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Abstract: Similarity search in database systems is becoming an increasingly impor-
tant task in modern application domains such as multimedia, molecular biology, med-
ical imaging, computer aided design and many others. Whereas most of the existing
similarity models are based on feature vectors, there exist some models which use very
complex object representations such as trees and graphs. A promising way between
too simple and too complex object representations in similarity search are sets of fea-
ture vectors. In this paper, we first motivate the use of this modeling approach for
complete object similarity search as well as for partial object similarity search. After
introducing a distance measure between vector sets, suitable for many different ap-
plication ranges, we present and discuss different filters which are indispensable for
efficient query processing. In a broad experimental evaluation based on artificial and
real-world test datasets, we show that our approach considerably outperforms both the
sequential scan and metric index structures.

1 Introduction

In the last ten years, an increasing number of database applications has emerged for which
efficient and effective support for similarity search is substantial. The importance of sim-
ilarity search grows in application areas such as multimedia, medical imaging, molecular
biology, computer aided engineering, marketing, purchasing assistance, and others.

As distance functions form the foundation of similarity search, we need an object represen-
tation which allows efficient and meaningful distance computations. A common approach
is to represent an object by a numerical feature vector. In this case, a feature transfor-
mation extracts distinguishable characteristics which are represented by numerical values
and grouped together in a feature vector. On the basis of such a feature transformation and
under the assumption that similarity corresponds to feature distance, it is possible to define
a distance function between the corresponding feature vectors as a similarity measure for
two data objects. Thus, searching for data objects similar to a given query object is trans-
formed into proximity search in the feature space. Most applications use the Euclidean
metric (L2) to evaluate the feature distance, but there are several other metrics commonly
used, e.g. the Manhattan metric (L1) and the maximum metric (L∞).

Furthermore, there exist quite a few much more complex similarity models based on
graphs [KS03] and trees [KKSS04]. Generally, the more complex and precise these mod-
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els are, the more exact are the results of a similarity search, but at the same time, its
computation cost rises as well.

In this paper, we present a distance measure for an approach somewhere in between single
feature vectors and complex trees and graphs. We model an object by aset of feature
vectorswhich is a very suitable object representation for many different application ranges.
In order to achieve efficient query processing we present three different lower-bounding
filters and discuss their properties.

The remainder of this paper is organized as follows. In Section 2, we motivate the use
of vector set represented objects by presenting various application ranges which benefit
from this modeling approach. In Section 3, we introduce the minimal matching distance
between vector sets which is a suitable distance measure for partial and complete similarity
search. In Section 4, we sketch the paradigm of multi-step query processing and present
appropriate filter techniques for the minimal matching distance on vector sets. In Section
5, we present the results of our experimental evaluation. We conclude this work in Section
6 with a short summary and a few remarks on future work.

2 Application Ranges for Vector Sets

Using sets of feature vectors is a generalization of the use of just one large feature vec-
tor. It is always possible to restrict the model to a feature space, in which a data object
will be completely represented by just one feature vector. But in some applications the
properties of vector set representations allow us to model the dependencies between the
extracted features more precisely. As the development of conventional database systems
in the recent two decades has shown, the use of more sophisticated ways to model data
can enhance both the effectiveness and efficiency for applications using large amounts of
data. Another advantage of using sets of feature vectors is the better storage utilization.
It is not necessary to force objects into a common size, if they are represented by sets of
different cardinality. In the following, we will shortly sketch different application ranges
which benefit from the use of vector set data.

CAD databases. In [KBK +03] voxelized spatial objects were modeled by sets of feature
vectors, where each feature vector represents a 3D rectangular cover which approximates
the object as good as possible. The vector set representation is able to avoid the problems
that occur by storing a set of covers according to a strict order, i.e. in one high-dimensional
feature vector. Thereby, it is possible to compare two objects more intuitively compared to
the distance calculation in the one-vector model. In a broad experimental evaluation it was
shown that the use of sets of feature vectors greatly enhances the quality of the similarity
model compared to the use of a single feature vector.

Soccer teams. As another example, let us assume that we want to measure the similarity
between two soccer teams. It is beneficial to represent each player by a feature vector
and the complete team as a set of feature vectors. A feature vector for one player may



consist of attributes like his age, his salary, the number of goals in the last season, etc. We
can compare two players by computing the Euclidean distance between the corresponding
feature vectors. This measures the similarity between two players rather well. But, what
is a suitable distance for comparing two teams? Assuming we have a teamA consisting
of 10 very young players having a low salary and having scored only a few goals in the
last season. Furthermore, teamA has one highly paid, rather experienced and successful
player. On the other hand, we have a teamB where we have 10 rather old, highly paid
successful players and one young low-budget player. If we compare each player of teamA
to the most similar player in teamB and vice versa, this yields that the two teams are very
similar. This straightforward approach does not reflect the intuitive notion of similarity.
On the other hand, if we compare each player from teamA to a different player in teamB
trying to minimize the average distance between two “matched” players, this results in a
very accurate similarity measure.

