, and all the latent functions
share a common GP prior to account for the inter-
dependencies. Learning in this model is based on ex-
pectation propagation (EP) (Minka, 2001) along with
variational method to update the model parameters.
Our experimental results demonstrate that collabora-
tive ordinal regression shows better performance than
individual regressions in the presence of dependencies
between ranking functions.

The rest of paper is organized as follows. In Section 2
we formally introduce collaborative ordinal regression
with two example models. Then in Section 3 and 4
we consider learning and inference, respectively. Some
empirical results are shown in Section 5, followed by
Section 6 with conclusion and some future directions.

Collaborative Ordinal Regression

2. Model Formulation

In this paper we use preference learning as a working
example to describe our model. We consider a set of n
items, and each item has a d-dimensional feature rep-
resentation x ∈ Rd. In ordinal regression we observe
a preference label y for each item, which is an integer
from 1 (lowest preference) to r (highest preference).

2.1. Ordinal Regression for Single Function

When a single ordinal regression function is consid-
ered, the data consist of pairs {(xi, yi)}n

i=1, where yi

denotes the preference label for item xi. One natu-
ral assumption in ordinal regression is that there is an
unobserved latent function f(·) : Rd → R which maps
items into a real line, and the preference labels are then
generated from the latent values f(x1), . . . , f(xn). Put
in a probabilistic way, let X = [x1, . . . ,xn]> be the
training items, y = [y1, . . . , yn]> be the labels, and
f = [f(x1), . . . , f(xn)]> be the vector of latent values,
the likelihood of preference labels is written as

P (y|X, f, θ) = P (y|f(x1), . . . , f(xn), θ) = P (y|f , θ),

where θ denote some likelihood parameters. We fur-
ther assume that the labels are mutually independent
given the latent values, which leads to a factorized
form P (y|f , θ) =

∏n
i=1 P (yi|f(xi), θ).

Since f are not observable, we need to assign a prior
P (f) such that we can integrate them out in a Bayesian
framework. In this paper we take a nonparamet-
ric approach and assume that f are a realization of
random variables in a Gaussian Process (GP) (Ras-
mussen & Williams, 2006). The GP can be fully spec-
ified by a mean function h(·) and a covariance ma-
trix K. The (s, t)-th entry of K, i.e., the covariance
between the function values f(xs) and f(xt), is de-
fined by any Mercer kernel function κ(xs,xt). One
simple example is the Gaussian kernel κ(xs,xt) =
exp

(
−α

∑d
l=1(x

l
s − xl

t)
2
)
, where α > 0 and xl

s de-
notes the l-th element of xs. Then the prior for latent
values f is a multivariate Gaussian,

P (f |h,K) =
1

(2π)
n
2 |K| 12

exp
(
−1

2
(f − h)>K−1(f − h)

)
with h = [h(x1), . . . , h(xn)]>. In this paper we use the
notation N (f ;h,K) to denote a (multivariate) Gaus-
sian distribution for f with mean h and covariance K.

The final likelihood of the preference labels is obtained
by integrating over the latent function values f ,

P (y|X, θ,h,K) =
∫

P (y|f , θ)P (f |h,K) df . (1)

In general the model has three parameters θ,h and K.
θ are the parameters for the likelihood model and can
assume various forms. We will illustrate two example
models in Section 2.3. h and K are the parameters
for the GP prior and are respectively defined by the
mean function h and kernel function κ. In the context
of ordinal regression, h defines a prior preference for
each item, and κ specifies the smoothness of the la-
tent function f , i.e., how likely two similar items get
the same preference label. In typical GP models, h is
assumed to be the zero function, and κ takes a para-
metric form with some kernel parameters, e.g., α in
the Gaussian kernel. Therefore, in model fitting one
only needs to optimize likelihood parameters θ and the
kernel parameters.

2.2. Collaborative Ordinal Regression

As introduced in the first section, in many real-world
problems we need to learn multiple correlated ordinal
regression functions for the same set of items. One
can of course treat each function separately and apply
the model just introduced, but then we lose the col-
laborative effects of these correlated functions, which
include (i) common preferences: they may share sim-
ilar preference labels on some items; and (ii) similar
variabilities: they tend to have the same predictabil-
ity on very similar items. For example, if items are
movies and functions are users who give ratings, the
first effect means the users may have common interests
on some movies because of, e.g., popularities, famous
directors or topics. The second effect is related to the
correlation of items in terms of associated user inter-
ests, i.e., a user who likes item A tends to like (or
dislike) item B. This correlation reflects some intrinsic
properties of items, expressed by their feature vectors
and user’s opinions.

In this subsection we introduce collaborative ordinal
regression in which the multiple functions are modeled
jointly in a hierarchical Bayesian framework. For a
bit of notations, assume there are m functions, and
function j has preference labels yj on an item set Xj

of size nj .1 Let Y = {y1, . . . ,ym} be the labels of all
functions, and X = {x1, . . . ,xn} ⊃

⋃m
j=1 Xj be the

total item set. The item indices of X that Xj contains
are denoted as Ij . Note that we allow “untouched”
items which are not labeled by any function.

In collaborative ordinal regression, we model the pref-
erence labels of each function j as an ordinal regression
model P (yj |f j , θj) as in Section 2.1, where fj(·) is the

1With a little abuse of notation, we use bold symbol yj

to denote the whole label vector for function j, and normal
form yi to denote the label for item i for one function.

Collaborative Ordinal Regression

latent function for j, and θj are the corresponding like-
lihood parameters. We then connect these models by
assigning a common GP prior (h,K) to all the latent
functions, following recent works on multi-task learn-
ing (Schwaighofer et al., 2005; Yu et al., 2005). Here
h = [h(x1), . . . , h(xn)]> are specified by a mean func-
tion h(·), and K denote the n × n covariance matrix
for X. Let hj = h(Ij) and Kj,j = K(Ij , Ij) be the
sub-matrices of h and K with respect to Xj , the label
likelihood for function j is written as

P (yj |X, θj ,h,K) =
∫

P (yj |f j , θj)P (f j |hj ,Kj,j) df j .

By assuming that labels for different functions are in-
dependent given the GP prior, we obtain the following
likelihood for the whole label set Y:

P (Y|X,Θ,h,K) =
m∏

j=1

P (yj |X, θj ,h,K), (2)

where Θ = {θ1, . . . , θm} denote the set of all likelihood
parameters.

In this framework, the collaborative effects among dif-
ferent functions are modeled via a GP prior (h,K).
In particular, mean function h defines the common
preferences of all functions, and covariance matrix K
specifies the smoothness of these functions over all
items. Unlike the single function case where we fix
h to zero and take a parametric form for K, we can
effectively learn the common preferences h and the
(non-stationary) covariance matrix K from the data.
This is described in the next section.

One can assign hyperpriors to Θ and to (h,K). For
Θ the hyperprior depends on the likelihood model
and should be i.i.d. for each θj . For the GP prior
(h,K), we can assign a conjugate prior which takes
a Normal-Inverse-Wishart distribution: P (h,K) =
N (h;h0,

1
πK) IW(K; τ,K0), where the parameters h0

and K0 are respectively the prior mean and base ker-
nel, and π, τ correspond to the equivalent sample sizes
before we observe any data (Schwaighofer et al., 2005;
Yu et al., 2005). For the maximum a posteriori (MAP)
estimate of h and K, they correspond to a smooth term
in the learning process (cf. Section 3).

2.3. Example Models

The proposed framework for ordinal regression is gen-
eral and connected to many existing models. One can
define different likelihood P (yi|f(xi), θ) to obtain dif-
ferent models, and all such models can be extended
in a collaborative manner. In this paper we illustrate
two example models in detail, and briefly discuss other
likelihood forms in Section 6.

Gaussian Process Regression (GPR): This
model grants the ordinal regression problem simply
as a GP regression problem. The preference label yi

is assumed to be sampled from a Gaussian with mean
f(xi) and variance σ2, i.e., (θ ≡ σ2)

P (yi|f(xi), θ) = N (yi; f(xi), σ2).

The treatment is close to Rankprop (Caruana et al.,
1996), which learns ranks by least squares.

Gaussian Process Ordinal Regression (GPOR):
This model is discussed in (Chu & Ghahramani,
2005a) and specifies boundary parameters b0 < b1 <
. . . < br for the r labels. Given the latent func-
tion value f(xi), the likelihood of a particular la-
bel yi is defined by how likely a corrupted value
zi ∼ N (zi; f(xi), σ2) is in the corresponding interval
(byi−1, byi

):

P (yi|f(xi), θ) =
∫ byi

byi−1

N (zi; f(xi), σ2) dzi

= Φ
(
z+
i

)
− Φ

(
z−i

)
,

where z+
i = byi

−f(xi)

σ , z−i = byi−1−f(xi)

σ and Φ(t) =∫ t

−∞N (z; 0, 1) dz. We can define b0 = −∞ and br =
+∞ without loss of generality, and the model takes
parameters θ ≡ {b1, . . . , br−1, σ}.

