
 A Cost Model for Spatial Intersection Queries
on RI-Trees

Hans-Peter Kriegel1, Martin Pfeifle1, Marco Pötke2, Thomas Seidl3

1University of Munich, {kriegel, pfeifle}@dbs.informatik.uni-muenchen.de
2sd&m AG software design & management, marco.poetke@sdm.de

3RWTH Aachen University, seidl@informatik.rwth-aachen.de

Abstract. The efficient management of interval sequences represents a core re-
quirement for many temporal and spatial database applications. With the Rela-
tional Interval Tree (RI-tree), an efficient access method has been proposed to
process intersection queries of spatial objects encoded by interval sequences on
top of existing object-relational database systems. This paper complements that
approach by effective and efficient models to estimate the selectivity and the I/O
cost of interval sequence intersection queries in order to guide the cost-based op-
timizer whether and how to include the RI-tree into the execution plan. By design,
the models immediately fit to common extensible indexing/optimization frame-
works, and their implementations exploit the built-in statistics facilities of the da-
tabase server. According to our experimental evaluation on an Oracle database,
the average relative error of the estimated query results and costs lies in the range
of 0% to 32%, depending on the size and the structural complexity of the query
objects.

1 Introduction

After two decades of temporal and spatial index research, the efficient management
of one- and multi-dimensional extended objects has become an enabling technology for
many novel database applications. The interval, or, more generally, the sequence of
intervals, are basic datatypes for temporal and spatial data.

Highly accurate but still efficient selectivity estimation and cost prediction are the
fundamentals of effective query optimization. For complex query objects and query
predicates, the recent object-relational database servers provide extensible optimization
frameworks that come along with the extensible indexing frameworks, in order to com-
plete the seamless integration of user-defined index structures and appropriate cost
models into the declarative DML. As an example for such an extension, we propose a
cost model for interval sequence intersection queries on the spatial variant of the RI-tree
[4]. This cost model is an extension of the cost model presented in [2] which is tai-
lor-made for interval intersection queries on the basic RI-tree [3]. To get a suitable start-
ing point for this paper, we suggest to have a look into the three above mentioned papers
or into the technical report [1] belonging to this paper.

The remainder of this paper is organized as follows. In Section 2 we propose an
approach to estimate the selectivity and the I/O cost of intersection queries on interval
sequences. After an empirical evaluation of the presented methods in Section 3, the
paper is concluded in Section 4.

Proc. 9th International Conference on Database Systems for Advanced Applications (DASFAA 2004),
Jeju, South Korea, pp. 331-338

2 Cost Estimation for Interval Intersection Queries

The functions presented in [2] for selectivity and cost estimation of interval intersec-
tion queries on the basic variant of the RI-tree [3], can naturally be extended to interval
sequences. To enable query optimization for spatial queries on multidimensional ex-
tended objects, the corresponding interval sequence query for the chosen space-filling
curve has to be evaluated. Unfortunately, a straightforward application of the proposed
techniques to each single interval of the interval sequence can be too inefficient due to
the following reasons:

 • A spatial query is specified by an extended, multidimensional object. For arbitrary
query objects, in particular objects not already indexed in the RI-tree, we have to
compute the corresponding interval sequence before the above functions can be ap-
plied. This would typically be the case for window or box queries.

 • As the cardinality of the interval sequence of a spatial object is proportional to its
multidimensional surface the estimation for each single interval consumes very much
CPU cost in the context of pure query optimization, even if the interval sequence of
the spatial object has already been computed.

Thus, the evaluation on the full interval sequence anticipates substantial parts of the
merely potential query processing on the RI-tree. The extensible optimizer might
choose another access path instead, e.g. a full table scan on the base table or an index
scan for a non-spatial predicate. In this case, the interval sequence filter may be skipped,
and the query processor may refine the spatial predicate directly on the accurate repre-
sentation of the spatial objects, e.g. on the polygons of a GIS database. Thus, the spatial
decomposition and linearization of the query object into intervals would have been done
in vain. The following paragraphs address these issues by extending the selectivity esti-
mation and the cost model of [2] to a coarse aggregation of the potential query interval
sequence. For processing interval sequence intersections, we will rely on the optimized
approach of the RI-tree as presented in [4].

2.1 Aggregates on Interval Sequences

In order to minimize the cost of generating and evaluating the fine-grained interval
sequence F of a spatial query object, we compute a coarse size-bound approximation C
which conservatively approximates F with c intervals. The bound c could be set to a low
constant number of intervals, or alternatively, c may depend on the spatial extension of
the query object.