For partial similarity, it is advisable not to compare all players from teamA to a different
player in teamB, but only thes most similar players. For low values ofs, e.g.s = 2, the
two teamsA andB are very similar, as each team has an old player with a high salary and
a young low-budget player. In this case, the distance between the teamsA andB would be
very small. For higher values ofs, the two teams become more and more dissimilar. Let
us note that fors = 11 the two notions of partial and complete similarity coincide. This
behavior reflects the intuitive perception of similarity. To sum up, the use of vector sets
allows us to adjust the degree of the partial similarity ink discrete steps, if we represent
the objects by vector sets of cardinalityk.

Further application areas. There exist a lot of further possible application fields for
sets of feature vectors, e.g.:

• stock portfolios, where each stock is represented by the value of one share, the over-
all number of shares, how many days ago the shares were bought, the risk category,
etc.

• shopping carts, where each consumer product corresponds to a feature vector con-
taining the category, the price, the quantity, etc.

• multimedia CDs, where each media file is represented by the publisher, the artist,
the title, the filesize, the kind of content, etc.

To sum up, sets of feature vectors are a natural way to model a lot of complex real-world
objects.

3 Distance Measures on Vector Sets

Effective distance functions which allow both complete and partial similarity search as
well as suitable filter techniques for efficient query processing are indispensable for the
general use of the powerful concept of “sets of feature vectors”.



There are already several distance measures proposed on sets of vectors. In [EM97] the
authors survey the following four measures, which are computable in polynomial time:
the Hausdorff distance, the sum of minimum distances, the (fair-)surjection distance and
the link distance. The Hausdorff distance does not seem to be suitable as a similarity
measure, because it relies too much on the extreme positions of the elements of both sets.
The last three distance measures are suitable for modeling similarity, but are not metric.
This circumstance makes them unattractive, since there are only limited possibilities for
processing similarity queries efficiently when using a non-metric distance function. In
[EM97], the authors also introduce a method for expanding the distance measures into
metrics, but as a side effect the complexity of distance calculation becomes exponential.
Furthermore, the possibility to match several elements in one set to just one element in the
compared set is questionable in the application areas presented in Section 2.

A distance measure on vector sets that demonstrates to be suitable for defining similarity
is based on theminimum weight perfect matchingof sets. This well known graph problem
can be applied here by building a complete bipartite graphG = (X ∪ Y, E) between the
vector setsX andY . The weight of each edge(x, y) ∈ E, wherex ∈ X andy ∈ Y , in
this graphG is defined by the distanced(x, y). A perfect matching is a subsetM ⊆ E
that connects eachx ∈ X to exactly oney ∈ Y and vice versa. A minimum weight
perfect matching is a matching with a minimum sum of weights of its edges. Contrary to
the second example of Section 2, where we considered vector sets of equal cardinality, i.e.
soccer teams consisting of 11 players, there are a lot of application ranges, where objects
are naturally represented by a varying number of vectors. Since a perfect matching can
only be found for sets of equal cardinality, we need to introduce suitable weights as a
penalty for the unmatched vectors when defining a distance measure between objects of
varying cardinality.

Definition 1 (permutation of a set)
Let A be any finite set of arbitrary elements. Thenπ is a mapping that assignsa ∈ A
a unique numberi ∈ {1, .., |A|}. This is written asπ(A) = (a1, .., a|A|). The set of all
possible permutations ofA is denoted byΠ(A).

Definition 2 (minimal matching distance)
LetV ⊂ Rd and letX = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two vector sets. We
assume w.l.o.g.|X| ≤ |Y | ≤ k. Let D : Rd × Rd → R be a distance function between
two d-dimensional feature vectors. Furthermore, letW : V → R be a weight function
for unmatched elements. Then theminimal matching distanceDD,W

mm : 2V × 2V → R is
defined as follows:

DD,W
mm (X, Y ) = min

π∈Π(Y )

 |X|∑
i=1

D(~xi, ~yπ(i)) +
|Y |∑

i=|X|+1

W (~yπ(i))


The weight functionW provides the penalty given to every unassigned element of the set
having larger cardinality. Let us note that the minimal matching distance is a specialization
of thenetflow distancewhich is proven to be a metric in [RB01]. The minimal matching



distanceDD,W
mm is a metric, if the distance functionD is a metric and the weight function

W meets the following conditions:

(1) W (~x) > 0 for ~x ∈ V
(2) W (~x) + W (~y) ≥ D(~x, ~y) for ~x, ~y ∈ V

The Kuhn-Munkres algorithm [Kuh55, Mun57] can be used to calculate the minimal
matching distance in polynomial time. In a primary initialization step, a distance ma-
trix between the two vector sets containingk d-dimensional vectors is computed. IfD is
an Lp-distance, this initialization takesO(k2d) time. The method itself is based on the
successive augmentation of an alternating path between both sets. Since it is guaranteed
that this path can be expanded by one further match within each step takingO(k2) time
and there is a maximum ofk steps, the overall complexity of a distance calculation is
O(k3 + k2d) in the worst case.