Both of these two models can be extended to collabora-
tive models. In the following we call their collaborative
versions as CGPR and CGPOR, respectively.

3. Learning

We derive a general learning scheme based on expecta-
tion propagation (EP) (Minka, 2001) for collaborative
ordinal regression model, where in principal we can
use any likelihood model for P (yi|f(xi), θ). We apply
EP along with a variational method for parameter op-
timization, which has been applied for, e.g., GP clas-
sification (Seeger, 2002; Kim & Ghahramani, 2003).
In our setting, EP is applied for each function j and
attempts to approximate the a posteriori distribution
of f j , i.e. P (f j |yj , θj ,h,K), as a multivariate Gaussian
Q(f j) = N (f j ; f̂ j , K̂j). Note that here we use f j to de-
note the j-th function values on all the n items in X,
because the EP algorithm is able to predict means and
covariances for missing data, which in our case are the
unlabeled items for function j. This also means that
f̂ j is a length-n vector, and K̂j is a n× n matrix.

The EP approximation can be done by taking a prod-
uct form Q(f j) =

∏
i∈Ij

ti(fj(xi))P (f j |h,K) with

Collaborative Ordinal Regression

Algorithm 1 Collaborative Ordinal Regression
Require: A size-n item set, with features X ∈ Rn×d and

preference labels Y = {y1, . . . ,ym} of m functions.
1: Initialize mean vector h, covariance matrix K and pos-

sible hyperparameters π, τ,h0,K0.
2: Initialize likelihood parameters θj for function j.
3: repeat
4: for j = 1, . . . , m do

5: Obtain Q(f j) = N (f j ; f̂ j , K̂j) by running EP until
convergence.

6: Optimize parameter θj using (3).
7: end for
8: Update GP prior h and K using (4).
9: until the improvement is smaller than a threshold.

ti(fj(xi)) = si exp(− 1
2pi(fj(xi)−mi)2). We then op-

timize parameters {si,mi, pi} in {ti} successively by
minimizing the Kullback-Leibler divergence,

tnew
i = arg min

ti

KL
(

Q(f j)
toldi

P (yj(i)|fj(xi))
∥∥∥∥Q(f j)

toldi

ti

)
,

where yj(i) denote the observed label for item i in
function j. (Minka, 2001) points out that we can do
this approximation by moment matching, and efficient
algorithms exist for our setting which do not require
any matrix inversion (Rasmussen & Williams, 2006;
Herbrich, 2005).

The model parameters Θ and (h,K) can be optimized
by variational methods. We apply Jensen’s inequality
to the likelihood (2) and obtain

log P (Y|X,Θ,h,K) =
m∑

j=1

log P (yj |X, θj ,h,K)

≥
m∑

j=1

∫
Q(f j) log

P (yj |f j , θj)P (f j |h,K)
Q(f j)

df j .

We can then maximize this lower bound with Q(f j)
fixed as N (f j ; f̂ j , K̂j) to get new model parameters.
It is seen that θ1, . . . , θm and (h,K) are not coupled
in this optimization problem. For θj we need to solve

θ̂j = arg min
θj

∫
Q(f j) log P (yj |f j , θj) df j (3)

analytically or numerically. The updates for (h,K)
can be easily obtained as ĥ = 1

π+m

(∑m
j=1 f̂ j + πh0

)
and

K̂ =
1

τ + m

(
π(ĥ− h0)(ĥ− h0)> + τK0

+
m∑

j=1

[
(f̂ j − ĥ)(f̂ j − ĥ)> + K̂j

])
, (4)

which can be seen as averaged over the sufficient statis-
tics of all functions and the hyperpriors. Then we
perform EP approximations again with the updated
parameters, and the whole process is repeated until
convergence. Algorithm 1 illustrates the learning al-
gorithm.

The GP prior updates are the keys to connect all the
individual ordinal regression functions and make them
collaborative. On one hand, one can model each task
separately and optimize for each task the parameters
of a pre-chosen kernel function. But then we lose the
collaborative effect among the tasks. On the other
hand, one can take a parametric kernel function and
optimize the kernel parameters with regards to all the
tasks, but then the model can be restrictive, because
it is highly non-trivial to design a parametric kernel
family that is sufficiently expressive. In our solution,
the (non-stationary) covariance matrix K is directly
estimated from the repeated random samples (namely,
functions in our case), which has sufficient flexibilities.
By assigning a prior to K we can also compromise the
degrees of freedom and avoid overfitting.

3.1. Learning in CGPR

In CGPR model the likelihood P (yj |f j , θj) already
takes a Gaussian form, so the EP approximation is
exact and turns out to be

f̂ j = Kn,j(Kj,j + σ2I)−1(yj − hj) + h,

K̂j = K−Kn,j(Kj,j + σ2I)−1K>
n,j ,

where Kn,j = K(:, Ij) denote the n × nj rectangle
sub-matrix of K, and I is the identity matrix. The
parameter update can also be done analytically as

σ̂2
j =

1
nj

(
‖yj − f̂ j‖2 + tr[K̂j]

)
,

where tr[·] denote matrix trace.

3.2. Learning in CGPOR

Given model parameters, the EP approximation for
one function in CGPOR model is very similar to the
EP solution in GPOR (Chu & Ghahramani, 2005a),
except that we allow unlabeled items to be considered
and return an approximated Gaussian Q(f j) which is
defined on the function values of all items. Then we
update the variance and boundary parameters for each
task using the same gradient descent methods as in
GPOR, and instead of optimizing a kernel parameter
we update the GP priors directly using (4). Due to
lack of space we do not include the gradient formula
in this paper and refer interested readers to (Chu &
Ghahramani, 2005a) for details.

Collaborative Ordinal Regression

(a) (b) (c) (d)

Figure 1. Collaborative ordinal regression (using GPR and CGPR models) on a 1D toy data with 315 data points (0
to π with 0.01 space) and 5 preference labels. (b) shows the mean function h (wide black one in cosine shape), mean
preferences (black dashed line) and 5 latent functions sampled from the GP with covariance matrix defined in (a). (c) and
(d) show the predicted means and variances (in shade) for a new function learned using GPR and CGPR, respectively.
The 4 training data are marked in black. GPR uses Gaussian kernel with α = 5, and CGPR uses the kernel in (a).

4. Inference

The proposed model allows us to do two types of in-
ference: label prediction of unlabeled items for each
function, and label predictions for new functions.

4.1. Inference for Unlabeled Items

Let us fix a function j and omit the subindex j for sim-
plicity. Given an unlabeled item x∗, we want to infer
the preference label y∗. We distinguish two scenarios
based on the availability of x∗ before learning.

4.1.1. Transductive Inference

When the item is known before learning, i.e., x∗ ≡
xi ∈ X, we can include it in the learning proce-
dure and obtain the a posteriori Gaussian Q(f∗) =
N (f∗;µ∗, σ2

∗) from EP, where f∗ = f(x∗) = f(xi), and
µ∗ = f̂(i), σ2

∗ = K̂(i, i) take the entries corresponding
to item i from the mean and covariance of Q(f). Then
the likelihood of a given label y is

P (y|x∗,D, θ,h,K) =
∫

P (y|f∗, θ)Q(f∗) df∗, (5)

where D = {X,Y} and P (y|f∗, θ) depends on the
likelihood model. This is a one-dimensional integral
and can be analytically calculated for CGPR and
CGPOR models. Finally the predicted label y∗ =
arg maxy P (y|x∗,D, θ,h,K).

4.1.2. Inductive Inference

When x∗ is not in X, this is a new item and we
cannot directly obtain its a posteriori distribution
from EP. The only information available is the vector
k∗ = [κ(x∗,x1), . . . , κ(x∗,xn)]>, which is defined via
base kernel function κ. We can solve this problem by
optimizing in the dual space: Instead of taking a Gaus-
sian form for Q(f j) in EP, we take a Gaussian form for

Q(αj) where αj = K−1f j . Then after EP approxima-
tion we obtain Q(αj) = N (αj ;K−1f̂ j ,K−1K̂jK−1)
which is equivalent to Q(f j). Given the vector k∗
for new item x∗, for function j we have the latent
value f∗ = k>∗ αj , which also takes a Gaussian form
Q(f∗) = N (f∗;µ∗, σ2

∗) with µ∗ = k>∗ K−1f̂ j and σ2
∗ =

k>∗ K−1K̂jK−1k∗. Then (5) follows and we are able
to predict the label for x∗. For more details on in-
ductive inference for multi-task learning please refer
to (Yu et al., 2005).

4.2. Inference for New Functions

In our model all the latent functions are sampled from
the GP prior (h,K). Therefore a new function will
by default take h as the predicted mean preferences,
and take K as the covariances of latent functions cor-
responding to every two items. By using (5) we can
already make default predictions, and after observing
labels for some items we need to iteratively run EP
and variational updates with fixed GP prior until con-
vergence.

In Figure 1 we show a toy problem for inference with
GPR and CGPR models. It is seen from (a) that the
covariance is non-stationary such that all the func-
tions sampled from this GP prior have a highly non-
smooth part in the middle (see (b)). This corresponds
to normal preference learning case where people tend
to agree on very good (around 5) and very bad (around
1) items, but have large diversity for items in between.
Then when a new function comes with 4 labeled items
(see (c)), model fitting simply using GPR will totally
ignore this collaborative effect and end up with similar
variances for all the test items. CGPR, on the other
hand, considers this prior in inference and thus obtains
higher variances for test items in the middle (see (d)).
The predicted labels (red dashed line) are also more
reasonable.

Collaborative Ordinal Regression

5. Empirical Study

We evaluate the effectiveness of collaborative ordi-
nal regression by comparing the two example models
GPR and GPOR with their collaborative counterparts
CGPR and CGPOR. In GPR and CGPR, we initialize
the model with σ2 = 0.01 and estimate the mean pref-
erence of each function empirically from the sample
mean. For GPOR and CGPOR models, we take the
same initializations as suggested in (Chu & Ghahra-
mani, 2005a), i.e., σ = 1 and bk = −1 + (k−1)r

2 for
k = 1, . . . , r − 1. These model parameters are opti-
mized using scaled conjugate gradient methods.

We apply these models on two data sets MovieLens
and EachMovie, both of which have a large number
of users who gave discrete ratings on a set of movies.
It is known that there are strong collaborative effects
among users, and each movie has its own features such
as genre, directors and keywords. Therefore, they are
the ideal test beds for collaborative ordinal regression
since we can take one movie as one item, and one user
as one ordinal regression function.

The MovieLens data we use consists of 100,000 ratings
for 1682 movies from 943 users.2 Ratings are made on
a five-star scale, and we remove the movies with less
than 50 ratings and have 591 movies left. To build a
feature vector for each movie, we use the “genres” part
of the movie information which is a 19-dimensional
binary-valued vector. A 1 in the vector means the
movie takes the corresponding genre.

EachMovie contains 2,811,983 ratings entered by
72,916 users for 1628 movies. The ratings are zero-
to-five stars, and we change them to 1-to-6 scores to
comply with our notations. To show the model perfor-
mance on different features, we write a script to down-
load movie information from IMDB3 including direc-
tors, genres, keywords, casts and languages. We then
extract all the words and build a 23,753-dimensional
tf-idf vector for each movie. After ignoring the not-
found movies and the movies which are rated less than
50 times, we end up with 1075 movies.

5.1. Evaluation Metrics

In ordinal regression we usually consider the follow-
ing two evaluation metrics given the target labels
R and the predicted labels R̂: mean absolute error
(MAE) which is the average deviation of the prediction
from the target, i.e., MAE(R̂) = 1

t

∑t
i=1 |R̂(i)−R(i)|;

mean zero-one error (MZOE) which gives an error 1

2The data is available at http://www.grouplens.org/.
3Internet Movie Database at http://www.imdb.com/.

to every incorrect prediction and then averages, as
MZOE(R̂) = 1

t

∑t
i=1 1R̂(i) 6=R(i). In the collaborative

case, we need to average these errors over all the func-
tions to give a single metric, but sometimes this is
not straightforward since the number of test items for
each function may be very different. Therefore we pro-
pose the macro-averaged and micro-averaged versions
of these metrics for collaborative ordinal regression.
Macro average is simply the algebraic average of the
metrics over all the functions, and micro average is a
weighted average with the weights given by the num-
ber of test items for each function. We then have four
metrics which we denote as MAE-Macro, MAE-Micro,
MZOE-Macro and MZOE-Micro, respectively.

Besides evaluating every individual label, we are also
interested in the ranking quality of test items. This
is sometimes more informative since for a recommen-
dation system the top-ranked items are considered
more important than the bottom ones. Here we use
the normalized discounted cumulative gain (NDCG)
(Jarvelin & Kekalainen, 2000) to evaluate a predicted
ranking, which is calculated by summing over all the
“gains” along the rank list with a log discount factor
as NDCG(R̂) = Z

∑
k(2r(k) − 1)/ log(1 + k), where

r(k) denote the target label for the k-th ranked item
in R̂, and Z is chosen such that a perfect ranking ob-
tains value 1. To focus more on the top-ranked items,
we also consider the NDCG@10 which only counts the
top 10 items in the rank list. These two scores are
averaged over all functions for comparison.

5.2. Performance Comparison

5.2.1. Label Prediction for New Items

For label prediction of new items we fix 100 users with
the most number of ratings as the ordinal regression
functions. Then for each user, we randomly pick up
10, 20 and 50 labeled items for training and test on the
rest of labeled items. The whole process is repeated
10 times independently. We do not explicitly distin-
guish between transductive inference and inductive in-
ference because we can handle both of them very well.
For GPR and GPOR, we train for each user separately
and there is no information sharing among users. For
CGPR and CGPOR we apply the collaborative learn-
ing algorithm and let all the latent functions share the
same GP prior. The base kernel for both data sets
are linear kernel κ(xs,xt) = 〈xs,xt〉, and the mean
function is initialized as zero function. Other hyper-
parameters are initialized as π = 1 and τ = 1, and
they are not sensitive to the performance metrics. For
comparison we also show the results of maximum mar-
gin matrix factorization (MMMF) which is recently

Collaborative Ordinal Regression

Table 1. Preference label prediction results for MovieLens (a) and EachMovie (b) with mean and standard deviation. “N”
denote the number of training items for each user. We use bold face to indicate the lowest error rate or highest NDCG
score for each N . Symbols ? indicate that the collaborative model is significantly better than the individual counterpart
(p-value 0.01 in Wilcoxon rank sum test). All the experiments are repeated 10 times independently.

N Model MAE-Macro MAE-Micro MZOE-Macro MZOE-Micro NDCG NDCG@10
GPR 1.1258± 0.0235 1.1264± 0.0281 0.7082± 0.0048 0.7083± 0.0054 0.8528± 0.0020 0.4937± 0.0108

CGPR ?0.8820± 0.0086 ?0.8822± 0.0094 ?0.6572± 0.0026 ?0.6569± 0.0025 ?0.8579± 0.0016 ?0.5109± 0.0081
10 GPOR 0.9307± 0.0290 0.9296± 0.0308 0.6545± 0.0073 0.6542± 0.0074 0.8540± 0.0005 0.4988± 0.0035

CGPOR 0.9294± 0.0226 0.9283± 0.0258 0.6537± 0.0059 0.6531± 0.0063 ?0.8553± 0.0008 ?0.5053± 0.0047
MMMF 0.9886± 0.0224 0.9897± 0.0221 0.6853± 0.0074 0.6859± 0.0073 0.8717± 0.0026 0.5521± 0.0183

GPR 1.0813± 0.0150 1.0826± 0.0131 0.7000± 0.0061 0.6993± 0.0053 0.8543± 0.0015 0.5020± 0.0089
CGPR ?0.8222± 0.0063 ?0.8217± 0.0067 ?0.6379± 0.0040 ?0.6373± 0.0044 ?0.8619± 0.0014 ?0.5249± 0.0073

20 GPOR 0.8901± 0.0214 0.8898± 0.0212 0.6358± 0.0046 0.6350± 0.0046 0.8530± 0.0008 0.5004± 0.0046
CGPOR 0.8770± 0.0177 0.8763± 0.0176 0.6326± 0.0042 0.6314± 0.0044 ?0.8549± 0.0007 ?0.5089± 0.0044
MMMF 0.8989± 0.0122 0.9000± 0.0121 0.6580± 0.0047 0.6589± 0.0044 0.8830± 0.0035 0.6133± 0.0180

GPR 0.8879± 0.0046 0.8880± 0.0049 0.6551± 0.0037 0.6548± 0.0036 0.8546± 0.0026 0.5088± 0.0141
CGPR ?0.7830± 0.0032 ?0.7822± 0.0035 ?0.6251± 0.0032 ?0.6245± 0.0032 ?0.8643± 0.0010 ?0.5438± 0.0063

50 GPOR 0.8548± 0.0227 0.8522± 0.0224 0.6229± 0.0075 0.6215± 0.0082 0.8500± 0.0010 0.5011± 0.0051
CGPOR 0.8385± 0.0120 0.8370± 0.0104 0.6162± 0.0053 0.6148± 0.0056 0.8514± 0.0005 0.5049± 0.0035
MMMF 0.7932± 0.0073 0.7928± 0.0075 0.6198± 0.0050 0.6199± 0.0050 0.8907± 0.0028 0.6651± 0.0190

(a) Results for MovieLens

N Model MAE-Macro MAE-Micro MZOE-Macro MZOE-Micro NDCG NDCG@10
GPR 0.9793± 0.0092 0.9915± 0.0092 0.6843± 0.0059 0.6877± 0.0060 0.8341± 0.0022 0.4558± 0.0151

CGPR ?0.9650± 0.0085 ?0.9776± 0.0087 0.6792± 0.0056 0.6828± 0.0057 ?0.8639± 0.0024 ?0.5734± 0.0144
10 GPOR 1.1186± 0.0301 1.1383± 0.0316 0.6843± 0.0085 0.6863± 0.0085 0.8059± 0.0003 0.3692± 0.0025

CGPOR 1.1086± 0.0299 1.1324± 0.0320 0.6820± 0.0077 0.6843± 0.0079 ?0.8083± 0.0011 0.3789± 0.0105
MMMF 1.2982± 0.0127 1.3124± 0.0125 0.7506± 0.0036 0.7530± 0.0036 0.8434± 0.0048 0.4746± 0.0342

GPR 0.9557± 0.0073 0.9681± 0.0076 0.6798± 0.0036 0.6836± 0.0042 0.8412± 0.0015 0.4849± 0.0066
CGPR ?0.9291± 0.0083 ?0.9421± 0.0082 ?0.6694± 0.0047 ?0.6736± 0.0051 ?0.8698± 0.0016 ?0.5989± 0.0118

20 GPOR 1.0658± 0.0180 1.0853± 0.0173 0.6682± 0.0058 0.6702± 0.0057 0.8048± 0.0005 0.3678± 0.0030
CGPOR 1.0510± 0.0166 1.0721± 0.0147 0.6649± 0.0062 0.6673± 0.0063 ?0.8078± 0.0013 ?0.3781± 0.0056
MMMF 1.1935± 0.0120 1.2111± 0.0119 0.7257± 0.0044 0.7290± 0.0042 0.8485± 0.0028 0.4786± 0.0139

GPR 0.9301± 0.0044 0.9437± 0.0048 0.6718± 0.0033 0.6762± 0.0036 0.8515± 0.0023 0.5375± 0.0089
CGPR ?0.8839± 0.0034 ?0.8989± 0.0039 ?0.6520± 0.0028 ?0.6575± 0.0031 ?0.8782± 0.0021 ?0.6341± 0.0114

50 GPOR 1.0243± 0.0190 1.0403± 0.0152 0.6549± 0.0062 0.6585± 0.0052 0.8010± 0.0004 0.3663± 0.0024
CGPOR 1.0133± 0.0153 1.0327± 0.0179 0.6501± 0.0053 0.6527± 0.0058 ?0.8045± 0.0006 ?0.3774± 0.0041
MMMF 1.0395± 0.0072 1.0606± 0.0070 0.6866± 0.0035 0.6913± 0.0034 0.8613± 0.0038 0.5478± 0.0211

(b) Results for EachMovie

proposed for collaborative filtering (Rennie & Srebro,
2005). MMMF directly optimizes a rank related cost
function and is thus very related to collaborative or-
dinal regression. However, it cannot use the low level
features of the data and is purely based on the col-
laborative effects among users. In MMMF we set the
dimensionality to 100 and regularization factor to 10.

In Table 1 we show the results for the two data sets
MovieLens and EachMovie. It can be seen that both
the collaborative models outperform the correspond-
ing individual models, and the better performance is
achieved for all the metrics. This means that the qual-
ity of each ordinal regression task can be improved if
we consider the collaborative effects and model all the
tasks jointly. The difference is especially big for Movie-
Lens data, which probably indicates that MovieLens
has stronger collaborative effects than EachMovie.

GPR and GPOR show different behaviors on the two
data sets. In MovieLens GPOR is consistently bet-
ter than GPR, but in EachMovie is worse except for

mean zero-one errors. While a theoretical analysis is
still missing, we suspect this is related to the feature
representation and kernel function. For MovieLens we
only use the “genres” for low level features, and thus
for GP regression with linear kernel the performance is
very poor. GPOR, on the other hand, does a good job
because it is modeling ranking more elegantly. When
we use the more informative term features for Each-
Movie, GPR is able to make reasonable predictions,
but GPOR does not work very well because of the
high dimensionality of features which makes it more
likely to overfit. GPOR is learning a pair of bound-
ary values for each label, so when the training data is
small the local minima problem occurs.

MMMF does show a good performance on MovieLens,
especially for the NDCG scores which are higher than
all other methods. This means by directly minimizing
a rank related cost, MMMF can obtain very good rank-
ing results. On EachMovie the performance is similar
to GPOR, which may also suffer from overfitting.

Collaborative Ordinal Regression

Figure 2. Learning curves of GPR for label predictions of new users on MovieLens. We show the means and standard
deviations of MAE-Macro, MZOE-Macro, NDCG, and NDCG@10 over 20 trials from left to right. We vary the number of
training items for each test user as 10, 20, 50 and 100. The pink dotted lines are training with base linear kernel (without
collaborative effects), and other lines use the learned GP priors trained in CGPR models with the corresponding N users.

5.2.2. Label Prediction for New Functions

As discussed in Section 4.2, inference for new func-
tions in collaborative ordinal regression simply means
we fix the learned GP prior for the new latent func-
tions. So our goal is to investigate whether or not we
can improve label predictions for new users using the
new prior. In this experiment we use GPR as the base-
line, and train different CGPR models to get different
GP priors for testing. To show the collaborative effec-
tiveness on new users, we vary the number of training
users for CGPR models from 50 to 200, and test on
the rest users. For training in CGPR models we fix
the number of labeled items to be 100. In Figure 2 we
show the learning curves of 4 metrics on MovieLens
data set and omit others since the results are simi-
lar. It can be seen that by using the learned priors,
prediction performance of new users can be greatly
improved. With more training users in CGPR model
training, better performance can be achieved. This in-
dicates a stronger collaborative effects for more users.

6. Conclusion and Future Work

We have proposed a Bayesian framework for collabo-
rative ordinal regression and empirically evaluated two
models. (C)GPOR is slow due to hard parameter op-
timization, so it is interesting to look for better likeli-
hood models in future. To improve scalability, one can
assume a linear form for each fj , i.e., fj(xi) = w>j xi,
and learn the Gaussian prior jointly for all wj ’s. Ex-
tending this framework to collaborative pairwise pref-
erence learning is also worth investigating.

References

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N., & Hullender, G. (2005). Learning to
rank using gradient descent. ICML’05 (pp. 89–96).

Caruana, R., Baluja, S., & Mitchell, T. (1996). Using the
future to “sort out” the present: Rankprop and multi-
task learning for medical risk evaluation. NIPS’8.

Chu, W., & Ghahramani, Z. (2005a). Gaussian processes
for ordinal regression. JMLR, 6, 1019–1041.

Chu, W., & Ghahramani, Z. (2005b). Preference learning
with Gaussian processes. ICML’05.

Cohen, W. W., Schapire, R. E., & Singer, Y. (1999). Learn-
ing to order things. Journal of Artificial Intelligence Re-
search, 10, 243–270.

Crammer, K., & Singer, Y. (2002). Pranking with ranking.
NIPS’14.

Herbrich, R. (2005). On Gaussian expectation propagation.
http://research.microsoft.com/∼rherb/papers/EP.pdf.

Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large
margin rank boundaries for ordinal regression. Advances
in Large Margin Classifiers (pp. 115–132). MIT Press.

Jarvelin, K., & Kekalainen, J. (2000). IR evaluation meth-
ods for retrieving highly relevant documents. SIGIR’00.

Kim, H., & Ghahramani, Z. (2003). The EM-EP algo-
rithm for Gaussian process classification. Proceedings
of the Workshop on Probabilistic Graphical Models for
Classification at ECML.

McCullagh, P. (1980). Regression models for ordinal data.
Journal of the Royal Statistical Society B, 42, 109–142.

Minka, T. P. (2001). A family of algorithms for approx-
imate Bayesian inference. Doctoral dissertation, Mas-
sachusetts Institute of Technology.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian
processes for machine learning. MIT Press.

Rennie, J. D. M., & Srebro, N. (2005). Fast maximum
margin matrix factorization for collaborative prediction.
ICML’05.

Schwaighofer, A., Tresp, V., & Yu, K. (2005). Hierarchical
bayesian modelling with gaussian processes. NIPS’17.

Seeger, M. (2002). Notes on Minka’s expectation propaga-
tion for Gaussian process classification (Technical Re-
port). University of Edinburgh.

Yu, K., Tresp, V., & Schwaighofer, A. (2005). Learning
Gaussian processes from multiple tasks. ICML’05 (pp.
1017–1024).