Let F = (ψ1, ψ2, …, ψf) be the fine-grained interval sequence which would be the
result of a granularity-, size- or error-bound decomposition of the spatial query object.
Let C = (ϕ1, ϕ2, …, ϕc) be a coarse conservative approximation of the query interval
sequence, where c << f. The basic idea is to materialize and use C instead of F for the
query optimization phase, because deriving an estimation of the selectivity and the cost
from F would already reach the CPU complexity of processing the exact query itself.

We first define an intersection ranking function ρintersect and, based on this defini-
tion, two aggregates coverage and cardinality on interval sequences.

Definition 1 (Intersection Ranking Function)

Let be a domain of interval bounds and let be the cor-
responding interval domain. For intervals τ = (lτ, uτ) ∈ D and κ = (lκ, uκ) ∈ D, the in-
tersection ranking function, , is defined by

Definition 2 (Aggregates on Interval Sequences)

Let F = (ψ1, ψ2, …, ψf), f ≥ 1, and C = (ϕ1, ϕ2, …, ϕc), c ≥ 1, be two interval sequenc-
es representing the same spatial object. Let C be a conservative approximation of F, i.e.
c ≤ f and

For each i, 1 ≤ i ≤ c, we define the following aggregates on F with respect to C, where
ρintersect is the intersection ranking according to Definition 1:

(i) The coverage along ϕi of F is .

(ii) The cardinality along ϕi of F is

Thus, coverage denotes the fine-grained hyper-volume within a single interval of the
coarse interval sequence C, while cardinality denotes the number of the respective
fine-grained intervals.

2.2 Extended Selectivity Estimation

For each interval ϕi = (li, ui) in C, we can assume a data space of coverage(ϕi, F) to
be occupied by the corresponding intervals in F. Starting from a selectivity estimation
σ(I, ϕi) for an intersection query ϕi on the intervals I [2], we estimate the total selectivity
σ(I, C, F) for the fine-grained interval sequence F by

where σ1(I, ϕ1) = σ(I, ϕ1). The computation of σi(I, ϕi), 1 < i ≤ c, is similar to
σ(I, ϕi), but considers only the portions of the ranges for rleft, rinner, and rright which
have not already contributed to σi-1(I, ϕi-1). Thereby, the range queries on the quantile
statistics [2] are kept disjoint, and 0 ≤ σ(I, C, F) ≤ 1 holds.

2.3 Extended I/O Cost Model

Next, we present a I/O cost model for interval intersection queries on the spatial
variant of the RI-tree. The computation of outputI/O for a fine-grained interval sequence
F can be done straightforward as explained in [2], based on an appropriate selectivity
estimation. On the other hand, the non-blocked overhead joinI/O has to be estimated for
a sequence of interval intersections. Our model relies on the following two observations:
 • In a real user environment with many concurrent queries, substantial parts of the

B+-directories typically reside in the main memory and can be managed by the
built-in LRU-cache of the DBMS [5]. Thus, it is not too farfetched, if we assume that

B ℜ⊆ D l u(,) B
2∈ l u≤{ }=

ρintersect:D D× ℜ→

ρintersect τ κ,()
min uτ uκ,() max lτ lκ,(), if τ and κ intersect;–

0 ,otherwise.





=

ψi
i 1… f=
∪ ϕi

i 1…c=
∪ .⊆

coverage ϕi F,() ρintersect ϕi ψj,()
j 1=

f∑=

cardinality ϕi F,() j 1 j f≤ ≤, ϕi intersects ψj{ } .=

σ I C F, ,() σi I ϕi,()
coverage ϕi F,()

ui li–
--------------------------------------⋅

 
 
  ,

i 1=

c

∑=

the complete B+ directory is in the cache, especially if we consider interval sequenc-
es.

 • The transient join partners are processed in increasing order (left queries, inner que-
ry) or decreasing order (right queries) with respect to the node value in the composite
indexes on (node, upper, id) and (node, lower, id), respectively. Due to this ordered
access, pages that are read several times during query processing will rarely be dis-
placed from the LRU cache between the accesses. We therefore assume that each leaf
page is retrieved only once from secondary storage.

In particular, the locality assumption of random I/Os is correct, as for sorted query
sequences, the transient join partners are generated in ascending order over all gaps [4].
The local descending ordering of the right queries within each gap is typically absorbed
even by small LRU caches. Thus, the approach presented in [2] to estimate joinI/O is
applicable with the slight modification that the fine-grained intervals of F are not known
this time.

For each interval ϕi = (li, ui) in C, we assume a number of cardinality(ϕi, F) of cov-
ered intervals in F. The average interval length among these intervals is

Similarly, the average gap length along ϕi is estimated by

For each ϕi, the number and distribution of contained left and right queries could be
estimated, and the multi-sets NGapsleft(ϕi, F) and NGapsright(ϕi, F) of query gaps
among the fine-grained representation of ϕi in F could be populated similarly as in [2].
But, as this extensive analysis would already be based on the estimated input of C and
would increase the computational complexity of the cost model, we simply assume that
the mean value of NGapsright(ϕi, F) is equal to the sum of avgGap(ϕi, F) and
avgInt(ϕi, F). As the inner queries are integrated with the left queries, the mean value of
NGapsleft(ϕi, F) then corresponds to avgGap(ϕi, F). Thereby, we subsume all potential
queries within gaps of F by single left and single right queries (cf. Figure 1):

(i)

(ii)

The respective averages on the block gaps BGapsright(ϕi, F) and BGapsleft(ϕi, F)
can be computed as presented in [2].

When applied to the lexicographic ordering, these plain averages suffice since par-
ticularly for convex spatial objects, the variance among the interval gaps is very small.
Unfortunately, on the far more powerful concept of fractal space filling curves, includ-
ing the Z- and Hilbert-ordering, the variance among the gap lengths is extremely high.
In this case, the above averages provide a very weak characterization for the expected
gap distribution. We have observed that the binary logarithms of fractal gaps typically
obey an exponential distribution. Furthermore, histograms on fractal gaps show local

avgInt ϕi F,()
coverage ϕi F,()

cardinality ϕi F,()
-- .=

avgGap ϕi F,()
ui li–() coverage ϕi F,()–

cardinality ϕi F,() 1–
-- .=

avg NGapsleft ϕi F,()() avgGap ϕi F,(),=

avg NGapsright ϕi F,()() avgGap ϕi F,() avgInt ϕi F,().+=

peaks at whole multiples of the original data dimension d, i.e. at gap lengths around 2k·d,
k ≥ 0. This behavior is caused by the fact that many gaps represent empty square-shaped
(2D) or cubical (3D) regions at the boundary of spatial objects. Our proposed estimation
gapest of this distribution is as simple as effective: the overall exponential shape is ap-
proximated by a geometric distribution on the base points pk = (2k·d)k, k ≥ 0. We use a
constant mean value µ according to the complexity of the spatial objects and to the
chosen space-filling curve:

For typical Z-ordered GIS objects, for example, we observed that µ = 2.3 seems to
be a good choice. Between two base points, we assign fractions of the cardinality of the
larger base point to model the observed decreasing frequency of the corresponding tile
shapes:

In most cases, gapest is an accurate estimation of the real distribution of fractal gaps
among a fine-grained interval sequence F. It can be used instead of avgGap(ϕi, F) to get
better distributions for BGapsright(ϕi, F) and BGapsleft(ϕi, F).

3 Empirical Evaluation

3.1 Experimental Setup

We implemented the proposed functions for the estimation of selectivity and execu-
tion cost on the Oracle Server Release 8.1.6 using built-in methods for statistics collec-
tion, analytic SQL functions, and the PL/SQL procedural runtime environment. All ex-
periments were performed on an Athlon/750 machine with IDE hard drives. The
database block cache was set to 500 disk blocks with a block size of 8 KB and was used
exclusively by one active session. The experiments for the evaluation of statistics, selec-
tivity estimation, and cost model have been executed on Z-ordered interval sequences
representing the polygons of the SEQUOIA 2000 benchmark with an approximation

F

→ avgInt(ϕi,F)

→ avgGap(ϕi,F)

→ avg(NGapsright(ϕi,F))

→ avg(NGapsleft(ϕi,F))

ϕi

ψj ψj+1

left queries

right queries

inner queries

Figure 1: Contributors (→) to the averages avgInt(ϕi, F) and avgGap(ϕi, F) for a

coarse interval, and the mean of NGapsleft(ϕi, F) and NGapsright(ϕi, F).

gapest pk()
1
µ
--- 1

1
µ
---– 

  k
k 0.≥,⋅=

gapest 2
i

pk⋅()
1

2
i

---- gapest pk 1+() k 0≥ 1, i d.<≤,⋅=

error of 6.3%. The following results show the averages of, in total, 100 intersection
queries.

We have evaluated the average relative error w.r.t. the query size, i.e. the percentage
of the data space covered by the query region. Figure 2a shows that for a coarseness of
c = 1, we get relative selectivity estimation errors between 15% and 32%. Thus, even
with the maximal aggregation, the computed estimate gives the query optimizer a good
impression of the spatial selectivity. The quality of this hint improves with increasing c,
as for c = max (i.e. c = f) in the experiment. For the actual query results we measured
both selectivities: with respect to the total number of stored intervals, and with respect
to the stored interval sequences, i.e. polygons. Note that the relative error to the actual
polygon-based selectivity (Polygons) is roughly in the order of the relative error to the
actual interval-based selectivity (Intervals). Thus, the selectivity on the single intervals
largely reflects the selectivity on the original spatial objects. Nevertheless, what we have
to provide as input for the cost estimation is the more accurate interval-based estimate.

We used the estimated selectivity of the previous paragraph as input for the I/O cost
model. The extensible query optimizer uses the resulting estimations to decide upon the
usability of the RI-tree for specific queries. Figure 2b depicts the corresponding results
for a coarseness of c = 1 and c = max. The I/O error for c = 1 at a query size near 0%
averages 24.9% and decreases to 10.2% at 75% query size.

Figure 3 compares the absolute estimations and the actual cost for the blocked output
of results (outputI/O). In addition, joinI/O denotes the overhead due to the nested-loop
join with the transient query tables. For the sake of comparability to the analytical I/O
complexity, the results are shown with respect to the actual query selectivity. Our inter-
pretation of these results is twofold: First, the real I/O cost show that the total I/O is
largely determined by the cardinality of the query result, whereas the overhead for the
join processing remains almost constant. The relative cost of the join overhead decreas-
es from 100% at 0% selectivity to almost 0% at 100% selectivity. According to these
empirical results, the overhead of joinI/O is negligible for higher values of the query
selectivity. Second, we observe that our cost model not only yields tight estimations for
the total query cost, but also reflects the distribution between the output and join cost
rather accurately. As expected, the accuracy of the cost estimation increases with a high-
er granularity c of the coarse interval sequence. Considering the comparable empirical
results for cost-models on stand-alone R-trees [6], and the often significant difference to

0

10

20

30

40

0 25 50 75

query size [%]

re
la

ti
ve

 e
rr

o
r

[%
]

F ine- grained est imat ion (c = max)

C oarse est imat io n (c = 1)

[Polygons]

[Int ervals]

[Polygons]

[Int ervals]

db size = 57,500 polygons / 5,000,000 intervals
resolution = 100 quantiles

0

10

20

30

0 25 50 75
query size [%]

re
la

ti
ve

 e
rr

o
r

[%
] I/O error (c = 1)

I/O error (c = max)

db size = 57,500 polygons / 5,000,000 intervals
resolution = 100 quantiles

Figure 2: Relative error of a) selectivity estimation b) cost estimation

a) b)

the cost of alternative access paths including full-table scans, we conjecture that already
a coarse estimation with c = 1 is well suited for spatial queries on the RI-tree. A
fine-grained computation is, of course, much more accurate, but already anticipates a
significant amount of the cost of the potential query. Regardless of the actual query
selectivity, the cost computation took about 0.05 seconds for c = 1.

4 Conclusions

In this paper, we proposed a model to estimate the selectivity and the I/O cost of
interval sequence intersection queries. According to our experimental evaluation and
the comparable results of known cost models for other access methods, the computed
estimations are accurate enough to give the optimizer an impression of the potential cost
if the RI-tree is included into the execution plan.

References

1. Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: A Cost Model for Interval Sequence
Intersection Queries on RI-Trees. Technical Report, University of Munich, 2003.

2. Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: A Cost Model for Interval Intersection
Queries on RI-Trees. Proc. 14th Int. Conf. on Scientific and Statistical Database Man-
agement (SSDBM), 131-141, 2002.

3. Kriegel H.-P., Pötke M., Seidl T.: Managing Intervals Efficiently in Object-Relational
Databases. Proc. 26th Int. Conf. on Very Large Databases (VLDB), 407-418, 2000.

4. Kriegel H.-P., Pötke M., Seidl T.: Interval Sequences: An Object-Relational
Approach to Manage Spatial Data. Proc. 7th Int. Symposium on Spatial and Tempo-
ral Databases (SSTD), LNCS 2121, 481-501, 2001.

5. Lomet D.: B-tree Page Size When Caching is Considered. ACM SIGMOD Record,
27(3), 28-32, 1998.

6. Theodoridis Y., Stefanakis E., Sellis T.: Efficient Cost Models for Spatial Queries
Using R-Trees. IEEE Transactions on Knowledge and Data Engineering, 12(1),
19-32, 2000.

Figure 3: Output cost and join overhead for queries
using coarse interval sequences with a) c = 1 and b) c = max.

0

10

20

30

0 10 20 30 40 50 60 70 80 90 100

actual s e le ctivity [%]

p
h

ys
ic

al
 r

ea
d

s
 [

x
1,

00
0

b
lo

ck
s]

d b s iz e = 57,500 po lyg ons / 5,000,000 in te r vals
r e s o lu tio n = 100 q uan tile s

a)

0

10

20

30

0 10 20 30 40 50 60 70 80 90 10
0

actu a l s e le c t iv ity [%]

p
h

ys
ic

al
 r

ea
d

s
 [

x
1,

00
0

b
lo

ck
s]

 es t. ou tp u t I/O

 es t. jo in I/O

 es t. to ta l I/O
 rea l jo in I/O

 rea l to ta l I/O

b)