The minimal matching distance can be adapted for partial similarity search in vector set
represented data. The distance measure defined in the following is based on a partial
minimal matching. Given two vector setsX andY , |X| ≤ |Y |, we only matchs ≤ |X|
vectors to calculate the distance betweenX andY .

Definition 3 (partial minimal matching distance)
LetV ⊂ Rd and letX = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two vector sets. We
assume w.l.o.g.|X| ≤ |Y | ≤ k. LetD : Rd×Rd → R be a distance function between two
d-dimensional feature vectors. Lets ≤ |X|. Then thepartial minimal matching distance
DD,s

pmm : 2V × 2V → R is defined as follows:

DD,s
pmm(X, Y ) = min

π1∈Π(X),π2∈Π(Y )

(
s∑

i=1

D(~xπ1(i), ~yπ2(i))

)

Unlike the minimal matching distance the partial variant is not a metric. As the Kuhn-
Munkres algorithm produces a partial minimal matching in each step as an intermediate
result, we can use it to calculate the partial minimal matching distanceDD,s

pmm(X, Y ). But

we have to take into account all
(|X|

s

)
combinations of vectors inX to match with vectors

in Y . Therefore, the time complexity for a single distance calculation isO(
(
k
s

)
sk2 +k2d).

Thus, a filtering technique to speed up query processing is essential.

4 Filters for Vector Sets

Complete similarity search on vector set data can be accelerated by using metric index
structures, e.g. the M-tree [CPZ97]. For a detailed survey on metric index structures we
refer the reader to [CNBYM01]. Another approach is to use the multi-step query pro-
cessing paradigm which, in contrast to metric index structures, is also suitable for partial



similarity search. The main goal of multi-step query processing is to reduce the number of
complex and therefore time consuming distance calculations in the query process. In order
to guarantee that there occur no false drops the used filter distances have to fulfill a lower-
bounding distance criterion. For any two objectso1 ando2, a lower-bounding distance
functionDf in the filter step has to return a value that is not greater than the exact object
distanceDo of o1 ando2, i.e.Df (o1, o2) ≤ Do(o1, o2). With a lower-bounding distance
function, it is possible to safely filter out all database objects which have a filter distance
greater than the current query range because the exact similarity distance of those objects
cannot be less than the query range.

The computation of the minimal matching distance on vector sets is a rather expensive
operation. Thus, the employment of selective and efficiently computable filter distance
functions for similarity search is very important. In the following, we present three differ-
ent filter types for query processing on data objects represented by vector sets, namely the
closest pair filter, thecentroid filterand thenorm vector filter.

4.1 Closest Pair Approach

Theclosest pair distancebetween two vector setsX andY can be used as a filter distance
for the minimal matching distanceDD,W

mm and is defined as follows.

Definition 4 (closest pair distance)
Let V ⊂ Rd and~ω ∈ Rd \ V . LetX = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two
vector sets. We assume w.l.o.g.|X| ≤ |Y | ≤ k. Let D : Rd × Rd → R be a distance
function. LetX ′ = {~x1, . . . ~x|Y |} be a multiset where~xi = ~ω for i ∈ {|X| + 1, . . . |Y |}.
Then theclosest pair distanceDD,~ω

cp (X, Y ) : 2V × 2V → R is defined as follows.

DD,~ω
cp (X, Y ) = max

 |Y |∑
i=1

min
j=1,...|Y |

D(~xi, ~yj),
|Y |∑
i=1

min
j=1,...|Y |

D(~xj , ~yi)


Let us note that the closest pair filter works directly on the set of vectors, i.e. on the original
data, and not on approximated data. The filter distance can be computed by scanning the
matrix of distance values between each pair of vectors inX andY for the closest pairs.
We will now show that the closest pair distance between two vector sets is a lower bound
for the minimal matching distance.

Theorem 1 LetV ⊂ Rd and~ω ∈ Rd \ V . LetX = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈
2V be two vector sets. We assume w.l.o.g.|X| ≤ |Y | ≤ k. Let D : Rd × Rd → R be
a distance function. Furthermore, letW~ω : V → R, W~ω(~v) = D(~v, ~ω), be a weight
function for unmatched elements. Then the following inequality holds:

DD,~ω
cp (X, Y ) ≤ DD,W~ω

mm (X, Y )
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Figure 1: Filters for the minimal matching distance.

Proof: See Appendix A.1.

A 2-dimensional example for the closest pair filter is depicted in Fig. 1(a), where|X| =
|Y | = 3 anda′3 + b3 + c3 = DL2,~0

cp (X, Y ) ≤ D
L2,W~0
mm (X, Y ) = a3 + b3 + c3. Asa′3 < a3,

~x3 is matched to both~y1 and~y3 during the filter distance calculation, whereas the minimal
matching distance is based on one-to-one matchings.

We adapt the closest pair filter to partial similarity search by adding up just the distances of
thes closest pairs of vectors. Thus, thepartial closest pair distanceis defined as follows.

Definition 5 (partial closest pair distance)
Let V ⊂ Rd and letX = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two vector sets.
We assume w.l.o.g.|X| ≤ |Y | ≤ k. Let D : Rd × Rd → R be a distance function. Let
s ≤ |X|. Then thepartial closest pair distanceDD,s

pcp(X, Y ) : 2V × 2V → R is defined as
follows.

