
Incremental OPTICS: Efficient Computation of Updates
in a Hierarchical Cluster Ordering

Hans-Peter Kriegel, Peer Kröger, and Irina Gotlibovich

Institute for Computer Science
University of Munich, Germany

{kriegel,kroegerp,gotlibov }@dbs.informatik.uni-muenchen.de

Abstract. Data warehouses are a challenging field of application for data min-
ing tasks such as clustering. Usually, updates are collected and applied to the data
warehouse periodically in a batch mode. As a consequence, all mined patterns
discovered in the data warehouse (e.g. clustering structures) have to be updated
as well. In this paper, we present a method for incrementally updating the clus-
tering structure computed by the hierarchical clustering algorithm OPTICS. We
determine the parts of the cluster ordering that are affected by update operations
and develop efficient algorithms that incrementally update an existing cluster or-
dering. A performance evaluation of incremental OPTICS based on synthetic
datasets as well as on a real-world dataset demonstrates that incremental OPTICS
gains significant speed-up factors over OPTICS for update operations.

1 Introduction

Many companies gather a vast amount of corporate data. This data is typically dis-
tributed over several local databases. Since the knowledge hidden in this data is usu-
ally of great strategic importance, more and more companies integrate their corporate
data into a common data warehouse. In this paper, we do not anticipate any special
warehousing architecture but simply address an environment which provides derived
information for the purpose of analysis and which is dynamic, i.e. many updates occur.

Usually manual or semi-automatic analysis such as OLAP cannot make use of the entire
information stored in a data warehouse. Automatic data mining techniques are more
appropriate to fully exploit the knowledge hidden in the data.

In this paper, we focus on clustering, which is the data mining task of grouping the
objects of a database into classes such that objects within one class are similar and
objects from different classes are not (according to an appropriate similarity measure).
In recent years, several clustering algorithms have been proposed [1,2,3,4,5].

A data warehouse is typically not updated immediately when insertions or deletions on
a member database occur. Usually updates are collected locally and applied to the com-
mon data warehouse periodically in a batch mode, e.g. each night. As a consequence, all
clusters explored by clustering methods have to be updated as well. The update of the
mined patterns has to be efficient because it should be finished when the warehouse has
to be available for its users again, e.g. in the next morning. Since a warehouse usually

dbs dbs
Proc. 5th Int. Conf. on Data Warehousing and Knowledge Discovery (DaWaK'03), pp. 224-233, Prague, Czech Rep., 2003

stores a large amount of data, it is highly desirable to perform updates incrementally
[6]. Instead of recomputing the clusters by applying the algorithm to the entire (very
large) updated database, only the old clusters and the objects inserted or deleted during
a given period are considered.

In this paper, we present an incremental version of OPTICS [5] which is an efficient
clustering algorithm for metric databases. OPTICS combines a density-based clustering
notion with the advantages of hierarchical approaches. Due to the density-based nature
of OPTICS, the insertion or deletion of an object usually causes expensive computa-
tions only in the neighborhood of this object. A reorganization of the cluster structure
thus affects only a limited set of database objects. We demonstrate the advantage of
the incremental version of OPTICS based on a thorough performance evaluation using
several synthetic and a real-world dataset.

The remainder of this paper is organized as follows. We review related work in Section
2. Section 3 briefly introduces the clustering algorithm OPTICS. The incremental algo-
rithms for insertions and deletions are presented in Section 4. In Section 5, the results
of our performance evaluation are reported. Conclusions are presented in Section 6.

2 Related Work

Beside the tremendous amount of clustering algorithms (e.g. [1,2,3,4,5]), the problem
of incrementally updating mined patterns is a rather new area of research. Most work
has been done in the area of developing incremental algorithms for the task of mining
association rules, e.g. [7]. In [8] algorithms for incremental attribute-oriented general-
ization are presented.

The only algorithm for incrementally updating clusters detected by a clustering algo-
rithm is IncrementalDBSCAN proposed in [6]. It is based on the algorithm DBSCAN
[4] which models clusters as density-connected sets. Due to the density-based nature
of DBSCAN, the insertion or deletion of an object affects the current clustering only
in the neighborhood of this object. Based on these observations, IncrementalDBSCAN
yields a significant speed-up over DBSCAN [6].

In this paper, we proposeIncOPTICS an incremental version of OPTICS [5] which
combines the density-based clustering notion of DBSCAN with the advantages of hi-
erarchical clustering concepts. Since OPTICS is an extension to DBSCAN and yields
much more information about the clustering structure of a database,IncOPTICS is
much more complex than IncrementalDBSCAN. However,IncOPTICS yields an ac-
curate speed-up over OPTICS without any loss of effectiveness, i.e. quality.

3 Density-Based Hierarchical Clustering

In the following, we assume thatD is a database ofn objects,dist : D × D → R is
a metric distance function on objects inD andNε(p) := {q ∈ D | dist(p, q) ≤ ε}
denotes theε-neighborhood ofp ∈ D whereε ∈ R.

OPTICS extends the density-connected clustering notion of DBSCAN [4] by hierarchi-
cal concepts. In contrast to DBSCAN, OPTICS does not assign cluster memberships

but computes acluster orderin which the objects are processed and additionally gener-
ates the information which would be used by an extended DBSCAN algorithm to assign
cluster memberships. This information consists of only two values for each object, the
core-leveland thereachability-distance(or short:reachability).

Definition 1 (core-level).Let p ∈ D, MinPts∈ N, ε ∈ R, and MinPts-dist(p) be the
distance fromp to its MinPts-nearest neighbor. Thecore-levelof p is defined as follows:

CLev(p) :=
{
∞ if |Nε(p)| < MinPts
MinPts-dist(p) otherwise.

Definition 2 (reachability). Let p, q ∈ D, MinPts∈ N, andε ∈ R. Thereachability
of p wrt. q is defined as RDist(p, q) := max{CLev(q), dist(q, p)}.

Definition 3 (cluster ordering). Let MinPts∈ N, ε ∈ R, andCO be a totally or-
dered permutation of then objects ofD. Eacho ∈ D has additional attributes Pos(o),
Core(o) and Reach(o), where Pos(o) symbolizes the position ofo in CO. We callCO
a cluster orderingwrt. ε and MinPts if the following three conditions hold:
(1) ∀p ∈ CO : Core(p) = CLev(p)
(2) ∀o, x, y ∈ CO : Pos(x) < Pos(o) ∧ Pos(y) > Pos(o)⇒ RDist(y, x) ≥ RDist(o, x)
(3) ∀p, o ∈ CO : Reach(p) = min{RDist(p, o) |Pos(o) < Pos(p)}, wheremin ∅ =∞.

Intuitively, Condition (2) states that the order is built on selecting at each positioni in
CO that objecto having the minimum reachability to any object beforei.

A cluster ordering is a powerful tool to extract flat, density-based decompositions for
anyε′ ≤ ε. It is also useful to analyze the hierarchical clustering structure when plotting
the reachability values for each object in the cluster ordering (cf. Fig. 1(a)).

Like DBSCAN, OPTICS uses one pass overD and computes theε-neighborhood for
each object ofD to determine the core-levels and reachabilities and to compute the
cluster ordering. The choice of the starting object does not affect the quality of the
result [5]. The runtime of OPTICS is actually higher than that of DBSCAN because
the computation of a cluster ordering is more complex than simply assigning cluster
memberships and the choice of the parameterε affects the runtime of the range queries
(for OPTICS,ε has typically to be chosen significantly higher than for DBSCAN).

4 Incremental OPTICS

The key observation is that the core-level of some objects may change due to an update.
As a consequence, the reachability values of some objects have to be updated as well.
Therefore, condition (2) of Def. 3 may be violated, i.e. an object may have to move to
another position in the cluster ordering. We will have to reorganize the cluster ordering
such that condition (2) of Def. 3 is re-established. The general idea for an incremental
version of OPTICS is not to recompute theε-neighborhood for each object inD but
restrict the reorganization on a limited subset of the objects (cf. Fig. 1(b)).

Although it cannot be ensured in general, it is very likely that the reorganization is
bounded to a limited part of the cluster ordering due to the density-based nature of

(a) (b)

Fig. 1. (a) Visual analysis of the cluster ordering: clusters are valleys in the according reachability
plot. (b) Schema of the reorganization procedure.

OPTICS.IncOPTICS therefore proceeds in two major steps. First, the starting point
for the reorganization is determined. Second, the reorganization of the cluster ordering
is worked out until a valid cluster ordering is re-established. In the following, we will
first discuss how to determine the frontiers of the reorganization, i.e. the starting point
and the criteria for termination. We will determine two sets of objects affected by an
update operation. One set calledmutating objects, contains objects thatmay change
its core-level due to an update operation. The second set of affected objects contains
objects that move forward/backwards in the cluster ordering to re-establish condition
(2) of Def. 3. Movement of objects may be caused by changing reachabilities — as an
effect of changing core-levels — or by moving predecessors/successors in the cluster
ordering. Since we can easily compute a set of all objects possibly moving, we call
this setmoving objects, containing all objects thatmaymove forward/backwards in the
cluster ordering due to an update.

4.1 Mutating Objects

Obviously, an objectomay change its core-level only if the update operation affects the
ε-neighborhood ofo. From Def. 1 it follows that if the inserted/deleted object is one of
o’s MinPts-nearest neighbors,Core(o) increases in case of a deletion and decreases in
case of an insertion. This observation led us to the definition of the set MUTATING(p)
of mutating objects:

Definition 4 (mutating objects). Let p be an arbitrary object either in or not in the
cluster orderingCO. The set of objects inCO possibly mutating their core-level after
the insertion/deletion ofp is defined as:MUTATING(p) := {q | p ∈ Nε(q)}.

Let us note thatp ∈ MUTATING(p) sincep ∈ Nε(p). In fact, MUTATING(p) can be
computed rather easily.

Lemma 1. ∀p ∈ D : MUTATING(p) = Nε(p).

Proof. Sincedist is a metric, the following conclusions hold:
∀ q ∈ Nε(p) : dist(q, p) ≤ ε⇔ dist(p, q) ≤ ε⇔ p ∈ Nε(q)⇔ q ∈ MUTATING(p).

Lemma 2. LetC be a cluster ordering andp ∈ CO. MUTATING(p) is a superset of
the objects that change their core-level due to an insertion/deletion ofp into/fromCO.

Proof. (Sketch)
Let q ∈ MUTATING(p): Core(q) changes ifp is one ofq’s MinPts-nearest neighbors.
Let q 6∈ MUTATING(p): According to Lemma 1,p 6∈ Nε(q) and thusp either cannot be
any ofq’s MinPts-nearest neighbors orCore(q) =∞ remains due to Def. 1.

Due to Lemma 2, we have to test for each objecto ∈ MUTATING(p) whetherCore(o)
increases/decreases or not by computingNε(o) (one range query).

4.2 Moving Objects

The second type of affected objects move forward or backwards in the cluster ordering
after an update operation. In order to determine the objects that may move forward or
backwards after an update operation occurs, we first define thepredecessorand the set
of successorsof an object:

Definition 5 (predecessor).LetCO be a cluster ordering ando ∈ CO. For each entry
p ∈ CO thepredecessoris defined as

Pre(p) =
{
o if Reach(p) = RDist(o, p)
UNDEFINED if Reach(p) =∞.

Intuitively, Pre(p) is the object inCO from whichp has been reached.

Definition 6 (successors).LetCO be a cluster ordering. For each objectp ∈ CO the
set ofsuccessorsis defined as Suc(p) := {q ∈ CO | Pre(q) = p}.

Lemma 3. LetCO be a cluster ordering andp ∈ CO. If Core(p) changes due to an
update operation, then each objecto ∈ Suc(p) may change its reachability values.

Proof. ∀o ∈ CO: o ∈ Suc(p)
[Def. 6]

=⇒ Pre(o) = p
[Def. 5]

=⇒ Reach(o) = RDist(o, p)
[Def. 2]

=⇒ Reach(o) = max{Core(p), dist(p, o)}. Since the valueCore(p) has changed,
Reach(o) may also have changed.

As a consequence of a changed reachability value, objects may move in the cluster or-
dering. If the reachability-distance of an object decreases, this object may move forward
such that Condition (2) of Def. 3 is not violated. On the other hand, if the reachability-
distance of an object increases, this object may move backwards due to the same rea-
son. In addition, if an object has moved, all successors of this objects may also move
although their reachabilities remain unchanged. All such objects that may move after
an insertion or deletion ofp are calledmoving objects:

Definition 7 (moving objects).Let p be an arbitrary object either in or not in the
cluster orderingCO. The set of objects possibly moving forward/backwards inCO
after insertion/deletion ofp is defined recursively:

(1) If x ∈ MUTATING(p) andq ∈ Suc(x) thenq ∈ MOVING(p).
(2) If y ∈ MOVING(p) andq ∈ Suc(y) thenq ∈ MOVING(p).
(3) If y ∈ MOVING(p) andq ∈ Pre(y) thenq ∈ MOVING(p).

Case (1) states, that if an object is a successor of a mutating object, it is a moving object.
The other two cases state, that if an object is a successor or predecessor of a moving
object it is also a moving object. Case (3) is needed, if a successor of an objecto is
moved to a position beforeo during reorganization.

For the reorganization of moving objects we do not have to compute range queries. We
solely need to compare the old reachability values to decide whether these objects have
to move or not.

4.3 Limits of Reorganization

We are now able to determine between which bounds the cluster ordering must be reor-
ganized to re-establish a valid cluster ordering according to Def. 3.

Lemma 4. LetCO be a cluster ordering andp be an object either in or not inCO.
The set of objects that have to be reorganized due to an insertion or deletion ofp is a
subset ofMUTATING(p) ∪MOVING(p).

Proof. (Sketch)
Let o be an object which has to be reorganized. Ifo has to be reorganized due to a
change ofCore(o), theno ∈ MUTATING(p). Elseo has to be reorganized due to a
changed reachability or due to moving predecessor/successors. Theno ∈ MOVING(p).

Since OPTICS is based on the formalisms of DBSCAN, the determination of the start
position for reorganization is rather easy. We simply have to determine the first object
in the cluster ordering whose core-level changes after the insertion or deletion because
reorganization is only initiated by changing core-levels.

Lemma 5. LetCO be a cluster ordering which is updated by an insertion or deletion of
objectp. The objecto ∈ D is thestart objectwhere reorganization starts if the following
conditions hold:

(1) o ∈ MUTATING(p)
(2) ∀q ∈ MUTATING(p), o 6= q : Pos(o) ≤ Pos(q).

Proof. Since reorganization is caused by changing core-levels, the start object must
change its core-level due to the update. (1) follows from Def. 4. According to Def. 7,
eachq ∈ Suc(p) can by affected by the reorganization. To ensure, that no object is
lost by the reorganization procedure,o has to be the first object, whose core-level has
changed (⇒(2)). In addition, all objects beforeo are neither element of MUTATING(p)
nor of MOVING(p). Therefore, they do not have to be reorganized.

WHILE NOT Seeds.isEmpty() DO
// Decide which object is at next added to COnew
IF currObj.reach > Seeds.first().reach THEN

COnew.add(Seeds.first()) ;
Seeds.removeFirst() ;

ELSE
COnew.add(currObj) ;
currObj = next object in COold which has not yet been inserted into COnew

// Decide which objects are inserted into Seeds
q = COnew.lastInsertedObject() ;
IF q ∈ MUTATING(p) THEN

FOR EACH o∈Nε(p) which has not yet been inserted into COnew DO
Seeds.insert(o, max {q.core, dist(q,o) }) ;

ELSE IF q∈ MOVING(p) THEN
FOR EACH o∈Pre(p) OR o∈Suc(p) and o has not yet been inserted into COnew DO

Seeds.insert(o, o.reach) ;

Fig. 2. IncOPTICS : Reorganization of the cluster ordering

4.4 Reorganizing a Cluster Ordering

In the following,COold denotes the old cluster ordering before the update andCOnew
denotes the updated cluster ordering which is computed byIncOPTICS . After the
start objectso has been determined according to Lemma 5, all objectsq ∈ COold with
Pos(q) < Pos(so) can be copied intoCOnew (cf. Fig. 1(b)) because up to the position of
so COold is a valid cluster ordering.

The reorganization ofCO begins atso and imitates OPTICS. The pseudo-code of the
procedure is depicted in Fig. 2. It is assumed that each not yet handledo ∈ Nε(so)
is inserted into the priority queueSeeds which manages all not yet handled objects
from MOVING(p) ∪ MUTATING(p) (i.e. all o ∈ MOVING(p) ∪ MUTATING(p) with
Pos(o) ≥ Pos(so)) sorted in the order of ascending reachabilities.

In each step of the reorganization loop, the reachability of the first object inSeeds
is compared with the reachability of the current object inCOold. The entry with the
smallest reachability is inserted into the next free position ofCOnew. In case of a delete
operation, this step is skipped if the considered object is the update object. After this
insertion,Seeds has to be updated depending on which object has recently been in-
serted. If the inserted object is an element of MUTATING(p), all neighbors that are
currently not yet handled may change their reachabilities. If the inserted object is an
element of MOVING(p), all predecessors and successors that are currently not yet han-
dled may move. In both cases, the corresponding objects are inserted intoSeeds using
the methodSeeds::insert which inserts an object with its current reachability or
updates the reachability of an object if it is already in the priority queue. If a predecessor
is inserted intoSeeds , its reachability has to be recomputed (which means a distance
calculation in the worst-case) becauseRDist(., .) is not symmetric.

According to Lemma 4, the reorganization terminates if there are no more objects in
Seeds , i.e. all objects in MOVING(p) ∪ MUTATING(p), that have to be processed, are

(a) Insertion (b) Deletion

Fig. 3.Runtime of OPTICS vs. average and maximum runtime ofIncOPTICS .

handled.COnew is filled with all objects fromCOold which are not yet handled (and thus
need not to be considered by the reorganization) maintaining the order determined by
COold (cf. Fig. 1(b)). The resultingCOnew is valid according to Def. 3.

5 Experimental Evaluation

We evaluatedIncOPTICS using four synthetic datasets consisting of 100,000, 200,000,
300,000, and 500,000 2-dimensional points and a real-world dataset consisting of 112,361
TV snapshots encoded as 64-dimensional color histograms. All experiments were run
on a workstation featureing a 2 GHz CPU and 3,5 GB RAM. An X-Tree was used to
speed up the range queries computed by OPTICS andIncOPTICS .

We performed 100 random updates (insertions and deletions) on each of the synthetic
datasets and compared the runtime of OPTICS with the maximum and average runtimes
of IncOPTICS (insert/delete) on the random updates. The results are depicted in Fig.
3. We observed average speed-up factors of about 45 and 25 and worst-case speed-up
factors of about 20 and 17 in case of insertion and deletion, respectively. A similar
observation, but on a lower level, can be made when evaluating the performance of
OPTICS andIncOPTICS applied to the real world dataset. The worst ever observed
speed-up factor for the real-world dataset was 3. In Fig. 5(a)) the average runtimes of
IncOPTICS of the best 10 inserted and deleted objects are compared with the runtime
of OPTICS using the TV dataset.

A possible reason for the large speed up is thatIncOPTICS saves a lot of range queries.
This is shown in Fig. 4(a) and 4(b) where we compared the average and maximum
number of range queries and moved objects, respectively. The cardinality of the set
MUTATING(p) is depicted as “RQ” and the cardinality of the set MOVING(p) is de-
picted as “MO” in the figures. It can be seen, thatIncOPTICS saves a lot of range
queries compared to OPTICS. For high dimensional data this observation is even more
important since the logarithmic runtime of most index structures for a single range
query degenerates to a linear runtime. Fig. 5(b) presenting the average cardinality of

(a) Insertion (b) Deletion

Fig. 4.Comparison of average and maximum cardinalities of MOVING(p) vs. MUTATING(p)

the sets of mutating objects and moving objects of incremental insertion/deletion, illus-
trates this effect. Since the number of objects which have to be reorganized is rather high
in case of insertion or deletion the runtime speed-up is caused by the strong reduction
of range queries (cf. bars “IncInsert RQ” and “IncDelete RQ” in Fig. 5(b)).

We separately analyzed the objectso whose insertions/deletions caused the highest run-
time. Thereby, we found out that the biggest part of the high runtimes originated from
the reorganization step due to a high cardinality of the set MOVING(o). We further ob-
served that these objects causing high update runtimes usually are located between two
clusters and objects in MUTATING(o) belong to more than one cluster. Since spatially
neighboring clusters need not to be adjacent in the cluster ordering, the reorganization
affects a lot more objects. This observation is important because it indicates that the
runtimes are more likely near the average case than near the worst case especially for
insert operations since most inserted objects will probably reproduce the distribution of
the already existing data. Let us note, that since the tests on the TV Dataset were run
using unfavourable objects, the performance results are less impressive than the results
on the synthetic datasets.

6 Conclusions

In this paper, we proposed an incremental algorithm for mining hierarchical clustering
structures based on OPTICS. Due to the density-based notion of OPTICS, insertions
and deletions affect only a limited subset of objects directly, i.e. a change of their core-
level may occur. We identified a second set of objects which are indirectly affected by
update operations and thus they may move forward or backwards in the cluster order-
ing. Based on these considerations, efficient algorithms for incremental insertions and
deletions of a cluster ordering were suggested.

A performance evaluation ofIncOPTICS using synthetic as well as real-world databases
demonstrated the efficiency of the proposed algorithm.

(a) Runtimes (b) Affected objects

Fig. 5.Runtimes and affected objects ofIncOPTICS vs. OPTICS applied on the TV Data.

Comparing these results to the performance of IncrementalDBSCAN which achieves
much higher speed-up factors over DBSCAN, it should be mentioned that incremen-
tal hierarchical clustering is much more complex than incremental “flat” clustering. In
fact, OPTICS generates considerably more information than DBSCAN and thusIn-
cOPTICS is suitable for a much broader range of applications compared to Incremen-
talDBSCAN.

References

1. McQueen, J.: ”Some Methods for Classification and Analysis of Multivariate Observations”.
In: 5th Berkeley Symp. Math. Statist. Prob. Volume 1. (1967) 281–297

2. Ng, R., J., H.: ”Efficient and Affective Clustering Methods for Spatial Data Mining”. In: Proc.
20st Int. Conf. on Very Large Databases (VLDB’94), Santiago, Chile. (1994) 144–155

3. Zhang, T., Ramakrishnan, R., M., L.: ”BIRCH: An Efficient Data Clustering Method for
Very Large Databases”. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIG-
MOD’96), Montreal, Canada. (1996) 103–114

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: ”A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise”. In: Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining (KDD’96), Portland, OR, AAAI Press (1996) 291–316

5. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: ”OPTICS: Ordering Points to Iden-
tify the Clustering Structure”. In: Proc. ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD’99), Philadelphia, PA. (1999) 49–60

6. Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: ”Incremental Clustering for Mining
in a Data Warehousing Environment”. In: Proc. 24th Int. Conf. on Very Large Databases
(VLDB’98). (1998) 323–333

7. Feldman, R., Aumann, Y., Amir, A., Mannila, H.: ”Efficient Algorithms for Discovering
Frequent Sets in Incremental Databases”. In: Proc. ACM SIGMOD Workshop on Research
Issues on Data Mining and Knowledge Discovery, Tucson, AZ. (1997) 59–66

8. Ester, M., Wittman, R.: ”Incremental Generalization for Mining in a Data Warehousing En-
vironment”. In: Proc. 6th Int. Conf. on Extending Database Technology, Valencia, Spain.
Volume 1377 of Lecture Notes in Computer Science (LNCS)., Springer (1998) 135–152

	Proc:
	 5th International Conference on Data Warehousing and Knowledge Discovery (DaWaK'03), Prague, Czech Republic, 2003:

