
ELKI: A Software System for Evaluation of
Subspace Clustering Algorithms

Elke Achtert, Hans-Peter Kriegel, Arthur Zimek

Institute for Informatics, Ludwig-Maximilians-Universität München
http://www.dbs.ifi.lmu.de

{achtert,kriegel,zimek}@dbs.ifi.lmu.de

Abstract. In order to establish consolidated standards in novel data
mining areas, newly proposed algorithms need to be evaluated thor-
oughly. Many publications compare a new proposition – if at all – with
one or two competitors or even with a so called “näıve” ad hoc solu-
tion. For the prolific field of subspace clustering, we propose a software
framework implementing many prominent algorithms and, thus, allowing
for a fair and thorough evaluation. Furthermore, we describe how new
algorithms for new applications can be incorporated in the framework
easily.

1 Introduction

In an active research area like data mining, a plethora of algorithms is proposed
every year. Most of them, however, are presented once and never heard about
again. On the other hand, newly proposed algorithms are often evaluated in
a sloppy way taking into account only one or two partners for comparison of
efficiency and effectiveness, presumably because for most algorithms no imple-
mentation is at hand. And if an implementation is provided by the authors, a fair
comparison is nonetheless all but impossible due to different performance prop-
erties of different programming languages, frameworks, and, last but not least,
implementation details. Eventually, an evaluation based on implementations of
different authors is more likely to be a comparison of the efforts of different
authors in efficient programming rather than truly an evaluation of algorithmic
merits.

Recently, an understanding for the need for consolidation of a maturing re-
search area is rising in the community as illustrated by the discussions about the
repeatability of results for SIGMOD 2008, the Panel on performance evaluation
at VLDB 2007, and the tentative special topic of “Experiments and Analyses
Papers” at VLDB 2008.

In the software system described in this paper, we try to facilitate a fair com-
parison of many subspace clustering algorithms based on experimental evalua-
tion. The framework provides the data management independently of the tested
algorithms. So all algorithms are comparable on equal conditions. The imple-
mentation aims at effectiveness in a balanced way for all algorithms. But even

In Proc. 20th International Conference on Scientific and Statistical Database Management (SSDBM 2008),
Hong Kong, China, 2008, pp. 580-585.



more important is an intuitive and easy-to-understand programming style to
invite contributions in the future when the framework is made available open
source.

2 An Overview on the Software System

A wealth of data-mining approaches is provided by the almost “classical” open
source machine learning framework Weka [1]. We consider Weka as the most
prominent and popular environment for data mining algorithms. However, the
focus and strength of Weka is mainly located in the area of classification, while
clustering approaches are somewhat underrepresented.

The same holds true for another framework for data mining tasks: YALE
[2]. This is a rather complex environment that completely incorporates Weka.
The main focus of YALE is in supporting “rapid prototyping”, i.e. to ease the
definition of a specific data mining task as a combination of a broad range of
available methods. While Weka is restricted to use numerical or nominal features
(and in some cases strings), YALE does also extend the range of possible input
data.

Although both, Weka and YALE, support the connection to external database
sources, they are based on a flat internal data representation. Thus, experiments
assessing the impact of an index structure on the performance of a data mining
application are not possible using these frameworks.

On the other hand, frameworks for index structures, such as GiST [3], do not
provide any precast connection to data mining applications.

To connect both worlds, we demonstrate the Java Software Framework ELKI
(Environment for DeveLoping KDD-Applications Supported by Index Struc-
tures). ELKI comprises on the one hand a profound and easily extensible collec-
tion of algorithms for data mining applications, such as item-set mining, clus-
tering, classification, and outlier-detection, and on the other hand ELKI incor-
porates and supports arbitrary index structures to support even large, high-
dimensional data sets. But ELKI does also support the use of arbitrary data
types, not only feature vectors of real or categorical values. Thus, it is a frame-
work suitable to support the development and evaluation of new algorithms at
the cutting edge of data mining as well as to incorporate experimental index
structures to support complex data types.

ELKI intends to ease the development of new algorithms by providing a
wealth of helper classes and methods for algebraic and analytic computations,
and simulated database support for arbitrary data types using an index structure
at will.

2.1 The Environment: A Flexible Framework

As a framework, our software system is flexible in a sense, that it allows to read
arbitrary data types (provided there is a suitable parser for your data file or
adapter for your database), and supports the use of any distance or similarity



measure (like some kernel-function) appropriate for the given data type. So far,
many implementations of data mining algorithms – especially subspace clustering
algorithms – still rely on the numeric nature of feature vectors as underlying
data structure. Our framework is already one step ahead and ready to work on
complex data types. Generally, an algorithm needs to get provided a distance
of some sort. Thus, distance functions connect arbitrary data types to arbitrary
algorithms.

The architecture of the software system separates data types, data manage-
ment, and data mining applications. So, different tasks can be implemented inde-
pendently. A new data type can be implemented and used by many algorithms,
given a suitable distance function is defined. An algorithm will perform its rou-
tine irrespectively of the data handling which is encapsulated in the database. A
database may facilitate efficient data management via incorporated index struc-
tures.

2.2 Available Algorithms

While the framework is open to all kind of data mining applications, the main
focus in the development of ELKI has been on clustering and especially sub-
space clustering (axis-parallel as well as arbitrarily oriented). Available gen-
eral clustering algorithms are SLINK [4], k-means [5], EM-clustering [6], DB-
SCAN [7], Shared-Nearest-Neighbor-Clustering [8], OPTICS [9], and DeLiClu
[10]. There are axis-parallel subspace and projected clustering approaches im-
plemented like CLIQUE [11], PROCLUS [12], SUBCLU [13], PreDeCon [14],
HiSC [15], and DiSH [16]. Furthermore, some biclustering or pattern-based clus-
tering approaches are supported like δ-bicluster [17], FLOC [18] or p-cluster
[19], and correlation clustering approaches are incorporated like ORCLUS [20],
4C [21], HiCO [22], COPAC [23], ERiC [24], and CASH [25]. The improvements
on these algorithms described in [26] are also integrated in ELKI.

2.3 Development of Subspace Clustering Algorithms

Often, the main difference between clustering algorithms is the way to assess the
distance or similarity between objects or clusters. So, while other well known
and popular software systems like Weka [1] or YALE [2] predefine the Euclidean
distance as only possible distance between different objects to use in clustering
approaches (beside some kernel functions in classification approaches), ELKI
allows the flexible definition of any distance measure. This way, subspace clus-
tering approaches that differ mainly in the definition of distance between points
(like e.g. COPAC and ERiC) can use the same algorithmic routine and become,
thus, highly comparable in their performance.

Distance functions are used to perform range queries on a database object.
Any implementation of an algorithm can rely on the database object to perform
range queries with an arbitrary distance function and needs only to ask for k
nearest neighbors not being concerned with the details of data handling.



A new data type is supposed to implement the interface DatabaseObject. A
new algorithm class suitable to certain data types O needs to implement the In-
terface Algorithm<O extends DatabaseObject>. The central routine to implement
the algorithmic behavior is void run(Database<O> database). Here, the algorithm
is applied on an arbitrary database consisting of objects of a suitable data type.
The database supports operations like

<D extends Distance <D>>

List <QueryResult <D>>

kNNQueryForObject(O queryObject ,

int k,

DistanceFunction <O,D> distanceFunction)

performing a k-nearest neighbor query for a given object of a suitable data type
O using a distance function that is suitable for this data type O and provides a
distance of a certain type D. Such a query method returns a list of QueryResult<D>
objects encapsulating the database id of the collected objects and their distance
to the query object in terms of the specified distance function.

A new subspace clustering algorithm may therefore use a specialized distance
function and implement a certain routine using this distance function on an
arbitrary database.

2.4 Support of Arbitrary Index-Structures

As pointed out above, while existing frameworks for index-structures, such as
GiST [3], do not provide any precast connection to data mining applications,
well-known data-mining frameworks like Weka [1] or YALE [2] do not support
the internal use of index structures.

Our software system ELKI supports the use of arbitrary index structures in
combination with, e.g., a clustering algorithm. Already available within ELKI
are metric index-structures like MTree [27], MkCoPTree and its variants MkTab-
Tree and MkMaxTree [28], and MkAppTree [29] and spatial index-structures like
RStarTree [30], DeLiCluTree [10], and RdkNNTree, an extension from [31] for
k ≥ 1.

Index structures are encapsulated in database objects. These database ob-
jects facilitate range queries using arbitrary distance functions. Algorithms op-
erate on database objects irrespective of the underlying index structure. So the
implementation of an algorithm, as pointed out above, is not concerned with
the details of handling the data which can be supported by arbitrary efficient
procedures.

This is interesting because the complexity of algorithms is often analyzed
theoretically on the basis of index structures but often, if implementations are
provided, an index structure is not included and cannot be incorporated in the
particular implementation.



2.5 Setting Up Experiments

The integration of several algorithms into one software framework also allows for
setting up complex experiments comparing different algorithms in an easy way
and on equal terms. We plan to use the framework for extensive comparisons of
a broad range of subspace clustering algorithms.

2.6 Availability and Documentation

The framework ELKI is available for download and use via

http://www.dbs.ifi.lmu.de/research/KDD/ELKI/.

There is provided an extensive documentation of the implementation and us-
age as well as examples to illustrate how to expand the framework by integrating
new algorithms.

3 Conclusion

The software system ELKI presents a large collection of data mining applications
(mainly clustering and – axis parallel or arbitrarily oriented – subspace and pro-
jected clustering approaches). Algorithms can be supported by arbitrary index
structures and work on arbitrary data types given supporting data classes and
distance functions. We therefore expect ELKI to facilitate broad experimental
evaluations of algorithms – existing algorithms and newly developed ones alike.

References

1. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. 2nd edn. Morgan Kaufmann (2005)

2. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid
prototyping for complex data mining tasks. In: Proc. KDD. (2006)

3. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for database
systems. In: Proc. VLDB. (1995)

4. Sibson, R.: SLINK: An optimally efficient algorithm for the single-link cluster
method. The Computer Journal 16(1) (1973) 30–34

5. McQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: 5th Berkeley Symposium on Mathematics, Statistics, and Probabilistics.
Volume 1. (1967) 281–297

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39(1)
(1977) 1–31

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proc. KDD. (1996)

8. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes,
and densities in noisy, high dimensional data. In: Proc. SDM. (2003)

9. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points
to identify the clustering structure. In: Proc. SIGMOD. (1999)



10. Achtert, E., Böhm, C., Kröger, P.: DeLiClu: Boosting robustness, completeness,
usability, and efficiency of hierarchical clustering by a closest pair ranking. In:
Proc. PAKDD. (2006)

11. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. In: Proc. SIGMOD.
(1998)

12. Aggarwal, C.C., Procopiuc, C.M., Wolf, J.L., Yu, P.S., Park, J.S.: Fast algorithms
for projected clustering. In: Proc. SIGMOD. (1999)

13. Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for
high-dimensional data. In: Proc. SDM. (2004)

14. Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with
local subspace preferences. In: Proc. ICDM. (2004)

15. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Müller-Gorman, I., Zimek, A.:
Finding hierarchies of subspace clusters. In: Proc. PKDD. (2006)

16. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Müller-Gorman, I., Zimek, A.:
Detection and visualization of subspace cluster hierarchies. In: Proc. DASFAA.
(2007)

17. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. ISMB. (2000)
18. Yang, J., Wang, W., Wang, H., Yu, P.S.: δ-clusters: Capturing subspace correlation

in a large data set. In: Proc. ICDE. (2002)
19. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large

data sets. In: Proc. SIGMOD. (2002)
20. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimen-

sional space. In: Proc. SIGMOD. (2000)
21. Böhm, C., Kailing, K., Kröger, P., Zimek, A.: Computing clusters of correlation

connected objects. In: Proc. SIGMOD. (2004)
22. Achtert, E., Böhm, C., Kröger, P., Zimek, A.: Mining hierarchies of correlation

clusters. In: Proc. SSDBM. (2006)
23. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: Robust, complete,

and efficient correlation clustering. In: Proc. SDM. (2007)
24. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: On exploring complex

relationships of correlation clusters. In: Proc. SSDBM. (2007)
25. Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Robust clustering in

arbitrarily oriented subspaces. In: Proc. SDM. (2008)
26. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: A general framework for in-

creasing the robustness of PCA-based correlation clustering algorithms. In: Proc.
SSDBM. (2008)

27. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: an efficient access method for similarity
search in metric spaces. In: Proc. VLDB. (1997)

28. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient
reverse k-nearest neighbor search in arbitrary metric spaces. In: Proc. SIGMOD.
(2006)

29. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Approxi-
mate reverse k-nearest neighbor search in general metric spaces. In: Proc. CIKM.
(2006)

30. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient
and robust access method for points and rectangles. In: Proc. SIGMOD. (1990)
322–331

31. Yang, C., Lin, K.I.: An index structure for efficient reverse nearest neighbor queries.
In: Proc. ICDE. (2001)