DD,s
pcp(X, Y ) = max

(
min

π∈Π(X)

s∑
i=1

min
j=1,...|Y |

D(~xπ(i), ~yj),

min
π∈Π(Y )

s∑
i=1

min
j=1,...|X|

D(~xj , ~yπ(i))

)

The partial closest pair distance is a lower bound for the partial minimal matching distance.

Theorem 2 Let V ⊂ Rd and let X, Y ∈ 2V be two vector sets. We assume w.l.o.g.
|X| ≤ |Y | ≤ k. Let D : Rd × Rd → R be a distance function. Lets ≤ |X|. Then the
following inequality holds:

DD,s
pcp(X, Y ) ≤ DD,s

pmm(X, Y )

Proof: Analogous to the proof of Theorem 1.



As the partial closest pair distance can be computed rather efficiently by scanning the ma-
trix of distance values between each pair of vectors inX andY for the closest pairs and
organizing thes closest distances in a heap structure, it is a very beneficial filter for the
partial minimal matching distance. The overall runtime complexity isO(k2d) for the com-
plete version andO(k2d log s) for the partial version of the clostest pair distance, when an
Lp-distance is used between vectors. Although this is more complex than the closest pair
approach on norm vectors (cf. Section 4.3), it is a more selective filter that saves more of
the very expensive calculations of the exact partial minimal matching distance.

4.2 Centroid Approach

This filter step is based on the relation between a set of feature vectors and itsextended
centroid[KBK +03].

Definition 6 (extended centroid)
LetV ⊂ Rd and~ω ∈ Rd\V . LetX = {~x1, . . . ~x|X|} ∈ 2V be a vector set where|X| ≤ k.
Then theextended centroidCk,~ω(X) is defined as follows:

Ck,~ω(X) =
∑|X|

i=1 ~xi + (k − |X|) ~ω

k

Note how the vector~ω is used as a “dummy” vector to fill up vector sets with a cardinality
of less thank.

Theorem 3 LetV ⊂ Rd and~ω ∈ Rd \ V . LetX = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈
2V be two vector sets where|X|, |Y | ≤ k and letCk,~ω(X), Ck,~ω(Y ) be their extended
centroids. Furthermore, letW~ω : V → R, W~ω(~v) = ‖~v − ~ω‖p, be a weight function for
unmatched elements. Then the following inequality holds:

k ‖Ck,~ω(X)− Ck,~ω(Y )‖p ≤ DLp,W~ω
mm (X, Y )

See [KBK+03] for the proof of this theorem. We have shown that theLp-distance between
the extended centroids multiplied byk is a lower bound for the minimal matching distance
under the named preconditions. Therefore, when computing e.g.ε-range queries, we do
not need to examine objects whose extended centroids have a distance to the query object
q that is larger thanε

k . Often a good choice of~ω is ~0, since~0 /∈ V holds for a lot of
applications. Thus, Conditions (1) and (2) for the metric character of the minimal matching
distanceD

L2,W~0
mm are satisfied. A 2-dimensional example for the extended centroid filter

is depicted in Fig. 1(b), where|X| = |Y | = 2 and2c1 = 2 ‖Ck,~0(X) − Ck,~0(Y )‖2 ≤
D

L2,W~0
mm (X, Y ) = a1 + b1.

The centroid approach is not suitable as a filter for the partial minimal matching distance,
as the centroid invariably aggregates information of all vectors contained in a vector set.



4.3 Norm Vector Approach

Another possible filter for vector set represented data is based on theLp-norms of all
vector elements of a vector set. The idea is as follows: For all vectors~x in a vector setX,
|X| ≤ k, we compute theLp-norms‖~x‖p and organize these norm values in descending
order in ak-dimensional vector. We call this filter thenorm vector filter.

Definition 7 (norm vector)
LetV ⊂ Rd. LetX ∈ 2V be a vector set where|X| ≤ k. Let (‖~x1‖p, . . . ‖~x|X|‖p) be the
sequence of theLp-norm values of the vectors inX in descending order, i.e. for alli <
j ∈ {1, . . . |X|} holds‖~xi‖p ≥ ‖~xj‖p. Then thenorm vectorVk(X) = (v1, . . . vk)t ∈ Rk

is defined as follows:

vi =

{
‖~xi‖p for i = 1, . . . |X|
0 for i = |X|+ 1, . . . k

Note that ifX has a cardinality smaller than k, dimensions|X|+1 to k of the norm vector
will get filled with 0. We employ the Manhattan distance as a distance function between
two norm vectorsVk(X) andVk(Y ). This distance measure fulfills the lower-bounding
property with respect to the minimal matching distance, if theLp-norm is used as the
weight functionW .

