
Efficient Indexing of Complex Objects for Density-based
Clustering

Karin Kailing, Hans-Peter Kriegel, Martin Pfeifle, Stefan Schönauer

Institute for Computer Science
University of Munich

Oettingenstr. 67, 80538 Munich, Germany

{kailing,kriegel,pfeifle,schoenauer}@dbs.informatik.uni-muenchen.de

ABSTRACT
Databases are getting more and more important for storing com-
plex objects from scientific, engineering or multimedia applica-
tions. Examples for such data are chemical compounds, CAD draw-
ings or XML data. The efficient search for similar objects in such
databases is a key feature. However, the general problem of many
similarity measures for complex objects is their computational com-
plexity, which makes them unusable for large databases. An area
where this complexity problem is a strong handicap is that of density-
based clustering where many similarity range queries have to be
performed. In this paper, we combine and extend the two tech-
niques of metric index structures and multistep query processing
to improve the performance of range query processing. The effi-
ciency of our methods is demonstrated in extensive experiments on
real world data including graphs, trees and vector sets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data Min-
ing

General Terms
Performance

Keywords
Density-based Clustering, Metric Indexing, Multistep Query Pro-
cessing

1. INTRODUCTION
Databases are getting more and more important for storing com-

plex objects from scientific, engineering or multimedia applica-
tions. Examples for such data are chemical compounds, CAD draw-
ings, XML data, web sites or color images. The efficient search for

The copyright of these papers belongs to the paper’s authors. Permission
to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page.
MDM/KDD’04, August 22, 2004, Seattle, WA, USA.

similar objects in such databases, for example to classify new ob-
jects or to cluster database objects, is a key feature in those applica-
tion domains. Often a feature transformation is not possible, there-
fore a simple distance function like the Euclidean distance cannot
be used. In this case, the use of more complex distance functions,
like the edit distance for graphs or trees is necessary. However, a
general problem of all such measures is their computational com-
plexity, which disqualifies their use for large databases.

An area where this complexity problem is a strong handicap is
that of clustering, one of the primary data mining tasks. Density-
based clustering has proved to be successful for clustering complex
objects [10, 8]. Density-based clustering algorithms like DBSCAN
[7] or OPTICS [2] are based on range queries for each database ob-
ject. Each range query requires a lot of exact distance calculations.
Thus, these algorithms are only applicable to large collections of
complex objects if those range queries are supported efficiently.
When working with complex objects the necessary distance calcu-
lations are the time-limiting factor. For complex objects distance
calculations are significantly more expensive than disk accesses.
So the ultimate goal is to save as many distance calculations as
possible.

One approach to improve the performance of range queries is
to use a filter-refinement architecture. The core idea is to apply a
filter criterion to the database objects in order to obtain a small set
of candidate answers to a query. The final result is then retrieved
from this candidate set through the use of the complex similarity
measure. This reduces the number of expensive object distance
calculations and speeds up the search process.

Another possibility is the use of a metric index structure. In
[5] several efficient access methods for similarity search in met-
ric spaces are presented. In most real world applications a static
index structure is not acceptable, so dynamic index structures like
the M-tree [6] are applied.

So far both above mentioned concepts, multi-step query process-
ing and metric index structures have only been used separately. We
claim that those concepts can beneficially be combined and that
through the combination a significant speed-up compared to both
separate approaches can be achieved. In this paper, we discuss how
the two approaches can be combined and present some other tech-
niques to improve the efficiency of range query processing. Filters
can easily be used to speed-up the creation and the traversing of a
metric index structure like the M-tree. Additionally, caching can be
used to prevent that the same distance calculations are performed
more than once. As DBSCAN [7] for example is only interested in
getting all objects in theε- neighborhood of a given query object,

schoenau
Proc. 5th Int. Workshop on Multimedia Data Mining (MDM/KDD '04), Seattle, WA, pp. 28-37, 2004



complex 
objects

complex 
models

complex distance measure

Figure 1: Examples of Complex Objects.

but does not need to know the actual distances, we introduce the
concept of ”positive pruning” to save further distance calculations.

The remainder of the paper is organized as follows. In section 2,
we present some recent work in the field of indexing and clustering
complex objects. Section 3 presents our techniques used to save
costly distance calculations while performing range queries. The
performance gain of our new techniques is presented in section 4,
while section 5.2 concludes the paper and gives some hints at future
work.

2. MOTIVATION AND RELATED WORK
In the next subsection, we present three promising and approved

modelling approaches and distance measures for complex objects
(see figure 1 for an illustration). The evaluation part will show
that in all those cases we achieve a performance gain using our
new techniques. Afterwards we present some recent approaches
for clustering and query processing on complex objects.

As this is an extremely broad field we do not make any claim on
completeness, neither for the data types nor for the techniques pre-
sented. The main purpose of this section is to motivate the necessity
of new techniques which allow efficient similarity range queries on
complex objects.

2.1 Data Types of Complex Objects

2.1.1 Sets of Feature Vectors
For CAD applications, suitable similarity models can help to re-

duce the cost of developing and producing new parts by maximiz-
ing the reuse of existing parts. In [10] an effective and flexible
similarity model for complex 3D CAD data is introduced, which
helps to find and group similar parts. It is not based on the tradi-
tional approach of describing one object by a single feature vector
but instead an object is mapped onto a set of feature vectors, i.e.
an object is described by a vector set. An algorithm and a method
for accelerating the processing of similarity queries on vector set
data is presented. In the evaluation part we will show that we can
significantly improve this approach for range queries.

2.1.2 Tree-Structured Data
In addition to a variety of content-based attributes, complex ob-

jects typically carry some kind of internal structure which often
forms a hierarchy. Examples of such tree-structured data include

chemical compounds, CAD drawings, XML documents or web
sites. For similarity search it is important to take into account
both the structure and the content features of such objects. A suc-
cessful approach is to use the edit distance for tree structured data.
However, as the computation of this measure is NP-complete, con-
strained edit distances like the degree-2 edit distance [19] have
been introduced. They were successfully applied to trees for web
site analysis [18], structural similarity of XML documents [14],
shape recognition [15] or chemical substructure search [18]. While
yielding good results, they are still computationally complex and,
therefore, of limited benefit for searching or clustering in large
databases. In [9] a filter and refinement architecture for the degree-
2 edit distance is presented to overcome this problem. A set of
new filter methods for structural and for content-based information
as well as ways to flexibly combine different filter criteria are pre-
sented. With experiments on real world data the authors show that
this approach is superior to metric index structures. But the exper-
iment on k-nearest-neighbor queries also show that even the most
complex filter which combines structural and content feature has to
compute the object distances for 10 percent of the database in order
to find the nearest neighbor. Again, we will show in the evaluation
part, that our new techniques outperform the presented approach
for range queries.

2.1.3 Graphs
Attributed graphs are another natural way to model structured

data. Most known similarity measures for attributed graphs are ei-
ther limited to a special type of graph or are computationally ex-
tremely complex, i.e. NP-complete. Therefore they are unsuitable
for searching or clustering large collections. In [11], the authors
present a new similarity measure for attributed graphs, called edge
matching distance. They demonstrate, how the edge matching dis-
tance can be used for efficient similarity search in attributed graphs.
Furthermore, they propose a filter-refinement architecture and an
accompanying set of filter methods to reduce the number of nec-
essary distance calculations during similarity search. Their exper-
iments show that the matching distance is a meaningful similarity
measure for attributed graphs and that it enables efficient clustering
of structured data.

2.2 Clustering Complex Objects
In recent years, the research community spent a lot of attention

to clustering resulting in a large variety of different clustering al-



Figure 2: Browsing through cluster hierarchies.

gorithms. However, most of those algorithms were designed for
vector data, so there is still a need for research on clustering com-
plex objects.

2.2.1 Density-Based Clustering of Complex Objects
In this paper, we focus on the acceleration of density-based clus-

tering algorithms like DBSCAN [7] and OPTICS [2], which are
based onε-range queries. Density-based clustering algorithms pro-
vide the following advantages:

1. They can be used for all kinds of metric data spaces and are
not confined to vector spaces.

2. They are robust concerning outliers.

3. They have proved to be very efficient and effective in clus-
tering all sorts of data.

4. OPTICS is – in contrast to most other algorithms – relatively
insensitive to its two input parameters,ε andMinPts. The
authors in [2] state that the input parameters just have to be
large enough to produce good results.

2.2.2 Clustering Multi-Represented Objects
Traditional clustering algorithms are based on one representation

space, usually a vector space. However, for complex objects often
multiple representations exist for each object. Proteins for example
are characterized by an amino acid sequence, a secondary structure
and a 3D representation. In [8] an efficient density-based approach
to cluster such multi-represented data, taking all available represen-
tations into account is presented. The authors propose two different
techniques to combine the information of all available representa-
tions dependent on the application. The evaluation part shows that
this approach is superior to existing techniques. The experiments
were done for protein data that is represented by amino-acid se-
quences and text descriptions as well as for image data, where two
different representations based on color histograms and segmenta-
tion trees were used.

2.2.3 Visually Mining through Cluster Hierarchies
In [4] the authors show how visualizing the hierarchical cluster-

ing structure of a database of objects can aid the user in his time
consuming task to find similar objects (cf. figure 2). Based on
reachability plots produced by the density-based clustering algo-
rithm OPTICS [2], approaches which automatically extract the sig-
nificant clusters in a hierarchical cluster representation along with
suitable cluster representatives are proposed. These techniques can
be used as a basis for visual data mining. The effectiveness and effi-
ciency of this approach was shown for CAD objects from a German
car manufacturer, and a sample of the Protein databank [3] contain-
ing approximately 5000 protein structures.

filter
candidates

resultrefinement

Figure 3: A multistep query processing architecture.

2.3 Query Processing on Complex Objects

2.3.1 Multi-step Query Processing
The main goal of a filter-refinement architecture, as depicted in

figure 3, is to reduce the number of complex and, therefore, time
consuming object distance calculations in the query process. To
achieve this goal, query processing is performed in two or more
steps. The first step is a filter step which returns a number of can-
didate objects from the database. For those candidate objects the
exact object distance is then determined in the refinement step and
the objects fulfilling the query predicate are reported. To reduce the
overall search time, the filter step has to fulfill certain constraints.
First of all, it is essential, that the filter predicate is considerably
easier to evaluate than the exact similarity measure. Second, a sub-
stantial part of the database objects must be filtered out. Only if
both conditions are satisfied, the performance gain through filtering
is greater than the cost for the extra processing step. Additionally,
the completeness of the filter step is essential. Completeness in this
context means that all database objects satisfying the query condi-
tion are included in the candidate set. Available similarity search
algorithms guarantee completeness if the distance function in the
filter step fulfills the lower-bounding property. For any two objects
Op andOq, a lower-bounding distance functiondf in the filter step
has to return a value that is not greater than the exact object dis-
tancedo of Op andOq, i.e. df (Op, Oq) ≤ do(Op, Oq). With a
lower-bounding distance function it is possible to safely filter out
all database objects which have a filter distance greater than the
current query range because the exact object distance of those ob-
jects cannot be less than the query range. Using a multi-step query
architecture requires efficient algorithms which actually make use
of the filter step. Agrawal, Faloutsos and Swami proposed such an
algorithm for range search [1].

2.3.2 Metric Index Structures
In some applications, objects cannot be mapped into feature vec-

tors. However, there still exists some notion of similarity between
objects, which can be expressed as a metric distance between the
objects, i.e. the objects are embedded in a metric space. Several
index structures for pure metric spaces have been proposed in the
literature (see [5] for an overview). A well-known dynamic index
structure for metric spaces is the M-tree [6]. The M-tree, which
is explained in detail in section 3.1, aims at providing good I/O-
performance as well as reducing the number of distance computa-
tions.

3. EFFICIENT RANGE-QUERIES ON COM-
PLEX OBJECTS

So far, the concepts of multi-step query processing and metric
index structures have only been used separately. We claim that
these concepts can beneficially be combined and that, through the
combination, a significant speed-up compared to both separate ap-
proaches can be achieved. In the following, we will demonstrate
the ideas for range queries with the M-tree as index structure and
arbitrary filters fulfilling the lower-bounding criterion. It has to be



noted that the techniques can also be applied to similar metric index
structures like the Slim-tree [17].

This section is organized as follows. After introducing the nec-
essary concepts for similarity range queries using the M-tree, we
present the concept of ”positive pruning” in section 3.2. In section
3.3, we combine the two worlds of direct metric index structures
and multi-step query processing based on filtering. Furthermore,
we show in this section that filters cannot only be used for improv-
ing the query response time of an M-tree, but also for efficiently
creating an instance of an M-tree. In section 3.4, we show how
caching can be applied to accelerate the processing of similarity
range queries.

3.1 Similarity Range Queries using the M-tree
The M-tree (metric tree) [6] is a balanced, paged and dynamic

index structure that partitions data objects not by means of their
absolute positions in the multi-dimensional feature space, but on
the basis of their relative distances in this feature space. The only
prerequisite is that the distance function between the indexed ob-
jects is metric. Thus, the M-tree’s domain of applicability is quite
general, and all sorts of complex data objects can be organized with
this index structure.

The maximum size of all nodes of the M-tree is fixed. All database
objectsOd or references to them are stored in the leaf nodes of an
M-tree, along with their feature values and the distanced(Od, P (Od))
to their parent objectP (Od). Inner nodes contain so-calledrouting
objects, which correspond to database objects to whom arouting
role was assigned by a promoting algorithm that is executed when-
ever a node has to be split. Additional to the object description
and the distance to the parent object, routing objectsOr also store
their covering radiusr(Or) and a pointerptr(T (Or)) to the root
node of their sub-tree, the so-calledcovering treeof Or. For all
objectsOd in this covering tree, the condition holds that the dis-
tanced(Or, Od) is smaller or equal to the covering radiusr(Or).
This property induces a hierarchical structure of an M-tree, with
the covering radius of a parent object always being greater or equal
than all covering radii of their children and the root object of an
M-tree storing the maximum of all covering radii.

Range queries are specified by a query objectOq and a range
valueε by which the answer set is defined to contain all the objects
Od from the database that have a distance to the query objectOq of
less than or equal toε:

DEFINITION 1 (SIMILARITY RANGE QUERY). LetO be a do-
main of objects andDB ⊆ O be a database. For a query object
Oq ∈ O and a query rangeε ∈ IR+

0 , the similarity range query
simRange : O×IR+

0 7→ 2DB returns the set

simRange(Oq, ε) = {Od ∈ DB|dist(Od, Oq) ≤ ε}.

Given a query objectOq and a similarity range parameterε, a
similarity range querysimRange(Oq, ε) starts at the root node
of an M-tree and recursively traverses the whole tree down to the
leaf level, thereby pruning all sub-trees which certainly contain no
result objects.

A description ofsimRange in pseudocode and the recursive
procedurerangeSearch used to traverse the M-tree is given in
figure 4.

The sub-tree of a routing objectOr can be pruned, if the absolute
value of the distance of the routing object’s parent objectOp to the
query objectOq, d(Op, Oq), minus the distance betweenOr and
Op is greater than the covering radius ofOr plusε:

|d(Op, Oq)− d(Op, Or)| > r(Or) + ε

1 simRange(queryObjectOq, rangeε) → ResultSet
2 result = NIL;
3 rangeSearch(root, Oq, ε);
4 returnresult;

1 rangeSearch(NodeN , queryObject Oq, rangeε)
2 Op := parent object of nodeN ;
3 IF N is not a leaf THEN
4 FOR EACHOr in N DO
5 IF |d(Op, Oq)− d(Or, Op)| ≤ r(Or) + ε
6 THEN
7 computed(Or, Oq);
8 IF d(Or, Oq) <= r(Or) + ε THEN
9 rangeSearch(ptr(T (Or), Oq, ε);
10 END IF
11 END IF
12 END FOR
13 ELSE
14 FOR EACHOd in N DO
15 IF |d(Op, Oq)− d(Od, Op)| ≤ ε THEN
16 computed(Od, Oq);
17 IFd(Od, Oq) ≤ ε THEN
18 addOd to result;
19 END IF
20 END IF
21 END FOR
22 END IF

Figure 4: Pseudocode description of similarity range search on
M-trees.

A proof for this is given in [6]. Thus, as the distance between
Op andOq has already been computed when accessing a nodeN ,
sub-trees can be pruned without further distance computations (see
line 5 of the algorithm in figure 4).

3.2 Positive Pruning
A hierarchical index structure, like the M-tree, is composed of

directory nodes with routing objectsOr which represent all objects
in their respective subtreeT (Or). For all objectsO ∈ T (Or),
d(Oq, Or) ≤ r(Or) holds. Efficient processing of range queries
on the original M-tree is based on the concept of ”negative prun-
ing”. During the query processing, certain subtrees are excluded
from the search based on the following formula:d(Oq, Or) >
r(Or) + ε (see line 7 of the algorithm in figure 4).

In this section we introduce the concept of ”positive pruning”. If
a directory node is completely covered by the query range, we can
report all objects on the leaf level of the M-tree without performing
any cost intensive distance computations (cf. figure 5).

Figure 5: Positive Pruning for the M-tree.



LEMMA 1. LetOq ∈ O be a query object andε ∈ IR+
0 a query

range. Furthermore, letOr be a routing object in an M-tree with
a covering radiusr(Or) and a subtreeT (Or). Then the following
statement holds:

d(Or, Oq) + r(Or) ≤ ε ⇒ ∀O ∈ T (Or) : d(O, Oq) ≤ ε

PROOF. The following inequalities hold for allO ∈ T (Or) due
to the triangle inequality and due tod(Or, Oq) + r(Or) ≤ ε:

d(O, Oq) ≤ d(O, Or) + d(Or, Oq)

≤ r(Or) + d(Or, Oq) ≤ ε

In the case of negative pruning, we skip the recursive tree traver-
sal of a subtreeT (Or), if the query range does not intersect the
covering radiusr(Or). In the case of positive pruning we skip all
the distance calculations involved in the recursive tree traversal if
the query range completely covers the covering radiusr(Or). In
this case we can report all objects stored in the corresponding leaf
nodes of this subtree without performing any further distance com-
putations. Figure 6 shows how this concept can be integrated into
the original methodrangeSearch depicted in figure 4.

1 rangeSearch(NodeN , queryObject Oq, rangeε)
...

7 computed(Or, Oq);
7a IFd(Or, Oq) + r(Or) ≤ ε THEN
7b report all objects inT (Or);
8 ELSE IFd(Or, Oq) <= r(Or) + ε THEN

...

Figure 6: Adaptation of similarity range search on M-trees for
positive pruning.

This approach is very beneficial for accelerating density-based
clustering on complex objects. DBSCAN for instance, only needs
the information whether an object is contained insimRange(Oq, ε) =
{O ∈ DB|d(O, Oq) ≤ ε}, but not the actual distance of this ob-
ject to the query objectOq.

3.3 Combination of Filtering and Indexing
The M-tree reduces the number of distance calculations by parti-

tioning the data space even if no filters are available. Unfortunately,
the M-tree may suffer from the navigational cost related to the dis-
tance computations during the recursive tree traversal. On the other
hand, the filtering approach heavily depends on the quality of the
filters.

When combining both approaches, these two drawbacks are re-
duced. We use the filter distances to optimize the required number
of exact object distance calculations needed to traverse the M-tree.
Thereby, we do not save any I/O cost compared to the original M-
tree, as the same nodes are traversed, but we save a lot of costly
distance calculations necessary for the traversal. The filtering M-
tree stores the objects along with their corresponding filter values
within the M-tree. A similarity query based on the filtering M-tree
always computes the filter distance values prior to the exact dis-
tance computations. If a filter distance value is already a sufficient
criterion to prune branches of the M-tree, we can avoid the exact
distance computation. If we have several filters, the filter distance
computation always returns the maximum value of all filters.

The pruning quality of the filtering M-tree benefits from both
the quality of the filters and the clustering properties of the index

Figure 7: Similarity range query based on the filtering M-tree.

structure. In the following, we will show that the number of dis-
tance calculations used for range queries as well as for the creation
of an M-tree can be optimized by using lower-bounding filters.

3.3.1 Range Queries
Similarity range queries are used to retrieve all objects from a

database which are within a certain similarity range from the query
object (cf. definition 1). By computing the filter distance prior
to the exact distance we can save on many distance computations.
Based on the following lemma, we can prune many subtrees with-
out computing the exact distances between a query objectOq and
a routing objectOr (cf. figure 7).

LEMMA 2. LetO be a set of objects andDB ⊆ O a database.
Furthermore, letdo, df : O×O 7→ IR+

0 be two distance functions,
for whichdf lower boundsdo, i.e. ∀O1, O2 ∈ O : df (O1, O2) ≤
do(O1, O2) holds. LetOq ∈ O, ε ∈ IR+

0 . For each routing object
Or ∈ DB with covering radiusr(Or) ∈ IR+

0 and subtreeT (Or)
the following statement holds:

∀O ∈ T (Or) : (df (Oq, Or) > r(Or) + ε)

⇒ do(Oq, O) > ε

PROOF. As ∀O1, O2 ∈ O : df (O1, O2) ≤ do(O1, O2) holds,
the following statement is true:

df (Oq, Or) > r(Or) + ε ⇒ do(Oq, Or) > r(Or) + ε

Based on the triangle inequality and our assumption thatdo(O, Or) ≤
r(Or), we can prove the above lemma as follows:

df (Oq, Or) > r(Or) + ε

⇒ do(Oq, Or) > r(Or) + ε

⇒ do(Oq, Or)− r(Or) > ε

⇒ do(Oq, Or)− do(O, Or) > ε

⇒ do(Oq, O) > ε

Let us note that a similar optimization can be applied to the ob-
jects stored on the leaf level with the assumption that their ’cover-
ing radius’ is 0. Figure 8 shows how this concept can be integrated
into the original methodrangeSearch of figure 4.

3.3.2 Construction of an M-tree
Filters can also be used for accelerating the creation of an M-tree.
Insert. Figure 9 depicts the functionfindSubTreewhich decides

which tree to follow during the recursive tree-traversal of the insert
operation. The main idea is that we sort all objects according to the
filter distance and then walk through this sorted list. Thereby, we
first test those candidates which might not lead to an increase in the
covering radius. If we detect a routing object for which no increase



1 rangeSearch(NodeN , queryObject Oq, rangeε)
...

5 IF |d(Op, Oq)− d(Or, Op)| ≤ r(Or) + ε
6 THEN
6a computedf (Or, Oq)
6b IFdf (Or, Oq) <= r(Or) + ε THEN
7 computed(Or, Oq);
8 IF d(Or, Oq) <= r(Or) + ε THEN

...
15 IF |d(Op, Oq)− d(Od, Op)| ≤ ε THEN
15a computedf (Od, Oq)
15b IFdf (Od, Oq) ≤ ε THEN
16 computed(Od, Oq);
17 IFd(Od, Oq) ≤ ε THEN

...

Figure 8: Adaptation of similarity range search on M-trees for
filtering.

is necessary, we postpone the reporting of this object. We first in-
vestigate all routing objects which are closer to the given query ob-
ject and possibly also do not have to increase their covering radius.
If several of those routing objects exist, we take the one closest
to the inserted object. If no such routing object exists, we walk
through the list until we have found the routing object which leads
to a minimal increase of its covering radius. Let us note that this
idea is closely related to the optimum multi-stepk-nearest neighbor
search algorithm [16] presented by Seidl and Kriegel.

Split. If a node overflow occurs due to an insertion, the node has
to be split adequately. The ’ideal’ split strategy should promote two
new routing objects, such that for the resulting regions volume and
overlap are minimized. Several different strategies for splitting a
node are described in [6]. There the authors show that in most cases
it is the best strategy to minimize the maximum of the resulting
covering radii. This strategy, which is calledmM Rad is also the
most complex in terms of distance computations. It considers all
possible pairs of objects and after partitioning the set of entries,
promotes the pair of objects for which the maximum of the two
covering radii is minimal. Given a set ofn entries and two routing
objects, the generalized hyperplane decomposition is used to assign
each of then objects to one of the two routing objects. Although
this leads to unbalanced splits, experimental results show that it is
superior to techniques resulting in a balanced distribution.

In figure 10, it is shown how the filter distances can be used to
speed-up the split of an M-tree node. The main idea is that we gen-
erate a priority queue containing pairs of promoting objects based
on the filter distances. We walk through this list and if we detect
that themM Radvalue based on the filters is higher than the best al-
ready foundmM Radvalue based on exact distance computations,
we can stop. Thus we do not necessarily have to test allO(n2) pairs
of promoting objects. Again this approach is similar to [16]. Fur-
thermore, if we test two actual promoting objectsOp1 andOp2, we
have to assign an objectO either toOp1 or toOp2. This test can be
accelerated by computing first the actual distance betweenO and
the promoting object for which the filter distance is smaller. If the
resulting exact distance is still smaller than the filter distance to the
other promoting object, we can save on the second exact distance
computation. Note, that we can easily alter the functionnodeSplit
in such a way that it returns the two resulting nodes instead of the
promoting objects.

findSubTree(RoutingObjectOR,Object O)→RoutingObject
ActResult = (nil, false,∞); // (object, InCovRad, distance)
FOR EACHOr in T (OR) DO

computedf (Or, O);
END FOR
C1 = {Or|df (Or, O)− r(Or) < 0};
C2 = T (OR)\C1;
Sort allOr ∈ C1 andO′

r ∈ C2 ascending according to
df (Or, O) resulting in a SortedList =
〈Or1 , Or2 , . . . , Or|C1|〉 ◦ 〈O

′
r1 , O′

r2 , . . . , O′
r|C2|〉;

FOR EACHOr in SortedList DO
IF ActResult.InCovRad ANDOr ∈ C2 THEN

return ActResult.object;
END IF
IF df (Or, O) > ActResult.distance THEN

IF ActResult.InCovRad THEN
return ActResult.object;

ELSE
computedo(O, Or);
IF do(O, Or)− r(Or) < 0 THEN

ActResult = (Or, true,do(O, Or));
ELSE

IF do(O, Or)− r(Or) < ActResult.distance
−r(ActResult.object) THEN

ActResult = (Or, false,do(O, Or));
END IF

END IF
END IF

ELSE
computedo(O, Or);
IF ActResult.InCovRad THEN

IF ((do(O, Or)− r(Or) < 0) AND (do(O, Or)
< ActResult.distance)) THEN

ActResult = (Or, true,do(O, Or));
END IF

ELSE
IF do(O, Or)− r(Or) < 0 THEN

ActResult = (Or, true,do(O, Or));
ELSE

IF do(O, Or)− r(Or) < ActResult.distance
−r(ActResult.object) THEN

ActResult = (Or, false,do(O, Or));
END IF

END IF
END IF

END IF
END FOR
return ActResult.object;

Figure 9: Pseudocode description of functionfindSubTreefor
inserting an object into an M-tree.

3.4 Caching Distance Calculations
In this section, we present a further technique which helps to

avoid costly distance computations for index construction and query
processing.

3.4.1 Cache Based Construction
If we have to cope with distance computations which are more

expensive than accessing secondary storage, we suggest to store the
already processed distance computations to disk. Especially when
splitting the same overflowing node repeatedly, accessing stored
distance computation values can speed up the insertion process,
since otherwise the same distances are computed several times.



nodeSplit (NodeN )→ PromotingObjects
ActResult = ((nil, nil),∞); //((PromotingObject1, PromotingObject2), mMRad)
FOR EACH pair of objects(Oi, Oj) of nodeN DO

computedf (Oi, Oj);
END FOR
Compute for each of those pairs(Oi, Oj) the mMRad value mMRadfilter
based on the filters;
Sort the resulting mMRadfilter values ascending,
resulting in a SortedList =〈(Oa1 , Ob1 , mMrad filter1), . . . ,
(Oan , Obn , mMRad filtern)〉;
FOR EACH objectOi of nodeN DO

IF mMRad filteri > ActResult.mMRad THEN
return ActResult;

END IF
mMRadi = 0;
Sort all objectsOk of nodeN descending according to
min(df (Ok, Oai

), df (Ok, Obi
));

FOR EACH objectOk of this sorted list DO
IF df (Ok, Oai

) < df (Ok, Obi
) THEN

computedo(Ok, Oai
);

IF do(Ok, Oai
) < df (Ok, Obi

) THEN
mMRadi = max(mMRadi, do(Ok, Oai

));
ELSE

computedo(Ok, Obi
);

mMRadi =
max(mMRadi, min(do(Ok, Oai

), do(Ok, Obi
)));

END IF
ELSE

computedo(Ok, Obi
);

IF do(Ok, Obi
) < df (Ok, Oai

) THEN
mMRadi = max(mMRadi, do(Ok, Obi

));
ELSE

computedo(Ok, Oai
);

mMRadi =
max(mMRadi, min(do(Ok, Oai

), do(Ok, Obi
)));

END IF
END IF
IF mMRadi > ActResult.mMRad THEN

break;
END IF

END IF
IF mMRadi < ActResult.mMRad THEN

ActResult = (Oai
, Obi

, mMRadi);
END IF

END FOR
return ActResult;

Figure 10: Pseudocode description of functionnodeSplitfor the
M-tree.

3.4.2 Cache Based Range Queries
Efficient query processing of range queries also benefits from

the idea of caching distance calculations. During the navigation
through the M-tree directory, the same distance computations may
have to be carried out several times. Although each objectO is
stored only once on the leaf level of the M-tree, it might be used
several times as routing object. Furthermore, we often have the
situation that distance calculations carried out on the directory level
have to be repeated at the leaf level.

As shown in figure 4 a natural way to implement range queries
is by means of recursion resulting in a depth-first search. We sug-
gest to keep all distance computations in main memory which have
been carried out on the way from the root to the actual node. Af-
ter leaving the node, i.e. when exiting the recursive function, we
delete all distance computations carried out at this node. This lim-
its the actual main memory footprint toO(h · b) whereh denotes
the maximum height of a tree andb denotes the maximum number
of stored elements in a node. Even in multi-user environments this
rather small worst-case main memory footprint is tolerable. The
necessary adaptations of the rangeSearch algorithm are drafted in
figure 11.

1 rangeSearch(NodeN , queryObject Oq, rangeε)
...

6 distCache(N, Or, Oq);
...

16 distCache(N, Od, Oq);
...

22 END IF
22a deleteCache(N );

distCache(NodeN , Object O1, Object O2) → float
result = hashtable.lookup(O1, O2);
IF result = null then THEN

result = compute d(O1, O2);
hashtable.add(N, O1, O2,result);

END IF
returnresult;

deleteCache(NodeN )
hashtable.delete(N );

Figure 11: Adaptation of similarity range search on M-trees for
Caching.

4. EVALUATION
To show the efficiency of our approach, we chose the applica-

tions and data types described in section 2 and performed extensive
experiments. All algorithms were implemented in Java 1.4 and the
experiments were run on a workstation with a Xeon 1.7 GHz pro-
cessor and 2 GB main memory under Linux. We implemented the
M-tree as described in [6]. As in all cases the time for distance
calculations was dominating the runtime of a range query, we only
show the number of distance calculations and not the runtime.

4.1 CAD Vector Set Data
For the experiments with this data type, we used the similarity

model presented in [10], where CAD objects were represented by
a vector set consisting of 7 vectors in 6D. All experiments were
carried out on a data set containing 5,000 CAD objects from an
American aircraft producer. As distance measure between sets of
feature vectors we used the minimal matching distances which can
be computed inO(k3), wherek denotes the cardinality of the point
set, by means of the Kuhn-Munkres [12, 13] algorithm. As filter,
we used the centroid filter introduced in [10].

4.1.1 Creation of M-tree
The generation of the optimized M-tree was carried out without

caching (cf. figure 12) and with caching (cf. figure 13). With-
out cashing, the number of necessary distance calculations is very
high, due to the repeated splitting of nodes. Note that the number of
distance calculations for one node split is quadratic w.r.t. the num-
ber of elements of this node. In this case, ournodeSplit algorithm
only needs1/4 of the distance calculations while still producing the
same M-tree. If we apply caching, the overall number of required
distance computations is much smaller as many distance computa-
tions necessary for splitting a node can be fetched from disk. In
this case ourfindSubTree-function allows us to reduce the num-
ber of required distance calculations even further, i.e. the number of
distance computations is bisected. To sum up, both optimizations,
which are based on the exploitation of available filter information,
allow us to build up an M-tree much more efficiently.



0

5000000

10000000

15000000

20000000

25000000

5 10 19 50 100

fanout of M-tree

N
um

be
r o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns

M-tree M-tree (optimized FindSubtree)
M-tree(optimized Split) M-tree(optimized FindSubtree+Split)

Figure 12: Creation without Caching Distance Calculations.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

5 10 19 50 100

fanout of M-tree

N
um

be
r o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns

M-tree M-tree (optimized FindSubtree)
M-tree(optimized Split) M-tree(optimized FindSubtree+Split)

Figure 13: Creation with Caching Distance Calculations.

4.1.2 Range Queries
Figure 14 and 15 show in what way the different approaches for

range query processing depend on the chosenε-value. Figure 14
shows that for the investigated data set, the original M-tree is the
worst access method for allε-values. On the other hand, the pure
filter performs very well. For this data set, reasonableε-values
for density-based clustering would be about 1 for DBSCAN and
about 2 for OPTICS. In this parameter range, our approach clearly
outperforms both the filter and especially the original M-tree.

In figure 15 one can see that for smallε-values, we benefit from
the filtering M-tree, whereas for higher values we benefit from
caching and positive pruning.

Furthermore, we clustered the data set using OPTICS [2] which
forms the basis for the visual data mining tool presented in subsec-
tion 2.2. With a suitable parameter setting for OPTICS we achieved
a speed-up of 16% compared to the centroid filter, 33% compared
to the original M-tree and 104% compared to the sequential scan.
Let us note, that the average cardinality of the result set of each
range query was almost 2,000 which limits the best achievable
speed-up to 150%.

4.2 Image Data
Image data are a good example for multi-represented complex

objects. A lot of different similarity models exist for image data,
each having its own advantages and disadvantages. Using for ex-
ample text descriptions of images, one is able to cluster all images
related to a certain topic, but these images need not look alike. Us-

0

1000

2000

3000

4000

5000

6000

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10

epsilon

n
o

. o
f 

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

Hits Filter M-tree M-tree+Cache+Filter+PosPruning

Figure 14: Comparison of our best technique to M-tree and
filtering for vector set data .

0

1000

2000

3000

4000

5000

6000

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

epsilon

n
o

. o
f 

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

M-tree+Filter M-tree+Cache M-tree+Cache+Filter M-tree+Cache+Filter+PosPruning

Figure 15: Comparison of our techniques for vector set data.

ing color histograms instead, the images are clustered according to
the distribution of color in the image. The approach for clustering
multi-represented objects presented in [8] is able to get the best out
of all these different types of representations. We present some ex-
periments for image data represented as trees or graphs, where the
efficiency of range query processing is especially important.

4.2.1 Tree Structured Image Data
Images can be described as segmentation trees. Thereby, an im-

age is first divided into segments of similar color, then a tree is
created from those segments by iteratively applying a region grow-
ing algorithm which merges neighboring segments if their colors
are sufficiently alike. As similarity measure for the resulting trees,
we used the degree-2 edit distance and implemented the filter re-
finement architecture as described in [9]. We used a sample set of
10,000 color TV-Images. For the experiments we chose reasonable
epsilon values for the multi-represented clustering algorithm.

Figure 16 shows that we achieve a significant speed-up compared
to the original M-tree. As can be seen we also outperform the pure
filtering approach.

4.2.2 Graph Structured Image Data
To extract graphs from the images, they were segmented with

a region growing technique and neighboring segments were con-
nected by edges to represent the neighboring relationship. We used
the edge matching distance and the image data set as described in
[11]. The filter presented in this paper is almost optimal, i.e. the
number of unnecessary distance calculations during query process-



0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

2 5 15

epsilon

no
. o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns
Filter Mtree Mtree+Filtering+Caching+PositivePruning

Figure 16: Comparison of our best technique to M-tree and
filtering for tree structured data.

ing is very low. Even in this case our techniques is as good as the
filter.

To show the robustness of our approach against the filter selectiv-
ity, we reduced it in a stepwise process. We weighted the original
filter distances with constant factors to decrease the filter selectiv-
ity. Figure 17 shows that independently of the filter selectivity, our
approach outperforms the original M-Tree by a factor of almost 2
and is at least as good as the pure filtering approach.

5. CONCLUSIONS

5.1 Summary
In this paper, we showed that there exist a lot of interesting

application areas for density-based clustering of complex objects.
Density-based clustering is based on similarity range queries where
the similarity measures used for complex objects are often com-
putationally very complex which makes them unusable for large
databases. To overcome the efficiency problems, metric index struc-
tures or multi-step query processing are applied. We combined and
extended these approaches to achieve the best from two worlds.
More precisely, we presented three improvements for metric index
structures, i.e. positive pruning, the combination of filtering and
indexing and caching. In a broad experimental evaluation based on
real world data sets, we showed that a significant speed-up for sim-
ilarity range queries is achieved with our approach. By means of
our new techniques, application areas like visually mining through

0

2000

4000

6000

8000

10000

12000

00,20,40,60,81

selectivity of filter

no
. o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns

Filter Mtree+Filtering+Caching+PositivePruning Mtree

Figure 17: Comparison of our techniques for graph data.

cluster hierarchies of complex objects or clustering of complex
multi-represented objects can be extended to larger databases.

5.2 Potentials for Future Work
In this paragraph, we shortly describe how the introduced opti-

mized M-tree can be used for effectively and efficiently navigating
through massive data sets. In Section 2.2.3, a data mining tool was
sketched, called BOSS [4]. BOSS is based on the density-based
hierarchical clustering algorithm OPTICS and on suitable cluster
recognition and representation algorithms. Density-based cluster-
ing algorithms are able to detect arbitrarily shaped clusters, which
are advantageous in application areas as for instance trend detec-
tion in spatial databases. On the other hand, in the area of simi-
larity search clusters of spherical shapes are often more desirable.
The optimized M-tree cannot only be used for computing a hierar-
chical density-based clustering efficiently, but it can also be utilized
as a new data mining tool helping the user in his time-consuming
task to find similar objects. Each directory node of an M-tree con-
sists of objects representing all elements stored in the correspond-
ing spherical subtrees. Thus, the tree itself can be regarded as a
hierarchical clustering which, additionally, efficiently supports all
kinds of similarity queries, e.g.ε-range queries. Furthermore, the
optimizations introduced in this paper allow to build up an opti-
mized M-tree much more efficiently than carrying out a complete
hierarchical density-based clustering. In order to increase the qual-
ity, i.e. to minimize the overlap between subtrees of the optimized
M-tree, we carry out update operations similar to update opera-
tions on Slim-trees [17]], i.e. we propose to use a variant of the
slim-down algorithm trying to keep the tree tight. The quality of
the resulting dynamic browsing tool could be measured by means
of numerical values reflecting the degree of overlapping nodes (cf.
the fat-factor and the bloat-factor presented in [17]). In our future
work, we want to elaborate the trade-off between quality and effi-
ciency of a new dynamic data-mining browsing tool which is based
on the optimized M-tree as introduced in this paper.

6. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient

similarity search in sequence databases. InProceedings of
the 4th International Conference of Foundations of Data
Organization and Algorithms (FODO), pages 69–84, 1993.

[2] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.
“OPTICS: Ordering Points to Identify the Clustering
Structure”. InProc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’99), Philadelphia, PA,
pages 49–60, 1999.

[3] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne. “The Protein
Data Bank”.Nucleic Acids Research, 28:235–242, 2000.

[4] S. Brecheisen, H.-P. Kriegel, P. Kröger, and M. Pfeifle.
Visually mining through cluster hierarchies. InProc. SIAM
Int. Conf. on Data Mining (SDM’04), Orlando, FL, 2004.

[5] E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marroquin.
Searching in metric spaces.ACM Computing Surveys,
33(3):273–321, 2001.

[6] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In
VLDB’97, Proc. of 23rd International Conference on Very
Large Databases, August 25-29, 1997, Athens, Greece, pages
426–435, 1997.



[7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A
Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. InProc. 2nd Int. Conf. on
Knowledge Discovery and Data Mining (KDD’96), Portland,
OR, pages 291–316. AAAI Press, 1996.

[8] K. Kailing, H.-P. Kriegel, A. Pryakhin, and M. Schubert.
Clustering multi-represented objects with noise. InProc. 8th
Pacific-Asia Conf. on Knowledge Discovery and Data
Mining (PAKDD’04), Sydney, Australia, 2004.

[9] K. Kailing, H.-P. Kriegel, S. Scḧonauer, and T. Seidl.
Efficient similarity search for hierachical data in large
databases. InProc. 9th Int. Conf. on Extending Database
Technology (EDBT 2004), 2004.

[10] H.-P. Kriegel, S. Brecheisen, P. Kröger, M. Pfeifle, and
M. Schubert. Using sets of feature vectors for similarity
search on voxelized cad objects. InProc. ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD’03), San Diego,
CA, pages 587–598, 2003.

[11] H.-P. Kriegel and S. Scḧonauer. Similarity search in
structured data. InProc. 5th International Conference,
DaWaK 2003, Prague, Czech Republic, pages 309–319,
2003.

[12] H. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–97, 1955.

[13] J. Munkres. Algorithms for the assignment and transportation
problems.Journal of the SIAM, 6:32–38, 1957.

[14] A. Nierman and H. V. Jagadish. Evaluating structural
similarity in XML documents. InProc. 5th Int. Workshop on
the Web and Databases (WebDB 2002), Madison, Wisconsin,
USA, pages 61–66, 2002.

[15] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition of
shapes by editing shock graphs. InProc. 8th Int. Conf. on
Computer Vision (ICCV’01), Vancouver, BC, Canada,
volume 1, pages 755–762, 2001.

[16] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest
neighbor search. InProc. ACM SIGMOD Int. Conf. on
Managment of Data, pages 154–165, 1998.

[17] C. J. Traina, A. Traina, B. Seeger, and C. Faloutsos.
Slim-trees: High performance metric trees minimizing
overlap between nodes. InProc. 7th International
Conference on Extending Database Technology, Konstanz,
Germany, March 27-31, 2000, pages 51–65, 2000.

[18] J. T. L. Wang, K. Zhang, G. Chang, and D. Shasha. Finding
approximate patterns in undirected acyclic graphs.Pattern
Recognition, 35(2):473–483, 2002.

[19] K. Zhang, J. Wang, and D. Shasha. On the editing distance
between undirected acyclic graphs.International Journal of
Foundations of Computer Science, 7(1):43–57, 1996.




