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Abstract

Despite a lot of research in recent years stable and
realistic haptic interaction with virtual environments
keeps an unsolved problem. Among different approaches
the Voxmap-PointShellTM (VPS) method seems very
promising due to constant sample rates, independent of
the static environment. But there is still the stability
problem to be solved globally. In this paper some
adaptations based on the VPS are presented, including
the dynamic object modeling and the force calculation
method, to reduce the distractions of the calculated
collision forces to increase stability. The PointShell points
lie exactly on the surface of the dynamic object, to get a
smoother surface representation. A variation of the
collision force calculation leads to a reduction of the
“voxel noise”, that appears due to the discretization of
the volume space. A design framework for the virtual
coupling is presented, that enables the automatic
configuration for different haptic devices. The validity
will be shown with different kineasthetic hand controllers.

1. Introduction

There are numerous haptic rendering algorithms for
virtual simulations, differing in object and surface
modeling. Object models are mostly approximate
descriptions of the simulated objects, used in the virtual
environment. In many rendering algorithms, the
geometrical complexity of the particular modeled objects
is restricted due to high rendering times. In the VPS
approach of McNeely, Puterbaugh and Troy [6], the
virtual environment consists of objects divided into
dynamic and static objects. Dynamic objects can freely
move through the virtual space, whereas the static objects
are fixed in the world coordinate system. With a haptic
device, a human can touch the static objects (static

environment) with the dynamic object, and the rendered
collision forces will be fed back to the operator.

The haptic rendering update rate is independent from
the complexity of the static environment, thus qualifying
for real time applications. The environment of static
objects is collectively represented by a single spatial
occupancy map called a voxmap (volume map). This is
created by discretizing the static environment space,
which is partitioned into regions of free space, object
surface, and object interior. The collection of the discrete
volume elements (voxels) build the voxmap. The dynamic
object is described by a collection of points (PointShell),
which models its surface. Each point is assigned a surface
normal vector, pointing inwards. The haptic rendering
algorithm includes a fast collision detection technique
based on probing the voxmap with the surface point
samples of the PointShell. By using the normal vectors of
the PointShell, an approximate collision force can be
easily computed in constant time for each point-voxel
interpenetration. Figure 1 shows a PointShell colliding
with the voxmap. For each PointShell point, contained by
a surface voxel, the depth of interpenetration is calculated
as the distance d from the point to the tangent plane. This
plane passes through the voxel center and has the same
normal vector as the PointShell point normal vector.
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Figure 1:  Voxmap-PointShell-ModelTM
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So the time consumed to render a single frame depends
only on the number of PointShell points. The real time
capability qualifies this algorithm for online haptic
interactions between a human operator and a virtual
environment. For enhancing haptic stability, McNeely et
al. [6] employ a ‘virtual coupling’ scheme, which
connects the user’s haptic motion with the motions of the
dynamic object through a virtual spring and damper. This
scheme was embedded in the haptic rendering algorithm.
But mechanical properties of different haptic devices are
not treated by this virtual coupling, and it is difficult to
tune the system to obtain a stable haptic feedback.

In contrast, the approach described in this paper
decouples the stability problem from the haptic rendering,
as also proposed by Adams and Hannaford [1], where the
virtual coupling was treated as part of the haptic interface
(device and virtual environment). This allows the usage of
an arbitrary haptic rendering algorithm independent from
the haptic device. Almost no changes of the virtual
environment parameters are required, when the haptic
device changes. In chapter 2, we present adaptations to
the VPS based object modeling and force calculation, for
reducing the distractions of collision forces to get more
stability. The ‘virtual coupling’ is described in chapter 3.
Chapter 4 shows some results of experiments, where the
validity of the methods can be seen. The paper closes with
the conclusion in chapter 5.

2. Extending the VPS Algorithm

2.1 Exact PointShell Creation

The calculation of the contact force takes place in the
force voxel layer which is one voxel deep. Due to the
design of the VPS method the effective force layer depth
around static objects amounts to half a voxel. So it can be
seen easily, that surface deviations of the PointShell
object, with an amplitude of more then a half voxel size,
have considerable influence on force distractions. This
surface variance appears due to the PointShell creation
described in the original VPS, where the object first was
voxelized, and the collection of all surface voxel centers
build the PointShell (Fig. 3, 1-3).

Next, the extended PointShell creation is presented,
where the points lie on the triangulated object surface
(anti-aliasing), not only to improve the accuracy, but also
to stabilize the collision force. The example in Figure 2
shows the same collision situation of a dynamic and static
object, with the two different PointShell models. In the
upper scene (Fig. 2 a), the PointShell was built with the
original algorithm, where the distance between the

PointShell points and the object surface is up to e
2

3
,

where e denotes the voxel extension. This surface
deviation is very high compared to the force layer depth

of e/2. In the case of Figure 2 a) the PointShell was
created using the voxel raster shown with dashed lines.
With this rough surface approximation only one of the
four PointShell points effects a collision force, although
the ‘real’ dynamic object surface cross three force layer
voxel. Figure 2 b) shows the effected collision forces
using the exact PointShell model, creating a smoother
force field.

The exact PointShell creation process steps are shown
in Figure 3. The first two steps are equal to the original
PointShell creation. In order to guarantee a proper
detection of collisions between dynamic and static
objects, the distance between two neighbored PointShell
points is limited according to the voxel resolution of the
static environment. Hence the ‘naive’ PointShell is built
by the sum of all center points of the resulting surface
voxels, after creating the VoxMap of the dynamic object
with the same resolution as of the static environment (Fig.
3, 1-3).

A smoother surface representation can be achieved by
projecting each center point on to the triangle surface

Figure 3: Steps of the exact PointShell
creation algorithm
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(Fig. 3, 4-5). Two additional requirements for the new
position have to be fulfilled:

1) inside the primary voxel
2) minimal distance to the voxel center

This two requirements can be inconsistent with one
another, whereas the first requirement has the higher
priority and the second should be optimized as far as
possible. The first condition keeps the maximal neighbor
point distance such that an unrecognized interpenetration
of the static and dynamic object is prevented. The
extension of the spatial gap between two PointShell point
neighbors is restricted to the minimal spatial extension of
a static object surface part (3 voxel extensions, if a force
field is used as described by McNeely [6]). The property
of the shortest distance tries to keep the original distance
of the point neighborhood as far as the other conditions
allows, for a convenient point distribution.

Algorithm: The following algorithm shows the correct
point-surface-projection, keeping the above requirements
with the defined priority. The object surface is described
by a number of triangles. Due to the condition, that the
projected point must be contained by the respective voxel,
only the triangles with a common intersection point with
that voxel have to be considered. For each triangle the
following steps have to be done. First calculate from the
voxel center the perpendicular nadir p0 on the triangle
surface. Now four cases have to be considered:

Let:
- V be the set of all points contained by the respective

Voxel;
- VS be the set of all points lying on the surface of the

respective Voxel; VS ⊆ V;
- T be the set of all points lying on the observed triangle;

then:
case 1: p0 ∈ V and p0 ∈ T:

the result is p0;
case 2: p0 ∈ V and p0 ∉ T:

return point pr ∈ {T ∩ V}, which has the
shortest distance to p0;

case 3: p0 ∉ V and p0 ∈ T:
return point pr ∈ {T ∩ VS}, which has the
shortest distance to p0;

case 4: p0 ∉ V and p0 ∉ T:
if (pr ∈ T with the shortest distance to p0) ∈ V

then the result is pr,
else the result is equal to the result of case 3;

Figure 4 shows two examples of case 4. The treatment
in case 4 is generally valid, therefore all cases can be
handled by the following algorithm:

For each original PointShell point (voxel center), map
it on the corresponding triangles, and choose the result
point with the shortest distance to the voxel center. The
set of all mapped points build the exact PointShell. Now
the PointShell vectors can be calculated from the normal
directions of the triangles intersecting the relevant voxel.

2.2 Adapted Collision Force Calculation

Further force discontinuities appear, when PointShell
points cross static voxel borders. Especially under sliding
motion with a relatively constant interpenetration between
the dynamic and static object, this effect, shown in Figure
5 (a, b), causes instability and notably disturbs the
operator’s correct sense of touch (vibrations). The
presented variation of the VPS collision force calculation
[6], leads to smoother transitions at voxel borders. In
contrary to hierarchical methods, which increase the
calculation time, the presented method does not need a
finer resolution (granularity) of the static environment.

Instead of providing a general solution to the force
stability problem, our adapted force calculation
specifically targets the force noise for dynamic objects

Algorithm :

projectPoint(Voxel, Triangle)
p0 = perpendicularNadir(Voxel.centerpt, Triangle.plane);
pr = trianglePointWithShortestDistanceToPoint(p0);
if (Voxel.contains(pr))
then return(pr)
else intersection_lines = intersect(Triangle, Voxel.surface);

for each Line ∈ intersection_lines
    pl = linePointWithShortestDistanceToPoint(p0,Line);
    presult = min(distance(pl,p0), distance(presult,p0));

return presult;
end;

Triangle plane
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Zoom area

Triangle

result point
(lying on voxel
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Figure 4: Two examples showing the
projection treatment of case 4



sliding over a plane of adjacent surface voxels. When
PointShell points cross the border between these adjacent
voxels, instability occurs if the direction of the relevant
point normal vector is not perpendicular to the sliding
plane. Figure 5 a) shows a dynamic object colliding with
a static object under sliding motion. Figure 5 b) and c)
demonstrate the interesting area (marked with the dashed
line in 5 a)). Figure 5 b) shows the problem that appears
with the original force calculation method. When the
PointShell point crosses the voxel border, the calculated
force value is reduced to zero, which influences the
overall collision force. Instead of using the individual
PointShell normals to calculate the collision force, the
average of all collision point normals is used to calculate
the interpenetration distance d of each PointShell point
(Figure 5 c)). This average direction is a more stable
approximation of the sliding plane normal, and the
mentioned problem can be mitigated.

3. Virtual Coupling

The schemes described above only reduce force noise,
but there are still remaining distracting forces causing an
unstable system. The direct way to reach the required
stability is to use a ‘virtual coupling’ scheme between the
operator and the virtual environment. A design framework
for the virtual coupling is presented, that allows a
consistent interaction between the haptic rendering (VPS)
and different haptic devices,  because for the overall
stability, the dynamic properties of the haptic device play
a key role.

In many other approaches (e.g. McNeely et al. [6],
Adams and Hannaford [1]) the virtual coupling is treated
and parameterized as a spring-damper system, which is a
good mechanical interpretation, but leads in most cases to
a heuristic optimization of the parameters. The spring-

damper system is used to reduce the force steps, produced
by discontinuities and discretization, for the human user.

The virtual coupling can also be seen as a dynamic
shaping filter, as it is done in this approach (Fig. 6). The
dynamics of the calculated contact force are reduced such
that neither the haptic device nor the force reflection loop
with the human become unstable.

Filter Construction

The filter should keep the role of the virtual coupling,
thus the physically model of the virtual coupling (the
spring-damper system) is used as a model for the
construction part.

With this mechanical representation (Fig. 7) the
following equation can be built:

xmxrxcF &&& ⋅+⋅+⋅=

For the filter, the translation value x must be replaced
by the collision force as input, which is generated by the
haptic rendering algorithm. This replacement can be done
under the condition that the collision force depends
directly on the penetration distance, which is true with
this haptic rendering algorithm (Fcoll ~ xpos (collision)).

With 
c

m
T = , 

T
w

1
0 = ,  

cm

r
d

⋅
=

2
, 

c
K

1=

this function leads to the PT2-element with the following
transfer function (continuous time):

2
0

2
0

2
0

2
)(

sswdw

w
KsH f +⋅⋅⋅+

⋅=
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Figure 7:  Mechanical spring-damper system

Figure 5: Force stabilization under sliding motion
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The parameters used with this filter function can easily
adjusted to the dynamic properties of the haptic device,
without changes in the haptic rendering algorithm.
Whereas the sample time TA is chosen by the cycle time
of the rendering algorithm and haptic device, the
sufficient stability can be reached by adjusting the cut-off-
frequency w0 and the damping factor d.

Typically a human can sense kineasthetic impression
with a bandwidth of approximately 1kHz [3] and can
make controlled movements with a maximal bandwidth of
10 Hz. Studies at the DLR resulted in a bandwidth of 2
Hz in which a human performs a desired task (no
reflexes). To perceive realistic kineasthetic impression the
dynamic of the force controller (implemented at the
device) plays the key role and limits the achievable
bandwidth. That means that the force dynamic of the
virtual environment can be limited to 5Hz without loosing
a realistic impression of the scene.

4. Experiments

The validity will be shown in experimental results
using the Phantom T-Model (Fig.14) and the DLR- light
weight robot (Fig. 13) as kineasthetic hand controller [7].
In the virtual test bed the static scene consists of a cup,
whereas a sphere is used as dynamic object manipulated
by the operator (Fig 15).

4.1 Experiments to the Adapted Collision Force
Calculation

For a benchmark of  the force distractions, the results
of the collision force calculations are evaluated in two
experiments. The dynamic sphere was moved over the
static object with a predefined path and a constant
penetration. The experiments differ with respect to the
surface conditions of the static object, which typically
occur in discrete space models like the voxel map. The
surface condition depends on the orientation of the
surface plane related to the main axis planes of the voxel
grid coordinate system. Force distractions, appearing in
sliding motion, primarily influence the collision force
direction. For demonstrating this effect, only the force
parts vertical to the collision plane normal (the intuitive
collision force direction) were recorded. In each
experiment this record is done for  both the original and
the adapted collision force calculations. The direct
comparison between them is depicted in the following
diagrams, made for each experiment.

Experiment 1: sliding motion over a plane surface
The sliding path of the dynamic object is in this
experiment a circle movement over a plane surface of the
static object. In Figure 8 all the distraction arrowheads are

recorded, by keeping the axis origin at the sphere center
position.

In the experiment related to Figure 8 a) and b) the
sliding surface of the static object was oriented along the
voxel grid main axes, whereas 8 c) and 8 d) presents the
results of the motion over a not voxel grid raster oriented
plane. With the adapted force calculation the distraction
reduction is appreciable in both cases.

Experiment 2: sliding motion over a curved surface
In this experiment the sphere slides on a circle path
around the superficies surface of a cylinder, with also a
constant penetration depth into the cylinder (Fig. 10). This
shows the collision force distraction behavior with many
different surface condition cases. Figure 9 a)  shows the
distractions of the collision force over the time calculated
with the original algorithm and Figure 9 b) shows the
distractions with the adapted algorithm. Of cause there are
still remaining distractions with the adapted form coming
from the different surface conditions, but a high reduction
of these distractions can be seen with the adapted
collision force calculation.

Figure 9: Collision force distractions in one
direction of experiment 2

ba

Figure 10: Benchmark for the virtual coupling

Figure 8: Collision force distractions of
experiment 1
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4.2 Experiments to the Virtual Coupling

To evaluate the virtual coupling, a sphere is moved
over a cylindrical static object with a constant penetration
(Fig. 10).

In Figure 11 shows the results of a heuristic tuned
virtual coupling and the dynamic shaping filter explained
in chapter 3. In hardware-in-the-loop experiments, the
virtual cup (Fig. 15) was touched by the virtual sphere
using the DLR Light-Weight robot (LWR) (Fig. 13) and
the Phantom T-Model (Fig. 14) as haptic hand controllers.
The following diagrams (Fig. 12) shows the collision
forces (thin line) calculated by the haptic rendering
algorithm and the corresponding output force (thick line),
which was returned as feedback force to the hand
controllers by the virtual coupling element. Two kinds of
collisions were tested, an abrupt collision, hitting the cup
with the sphere (Fig. 12 a,c), and a steady collision,
sliding with the sphere over the cup surface (Fig. 12 b,d).

5. Conclusions

In this paper some efforts were done to improve the
stability and immersion of haptic feedback. Our approach
is based on the VPS method, due to its constant sample
rates. First the object modeling was improved towards an
exact surface representation. This not only increases the
accuracy, but also avoids some force distractions during
contact situation with static objects. The force calculation
itself was adapted such that the voxel noise, occurring
during sliding motions over static objects, is substantially
reduced. This leads to a smoother force evolution within

the task. Finally, a design framework for virtual coupling
was presented. It takes into account the dynamic
properties of the human operator and of the hand
controller. This approach leads to a more stable haptic
interaction with virtual environments as it is shown in the
presented experiments.

Further work in the fields of improving the realistic
haptic feedback extending the VPS, and of automatic
design of the virtual coupling will be done.
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Figure 13:
DLR Light-Weight robot
as kineasthetic hand
controller

Figure 15:
Virtual test bed

Figure 14:
Phantom T-Model
from Sensable
Technologies Inc.
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c) d)

Figure 12: Force plots of the experiments with
the Phantom and the LWR

Figure 11: Force plots for different virtual
couplings
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