Theorem 4 Let V ⊂ Rd and letX, Y ∈ 2V be two vector sets. Their norm vectors are
denoted byVk(X) andVk(Y ). Furthermore, letW~0 : V → R, W~0(~v) = ‖~v‖p, be the
Lp-norm used as a weight function for the minimal matching distance. Then the following
inequality holds:

‖Vk(X)− Vk(Y )‖1 ≤ D
Lp,W~0
mm (X, Y )

Proof: See Appendix A.2.

A 2-dimensional example for the norm vector filter is depicted in Fig. 1(c), where|X| =
|Y | = 2 anda′2 + b′2 = ‖Vk(X)− Vk(Y )‖1 ≤ D

L2,W~0
mm (X, Y ) = a2 + b2.

An approach for partial similarity search is to apply a parallel scan through the norm
vectorsVk(X) andVk(Y ) and to build a heap structure containing the distances between
the closest pairs of norm values found during the parallel scan. Finally, the sum of the
top s elements of the heap is reported as the distance measure. This can be done very
efficiently in O(k log s) time using the algorithm in Fig. 2. The algorithm corresponds to
a closest pair approach on the norm values of the feature vectors, which lower bounds the
partial minimal matching distance.



algorithm partialNormVectorFilter(VectorSetX, VectorSetY , Integerk, Integers)
begin

returnmax(comp(X, Y, k, s), comp(Y, X, k, s));
end;

algorithm comp(VectorSetX, VectorSetY , Integerk, Integers)
begin

(x1, . . . xk) := Vk(X); // initialize
(y1, . . . yk) := Vk(Y );
j := 1;
for i in 1..k do // parallel scan

while j < k ∧ |xi − yj | ≥ |xi − yj+1| do
j := j + 1;

end while;
heap.insert(|xi − yj |);

end for;
dist := 0; // add up the distance
for i in 1..s do

dist := dist + heap.top();
end for;
returndist;

end;

Figure 2: Partial norm vector filter algorithm.

Theorem 5 LetV ⊂ Rd and letX = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two vec-

tor sets. We assume w.l.o.g.|X| ≤ |Y | ≤ k. Lets ≤ |X|. LetX̂ = {‖~x1‖p, . . . ‖~x|X|‖p},
Ŷ = {‖~y1‖p, . . . ‖~y|Y |‖p} be multisets containing theLp-norm values of the vectors inX
andY . Then the following inequality holds:

DLp,s
pcp (X̂, Ŷ ) ≤ DLp,s

pmm(X, Y )

Proof: See Appendix A.3.

4.4 Summary

As the computation of the minimal matching distance is rather time-consuming, we intro-
duced three different filters. The centroid and the norm vector filtering techniques can be
profitably combined. The exact distance computation is only performed if the results of
both filter distance computations on the centroids and the norm vectors are small enough.
This way, a good deal of the information in the vector sets is incorporated in the filter
distance computation. Givend-dimensional data, the centroid filter maps each dimension
to a single value, resulting in ad-dimensional vector. On the other hand, the norm vector
filter maps each vector to a single value resulting in ak-dimensional vector. Thus, the
combined filter contains aggregated information over both the dimensions and the vectors
and is therefore suitable for a lot of different data distributions. The time complexity for a



Table 1: Runtime complexity of the proposed filters.

exact distance closest pair centroid norm vector

complete similarity O(k3 + k2d) O(k2d) O(d) O(k)

partial similarity O(
(
k
s

)
sk2+k2d) O(k2d log s) n/a O(k log s)

combined filter distance evaluation isO(d+k). As the centroid approach is not applicable
for partial similarity search, we cannot use the combined filter for this purpose.

In contrast to the other two approaches, which derive a single feature vector for approxi-
mating a vector set, the closest pair filter works directly on the vector sets. The resulting
distance measure lower bounds the minimal matching distance and can be computed more
efficiently than the exact minimal matching distance. The runtime complexities for par-
tial and complete similarity distance calculations based on the three different filters are
summed up in Table 1, where we assume vector sets containingk d-dimensional vectors,
a partial similarity parameters ∈ {1, . . . k}, and anLp-distance between vectors.

5 Experimental Evaluation

In this section, we present our experimental results. We generated and used two artificial
datasets, each containing 100,000 random vector sets. The first dataset consists of vector
sets containing 10 2-dimensional vectors each. The other dataset consists of vector sets
containing 2 10-dimensional vectors each. The vectors are generated so that all of their
components are uniformly distributed in the interval between 0 and 1. All distance mea-
sures between vector sets were implemented in Java 1.4 and the experiments were run on
a workstation with a Xeon 2.4 GHz processor and 2 GB main memory under Linux.

Furthermore, we used the similarity model presented in [KBK+03], where CAD objects
were represented by a vector set consisting of either 3, 5 or 7 vectors in 6D. All experi-
ments were carried out on a dataset containing 5,000 CAD objects from an American air-
craft producer. We conducted our experiments on top of the Oracle9i Server using PL/SQL
for the computational main memory based programming. We compared our different fil-
ters for vector set represented data to a PL/SQL implementation of the M-tree [CPZ97].
For the M-tree basedk-nearest neighbor queries the ranking algorithm of [HS95] was used.
The experiments were performed on a Pentium III/700 machine with IDE hard drives. The
database block cache was set to 500 disk blocks with a block size of 8 KB and was used
exclusively by one active session.

The minimal matching distances between sets of feature vectors were computed using an
implementation of the Kuhn-Munkres algorithm. Throughout our experiments we used the
Euclidean distance as the distance measure between two single vectors. The range queries
were based on a sequential scan. Thek-nn queries with exact distance calculations were



Figure 3: Complete range queries, artificial dataset, cardinality 10, dimensionality 2.

Figure 4: Complete range queries, artificial dataset, cardinality 2, dimensionality 10.

also based on a sequential scan. For the filteredk-nn queries the filter distances between
the query object and all vector sets in the database were calculated and sorted in ascending
order. Then the optimal multi-stepk-nn search algorithm [SK98] was used. In all tests,
we processed 10 different similarity range queries as well ask-nn queries. The presented
figures depict the average results from these tests.

5.1 Complete Similarity Search

In a first experiment, we carried out range queries on the two artificial datasets. Figure 3
shows rather good results for the norm vector filter, while the centroid filter performs rather
badly. The superiority of the norm vector filter is due to the fact that more information is
preserved by approximating a vector set by a 10-dimensional vector in contrast to the
2-dimensional centroid computed by the centroid approach. As expected, the situation
is reversed in Fig. 4 where each vector set contains 2 10-dimensional vectors. In both
tests, the closest pair filter has good to optimal selectivity, but due to its computational



Figure 5: Complete range queries, CAD dataset, cardinality 5, dimensionality 6.

Figure 6: Completek-nn queries, CAD dataset, cardinality 7, dimensionality 6 (sequential scan took
about 1014 sec. for eachk).

complexity the overall runtime is rather high especially for highε-values.

Using the CAD datasets, we carried out different range queries on a vector set consisting
of 5 6-dimensional vectors. Figure 5 shows that the selectivity of the closest pair filter is
almost optimal, i.e. few unnecessary candidates are produced. Nevertheless, the overall
runtime of this filter-step is very high as the runtime complexity of the filter-step is almost
as high as the computation of the minimal matching distance itself (cf. Fig. 5). Good re-
sults were obtained by using the centroid approach. The good performance of the centroid
approach can slightly be increased by using the combined filter, i.e. the combination of the
norm vector filter and the centroid filter, which can also be efficiently computed and has a
slightly higher selectivity. Note that both the selectivity as well as the runtime behavior of
the M-tree are outperformed by this combined filter for allε-values.

Figure 6 shows the average results we obtained for carrying out differentk-nn queries
on CAD objects represented by vector sets containing 7 vectors. Basically, we made the
same observations as for range queries. Although the closest pair filter has a rather good



Figure 7: Partial range queries fors = 2, CAD dataset, cardinality 7, dimensionality 6.

Figure 8: Partialk-nn queries fors = 3, CAD dataset, cardinality 5, dimensionality 6 (sequential
scan took about 2123 sec. for eachk).

selectivity, it is rather expensive. The best trade off is achieved by using the combination
of the norm vector filter and the centroid filter. All filters have a rather good selectivity
and accelerate the query process enormously. For instance, fork-nn queries wherek is
smaller than 20, the combined filter accelerates the query process on the 6-dimensional
vector sets by more than one order of magnitude compared to the sequential scan. Again,
the selectivity as well as the runtime behavior of the M-tree is clearly outperformed by
this combined filter for all values ofk, e.g. fork=5 the combined filter outperforms the
M-tree by an order of magnitude. We made the same observations for the CAD datasets
with 3 and 5 vectors per vector set, except that the absolute runtime is higher for the larger
vector sets. The average runtime for 7 vectors is about four times the average runtime for
3 vectors.

5.2 Partial Similarity Search

In this section, we tested the closest pair algorithm onL2-norm vectors, called norm vector
filter, and directly on thed-dimensional vectors, called closest pair filter. Let us note that



detecting partial similarity is a very expensive operation. Furthermore, we cannot apply
the M-tree as the distance function is not a metric (cf. Definition 3).

Figure 7 shows the average of 10 range queries for varyingε-values on a vector set of 7
vectors. The partial similarity parameters was set to 2. Again, the closest pair filter is
very selective. As the exact distance function is very expensive, the closest pair filter can
be beneficially used for smallε-values. For higherε-values, the rather high evaluation cost
of the closest pair filter carry into weight. On the other hand, the norm vector can safely
be used for all values ofε, as there is no noteworthy overhead. For rather smallε-values,
it even outperforms the closest pair filter, although the norm vector has a lower selectivity
than the closest pair filter. This is because the lower computational cost of the norm vector
filter still pays off, compared to the slightly more exact distance computations which have
to be carried out.

Figure 8 shows the average of 10k-nn queries for vector sets of 5 vectors each having
a dimensionality of 6 and a partial similarity parameters = 3. For small values ofk,
the norm vector filter outperforms the exact distance computation by almost one order of
magnitude. For higher values ofk, the selectivity of the norm vector filter decreases and
thus the overall response time increases. For values ofk equal to 100, the norm vector filter
still accelerates the query process by 100%. As already mentioned, the closest pair filter
is rather expensive. Although it has an excellent selectivity, the norm vector filter is better
for rather small values ofk. For increasing values ofk, the closest pair filter outperforms
the norm vector filter because of the much better selectivity and the very expensive exact
distance calculations.

6 Conclusions

In this paper, we motivated the use of vector set data by pointing out the different appli-
cation areas of this promising representation technique. We introduced a suitable distance
function on vector sets, which reflects the intuitive notion of similarity for the presented
application ranges. Furthermore, we presented different filtering techniques with different
runtime complexities. Our experimental evaluation and our analytical reasoning showed
that the closest pair filter is the most selective filter. As this filter is rather expensive, it
only pays off for partial similarity queries which are extremely expensive themselves. For
complete similarity queries, the combination of the norm vector filter and the centroid fil-
ter is the method of choice for a lot of different data distributions, as it can be computed
efficiently and the information of each vector and each dimension is taken into considera-
tion. The experimental evaluation on real world datasets demonstrates that the presented
filtering techniques accelerate similarity range queries andk-nn queries by up to one order
of magnitude compared to metric index structures and the sequential scan.

In our future work, we want to show how the paradigm of “sets of feature vectors” can be
applied to effective and efficient data mining tasks, e.g. clustering and classification.
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Appendix

A Formal Proofs

We will use the following three lemmas to proof Theorems 1, 4 and 5.

Lemma 1 Let ~x, ~y ∈ Rd be twod-dimensional feature vectors. Then the difference be-
tween theLp-norms of~x and~y underestimates theLp-distance between~x and~y:∣∣‖~x‖p − ‖~y‖p

∣∣ ≤ ‖~x− ~y‖p

Proof: ‖~x‖p = ‖~x − ~0‖p

tri. ineq.
≤ ‖~x − ~y‖p + ‖~y − ~0‖p = ‖~x − ~y‖p + ‖~y‖p follows

‖~x‖p − ‖~y‖p ≤ ‖~x− ~y‖p.

‖~y‖p = ‖~y−~0‖p

tri. ineq.
≤ ‖~x−~y‖p + ‖~x−~0‖p = ‖~x−~y‖p + ‖~x‖p follows ‖~y‖p−‖~x‖p ≤

‖~x− ~y‖p.

Then
∣∣‖~x‖p − ‖~y‖p

∣∣ = max(‖~x‖p − ‖~y‖p, ‖~y‖p − ‖~x‖p) ≤ ‖~x− ~y‖p. �

Lemma 2 Let V ⊂ Rd. LetX = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two vector
sets. We assume w.l.o.g.|X| ≤ |Y | ≤ k. Then the following inequality holds:

|X|∑
i=1

∣∣‖~xi‖p − ‖~yi‖p

∣∣ ≤ |X|∑
i=1

‖~xi − ~yi‖p

Proof: The proposition holds if∀i ∈ {1, . . . |X|} :
∣∣‖~xi‖p −‖~yi‖p

∣∣ ≤ ‖~xi − ~yi‖p and this
follows directly from Lemma 1. �

Lemma 3 Let V ⊂ Rd and let X, Y ∈ 2V be two vector sets. We assume w.l.o.g.
|X| ≤ |Y | ≤ k. Their norm vectors are denoted byVk(X) and Vk(Y ). Let the se-
quences of theLp-norm values of the vectors inX andY in descending order be denoted
by (‖~x1‖p, . . . ‖~x|X|‖p) and (‖~y1‖p, . . . ‖~y|Y |‖p). Let π ∈ Π(Y ). Then the following
inequality holds:

‖Vk(X)− Vk(Y )‖1 ≤
|X|∑
i=1

∣∣‖~xi‖p − ‖~yπ(i)‖p

∣∣+ |Y |∑
i=|X|+1

‖~yπ(i)‖p

Proof: (Sketch) LetVk(X) = (x1, . . . xk)t, Vk(Y ) = (y1, . . . yk)t.

We first show that the following holds:

‖Vk(X)− Vk(Y )‖1 =
k∑

i=1

|xi − yi| ≤
k∑

i=1

|xi − yπ(i)| (*)



Every given permutationπ can be constructed from adjacent permutationsπ1, . . . πn, such
thatπ = π1 ◦ . . . ◦ πn and for eachπl there is someq ∈ {1, . . . |X|}, such thatπl(q) =
q + 1, πl(q + 1) = q and∀q′ /∈ {q, q + 1} : πl(q′) = q′. Given πl, we show that
|xq−yπl(q)|+ |xq+1−yπl(q+1)| ≥ |xq+1−yq+1|+ |xq−yq|. There are in total six cases,
because of the ordering within the norm vectors:

1. xq ≤ xq+1 ≤ yπl(q+1) ≤ yπl(q) 4. yπl(q+1) ≤ xq ≤ xq+1 ≤ yπl(q)

2. xq ≤ yπl(q+1) ≤ xq+1 ≤ yπl(q) 5. yπl(q+1) ≤ xq ≤ yπl(q) ≤ xq+1

3. xq ≤ yπl(q+1) ≤ yπl(q) ≤ xq+1 6. yπl(q+1) ≤ yπl(q) ≤ xq ≤ xq+1

We exemplarily show the third case. The proofs of the other five cases are very similar.

|xq − yπl(q)|+ |xq+1 − yπl(q+1)| = xq+1 − yq + yq+1 − xq =
(xq+1 − yq+1) + (yq+1 − yq) + (yq − xq) + (yq+1 − yq) =

|xq+1 − yq+1|+ |xq − yq|+ 2|yq+1 − yq| ≥ |xq+1 − yq+1|+ |xq − yq|

As for each application of aπl the sum on the right side of proposition (*) will grow or
remain equal, the sum will grow or remain equal when applyingπ. Thus, proposition (*)
holds. Then the following holds:

‖Vk(X)− Vk(Y )‖1

(*)
≤
∑k

i=1|xi − yπ(i)| =
∑|X|

i=1

∣∣‖~xi‖p − ‖~yπ(i)‖p

∣∣+∑|Y |
i=|X|+1

∣∣‖0‖p − ‖~yπ(i)‖p

∣∣+∑k
i=|Y |+1

∣∣‖0‖p − ‖0‖p

∣∣ =∑|X|
i=1

∣∣‖~xi‖p − ‖~yπ(i)‖p

∣∣+∑|Y |
i=|X|+1‖~yπ(i)‖p

�

A.1 Theorem 1

Proof: Let π ∈ Π(Y ) be the permutation ofY that results from the minimum weight
perfect matching ofX andY , i.e.

DD,W~ω
mm (X, Y ) =

|X|∑
i=1

D(~xi, ~yπ(i)) +
|Y |∑

i=|X|+1

D(~ω, ~yπ(i))

The proof consists of two cases.

(1) DD,~ω
cp (X, Y ) =

∑|Y |
i=1 minj=1,...|Y | D(~xi, ~yj).∑|Y |

i=1 minj=1,...|Y | D(~xi, ~yj) =∑|X|
i=1 minj=1,...|Y | D(~xi, ~yj)+

∑|Y |
i=|X|+1 minj=1,...|Y | D(~ω, ~yj) ≤∑|X|

i=1 D(~xi, ~yπ(i)) +
∑|Y |

i=|X|+1 D(~ω, ~yπ(i))



The inequality holds, if it holds for every pair ofi-th addends. This is obviously the case,
as we always pick the~yj ∈ Y which minimizesD(~xi, ~yj).

(2) DD,~ω
cp (X, Y ) =

∑|Y |
i=1 minj=1,...|Y | D(~xj , ~yi).∑|Y |

i=1 minj=1,...|Y | D(~xj , ~yi) =
∑|Y |

i=1 minj=1,...|Y | D(~xj , ~yπ(i)) =∑|X|
i=1 minj=1,...|Y | D(~xj , ~yπ(i))+

∑|Y |
i=|X|+1 minj=1,...|Y | D(~xj , ~yπ(i)) ≤∑|X|

i=1 D(~xi, ~yπ(i)) +
∑|Y |

i=|X|+1 D(~ω, ~yπ(i))

Again, the inequality holds, if it holds for every pair ofi-th addends. This is obviously the
case, as we always pick the~xj ∈ X ′ which minimizesD(~xj , ~yπ(i)) (note that~ω ∈ X ′ if
|X| < |Y |). �

A.2 Theorem 4

Proof: Let the sequences of theLp-norm values of the vectors inX andY in descending
order be denoted by(‖~x1‖p, . . . ‖~x|X|‖p) and (‖~y1‖p, . . . ‖~y|Y |‖p). We assume w.l.o.g.
|X| ≤ |Y | ≤ k. Let π ∈ Π(Y ) be the permutation ofY that results from the minimum
weight perfect matching ofX andY . We combine the results from Lemmas 2 and 3.

‖Vk(X)− Vk(Y )‖1

Lemma 3
≤

|X|∑
i=1

∣∣‖~xi‖p − ‖~yπ(i)‖p

∣∣+ |Y |∑
i=|X|+1

‖~yπ(i)‖p

Lemma 2
≤

|X|∑
i=1

‖~xi − ~yπ(i)‖p +
|Y |∑

i=|X|+1

‖~yπ(i)‖p = D
Lp,W~0
mm (X, Y )

�

A.3 Theorem 5

Proof: According to Theorem 2,DLp,s
pcp (X̂, Ŷ ) ≤ D

Lp,s
pmm(X̂, Ŷ ) holds.

To obtainD
Lp,s
pmm(X̂, Ŷ ) ≤ D

Lp,s
pmm(X, Y ) we have to show that

min
π1∈Π(X),π2∈Π(Y )

(
s∑

i=1

∣∣‖~xπ1(i)‖p − ‖~yπ2(i)‖p

∣∣) ≤

min
π1∈Π(X),π2∈Π(Y )

(
s∑

i=1

‖~xπ1(i) − ~yπ2(i)‖p

)
and this follows from Lemma 2. �




