
Efficient Reverse k-Nearest Neighbor Estimation

Elke Achtert, Christian Böhm, Peer Kröger, Peter Kunath, Alexey Pryakhin, Matthias Renz

Institute for Computer Science

Ludwig-Maximilians Universität München

Oettingenstr. 67, 80538 Munich, Germany

{achtert,boehm,kroegerp,kunath,pryakhin,renz}@dbs.ifi.lmu.de

Abstract: The reverse k-nearest neighbor (RkNN) problem, i.e. finding all objects
in a data set the k-nearest neighbors of which include a specified query object, has
received increasing attention recently. Many industrial and scientific applications call
for solutions of the RkNN problem in arbitrary metric spaces where the data objects
are not Euclidean and only a metric distance function is given for specifying object
similarity. Usually, these applications need a solution for the generalized problem
where the value of k is not known in advance and may change from query to query. In
addition, many applications require a fast approximate answer of RkNN-queries. For
these scenarios, it is important to generate a fast answer with high recall. In this paper,
we propose the first approach for efficient approximative RkNN search in arbitrary
metric spaces where the value of k is specified at query time. Our approach uses the
advantages of existing metric index structures but proposes to use an approximation
of the nearest-neighbor-distances in order to prune the search space. We show that our
method scales significantly better than existing non-approximative approaches while
producing an approximation of the true query result with a high recall.

1 Introduction

A reverse k-nearest neighbor (RkNN) query returns the data objects that have the query

object in the set of their k-nearest neighbors. It is the complementary problem to that

of finding the k-nearest neighbors (kNN) of a query object. The goal of a reverse k-

nearest neighbor query is to identify the ”influence” of a query object on the whole data

set. Although the reverse k-nearest neighbor problem is the complement of the k-nearest

neighbor problem, the relationship between kNN and RkNN is not symmetric and the

number of the reverse k-nearest neighbors of a query object is not known in advance. A

naive solution of the RkNN problem requires O(n2) time, as the k-nearest neighbors of

all of the n objects in the data set have to be found. Obviously, more efficient algorithms

are required, and, thus, the RkNN problem has been studied extensively in the past few

years (cf. Section 2).

As we will discuss in Section 2 these existing methods for RkNN search can be categorized

into two classes, the hypersphere-approaches and the Voronoi-approaches. Usually, it is

very difficult to extend Voronoi-approaches in order to apply them to general metric ob-

jects. Hypersphere-approaches extend a multidimensional index structure to store each ob-

Proc. 12. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web (BTW'07), Aachen, Germany, 2007

ject along with its nearest neighbor distance. Thus, although most hypersphere-approaches

are only designed for Euclidean vectors, these methods can usually be extended for general

metric objects. In principle, the possible performance gain of the search operation is much

higher in the hypersphere-approaches while only Voronoi-approaches can be extended to

the reverse k-nearest neighbor problem with an arbitrary k > 1 in a straightforward way.

The only existing hypersphere-approach that is flexible w.r.t. the parameter k to some ex-

tend is limited by a parameter kmax which is an upper bound for the possible values of

k. All these recent methods provide an exact solution for the RkNN problem. However,

in many applications, an approximate answer for RkNN queries is sufficient especially if

the approximate answer is generated faster than the exact one. Those applications usually

need a solution for general metric objects rather than a solution limited to Euclidean vector

data and, additionally, for handling RkNN queries for any value of k which is only known

at query time.

One such sample application is a pizza company that wants to evaluate a suitable location

for a new restaurant. For this evaluation, a RkNN query on a database of residents in the

target district could select the set of residents that would have the new restaurant as its

nearest pizza restaurant, i.e. are potential customers of the new restaurant. In addition, to

keep down costs when carrying out an advertising campaign, it would be profitable for a

restaurant owner to send menu cards only to those customers which have his restaurant

as one of the k-nearest pizza restaurant. In both cases, an approximate answer to the

RkNN query is sufficient. Usually, the database objects in such an application are nodes

in a traffic network (cf. Figure 1). Instead of the Euclidean distance, the network distance

computed by graph algorithms like Dijkstra is used.

Another important application area of RkNN search in general metric databases is molec-

ular biology. Researchers all over the world rapidly detect new biological sequences that

need to be tested on originality and interestingness. When a new sequence is detected,

RkNN queries are applied to large sequence databases storing sequences of biological

molecules with known function. To decide about the originality of a newly detected se-

quence, the RkNNs of this sequence are computed and examined. Again, an approximate

answer of the launched RkNN queries is sufficient. In addition, it is much more important

to get quick results in order to enable interactive analysis of possible interesting sequences.

Usually, in this context, the similarity of biological sequences is defined in terms of a met-

ric distance function such as the Edit distance or the Levenstein distance. More details on

this application of RkNN search in metric databases can be found in [DP03].

In general, the RkNN problem appears in many practical situations such as geographic in-

formation systems (GIS), traffic networks, adventure games, or molecular biology where

the database objects are general metric objects rather than Euclidean vectors. In these ap-

plication areas, RkNN queries are frequently launched where the parameter k can change

from query to query and is not known beforehand. In addition, in many applications, the

efficiency of the query execution is much more important than effectiveness, i.e. users

want a fast response to their query and will even accept approximate results (as far as the

number of false drops and false hits is not too high).

In this paper, we propose an efficient approximate solution based on the hypersphere-

approach for the RkNN problem. Our solution is designed for general metric objects and

Giacomo‘s
Pizza Pipo‘s

Pizza

Giovanni‘s
Pizza

Paolo‘s
Pizza

Franco‘s
Pizza

Figure 1: Evaluation of potential customers (small circles) for a new pizza restaurant (larger circles
indicate competing pizza restaurants) using RkNN queries.

allows RkNN queries for arbitrary k. In contrast to the only existing approach, the pa-

rameter k is not limited by a given upper bounding parameter kmax. The idea is to use a

suitable approximation of the kNN distances for each k of every object in order to eval-

uate database objects as true hits or true drops without requiring a separate kNN search.

This way, we approximate the kNN distances of a single object stored in the database as

well as the kNN distances of the set of all objects stored in a given subtree of our metric

index structure. To ensure a high recall of our result set we need an approximation of

the kNN distances with minimal approximation error (in a least square sense). We will

demonstrate in Section 3 that the k-nearest neighbor distances follow a power law which

can be exploited to efficiently determine such approximations. Our solution requires a

negligible storage overhead of only two additional floating point values per approximated

object. The resulting index structure called AMRkNN (Approximate Metric RkNN)-Tree

can be based on any hierarchically organized, tree-like index structure for metric spaces.

In addition, it can also be used for Euclidean data by using a hierarchically organized,

tree-like index structure for Euclidean data.

The remainder of this paper is organized as follows: Section 2 introduces preliminary defi-

nitions, discusses related work, and points out our contributions. In Section 3 we introduce

our novel AMRkNN-Tree in detail. Section 4 contains a comparative experimental evalu-

ation. Section 5 concludes the paper.

2 Survey

2.1 Problem Definition

Since we focus on the traditional reverse k-nearest neighbor problem, we do not consider

recent approaches for related or specialized reverse nearest neighbor tasks such as the

bichromatic case, mobile objects, etc.

In the following, we assume that D is a database of n metric objects, k ≤ n, and dist is a

metric distance function on the objects in D. The set of k-nearest neighbors of an object

q is the smallest set NN k(q) ⊆ D that contains at least k objects from D such that

∀o ∈ NN k(q),∀ô ∈ D − NN k(q) : dist(q, o) < dist(q, ô).

The object p ∈ NN k(q) with the highest distance to q is called the k-nearest neighbor
(kNN) of q. The distance dist(q, p) is called k-nearest neighbor distance (kNN distance)

of q, denoted by nndistk(q).

The set of reverse k-nearest neighbors (RkNN) of an object q is then defined as

RNN k(q) = {p ∈ D | q ∈ NN k(p)}.

The naive solution to compute the reverse k-nearest neighbor of a query object q is rather

expensive. For each object p ∈ D, the k-nearest neighbors of p are computed. If the

k-nearest neighbor list of p contains the query object q, i.e. q ∈ NN k(p), object p is a

reverse k-nearest neighbor of q. The runtime complexity of one query is O(n2). It can

be reduced to an average of O(n log n) if an index such as the M-Tree [CPZ97] (or, if

the objects are feature vectors, the R-Tree [Gut84] or the R*-Tree [BKSS90]) is used to

speed-up the nearest neighbor queries.

2.2 Related Work

An approximative approach for reverse k-nearest neighbor search in higher dimensional

space is presented in [SFT03]. A two-way filter approach is used to generate the results.

Recently, in [XLOH05] two methods for estimating the kNN-distance from one known

κNN-distance are presented. However, both methods are only applicable to Euclidean

vector data, i.e. D contains feature vectors of arbitrary dimensionality d (D ∈ R
d).

All other approaches for the RkNN search are exact methods that usually produce con-

siderably higher runtimes. Recent approaches can be classified as Voronoi-approaches or

hypersphere-approaches.

Voronoi-approaches usually use the concept of Voronoi cells to prune the search space.

The above-mentioned, approximate solution proposed in [SFT03] can be classified as

Voronoi-based approach. In [SAA00], a Voronoi-based approach for reverse 1-nearest

neighbor search in a 2D data set is presented. It is based on a partition of the data space

into six equi-sized units where the gages of the units cut at the query object q. The nearest

neighbors of q in each unit are determined and merged together to generate a candidate set.

This considerably reduces the cost for the nearest-neighbor queries. The candidates are

then refined by computing for each candidate c the nearest neighbor. Since the number of

units in which the candidates are generated increases exponentially with d, this approach

is only applicable for 2D data sets. Recently, in [TPL04] the first approach for RkNN

search was proposed, that can handle arbitrary values of k. The method uses any hierar-

chical tree-based index structure such as R-Trees to compute a nearest neighbor ranking

of the query object q. The key idea is to iteratively construct a Voronoi cell around q from

the ranking. Objects that are beyond k Voronoi planes w.r.t. q can be pruned and need

not to be considered for Voronoi construction. The remaining objects must be refined, i.e.

for each of these candidates, a kNN query must be launched. In general, Voronoi-based

approaches can only be applied to Euclidean vector data because the concept of Voronoi

cells does not exist in general metric spaces.

Hypersphere-approaches use the observation that if the distance of an object p to the

query q is smaller than the 1-nearest neighbor distance of p, p can be added to the result set.

In [KM00] an index structure called RNN-Tree is proposed for reverse 1-nearest neighbor

search based on this observation. The RNN-Tree precomputes for each object p the dis-

tance to its 1-nearest neighbor, i.e. nndist1(p). The objects are not stored in the index

itself. Rather, for each object p, the RNN-Tree manages a sphere with radius nndist1(p),
i.e. the data nodes of the tree contain spheres around objects. The RdNN-Tree [YL01] ex-

tends the RNN-Tree by storing the objects of the database itself rather than circles around

them. For each object p, the distance to p’s 1-nearest neighbor, i.e. nndist1(p) is aggre-

gated. In general, the RdNN-Tree is a R-Tree-like structure containing data objects in the

data nodes and MBRs in the directory nodes. In addition, for each data node N , the maxi-

mum of the 1-nearest neighbor distance of the objects in N is aggregated. An inner node

of the RdNN-Tree aggregates the maximum 1-nearest neighbor distance of all its child

nodes. In general, a reverse 1-nearest neighbor query is processed top down by pruning

those nodes N where the maximum 1-nearest neighbor distance of N is greater than the

distance between query object q and N , because in this case, N cannot contain true hits

anymore. Due to the materialization of the 1-nearest neighbor distance of all data objects,

the RdNN-Tree needs not to compute 1-nearest neighbor queries for each object. Both,

the RNN-Tree and the RdNN-Tree, can be extended to metric spaces (e.g. by applying

an M-Tree [CPZ97] instead of an R-Tree). However, since the kNN distance needs to be

materialized, it is limited to a fixed k and cannot be generalized to answer RkNN-queries

with arbitrary k. To overcome this problem, the MRkNNCoP-Tree [ABK+06b] has been

proposed recently. The index is conceptually similar to the RdNN-Tree but stores a conser-

vative and progressive approximation for all kNN distances of any data object rather than

the exact kNN distance for one fixed k. The only limitation is that k is upper-bounded by

a parameter kmax. For RkNN queries with k > kmax, the MRkNNCoP-Tree cannot be

applied [ABK+06a]. The conservative and progressive approximations of any index node

are propagated to the parent nodes. Using these approximations, the MRkNNCoP-Tree

can identify a candidate set, true hits, and true drops. For each object in the candidate set,

a kNN query need to be launched for refinement.

2.3 Contributions

Our solution is conceptually similar to that in [ABK+06b] but extends this work and all

other existing approaches in several important aspects. In particular, our method provides

the following new features:

1. Our solution is applicable for RkNN search using any value of k because our ap-

proximation can be interpolated for any k ∈ N. In contrast, most previous methods

are limited to RkNN queries with one predefined, fixed k or k ≤ kmax.

2. Our distance approximation is much smaller than the approximations proposed in

recent approaches and, thus, produces considerably less storage overhead. As a

consequence, our method leads to a smaller index directory resulting in significantly

lower query execution times.

3. In contrast to several existing approaches, our method does not need to perform

kNN queries in an additional refinement step. This also dramatically reduces query

execution times.

4. Our distance approximations can be generated from a small sample of kNN dis-

tances (the kNN distances of any k ∈ N can be interpolated from these approxima-

tions). Thus, the time for index creation is dramatically reduced.

In summary, our solution is the first approach that can answer RkNN queries for any

k ∈ N in general metric databases. Since our solution provides superior performance but

approximate results, it is applicable whenever efficiency is more important than complete

results. However, we will see in the experimental evaluation that the loss of accuracy is

negligible.

3 Approximate Metric RkNN Search

As discussed above, the only existing approach to RkNN search that can handle arbitrary

values of k at query time and can be used for any metric objects (not only for Euclidean

feature vectors) is the MRkNNCoP-Tree [ABK+06b] that extends the RdNN-tree by us-

ing conservative and progressive approximations for the kNN distances. This approach,

however, is optimized for exact RkNN search and is limited to a its flexibility regarding

the parameter k is limited by an additional parameter kmax. This additional parameter

must be specified in advance, and is an upper bound for the value of k at query time. If a

query is launched specifying a k > kmax, the MRkNNCoP-Tree cannot guarantee com-

plete results. In our scenario of answering approximate RkNN queries, this is no problem.

However, since the MRkNNCoP-Tree constraints itself to compute exact results for any

query with k ≤ kmax, it generates unnecessary overhead by managing conservative and

progressive approximations. In general, an index for approximate RkNN search does not

need to manage conservative and progressive approximations of the kNN distances of each

object but only needs one approximation.

Thus, for each object, instead of two approximations (a conservative and a progressive) of

the kNN distances which is bound by a parameter kmax, we store one approximation of

the kNN distances for any k ∈ N. This approximation is represented by a function, i.e. the

approximated kNN distance for any value k ∈ N can be calculated by applying this func-

tion. Similar to existing approaches, we can use an extended M-Tree, that aggregates for

each node the one approximation of the approximations of all child nodes or data objects

contained in that node. These approximations are again represented as functions. At run-

time, we can estimate the kNN distance for each node using this approximation in order to

prune nodes analogously to the way we can prune objects. Since the approximation does

not ensure completeness, the results may contain false positives and may miss some true

drops. As discussed above, this is no problem since we are interested in an approximate

RkNN search scenario.

In the following, we introduce how to compute an approximation of the kNN distances for

arbitrary k ∈ N. After that, we describe how this approximation can be integrated into an

M-Tree. At the end of this section, we outline our approximate RkNN search algorithm.

3.1 Approximating the kNN Distances

A suitable model function for the approximation of our kNN distances for every k ∈ N

should obviously be as compact as possible in order to avoid a high storage overhead and,

thus, a high index directory.

In our case, we can assume that the distances of the neighbors of an object o are given as

a (finite) sequence

NNdist(o) = 〈nndist1(o), nndist2(o), . . . , nndistkmax(o)〉

for any kmax ∈ N and this sequence is ordered by increasing k. Due to monotonicity,

we also know that i < j ⇒ nndisti(o) ≤ nndistj(o). Our task here is to describe the

discrete sequence of values by some function fo : N → R with fo(k) ≈ nndistk(o).
As discussed above, such a function should allow us to calculate an approximation of the

kNN distance for any k, even for k > kmax by estimating the corresponding values.

From the theory of self-similarity [Sch91] it is well-known that in most data sets the re-

lationship between the number of objects enclosed in an arbitrary hypersphere and the

scaling factor (radius) of the hypersphere (the same is valid for other solids such as hyper-

cubes) approximately follows a power law:

encl(ε) ∝ εdf ,

where ε is the scaling factor, encl(ε) is the number of enclosed objects and df is the fractal

dimension. The fractal dimension is often (but not here) assumed to be a constant which

characterizes a given data set. Our kNN sphere around any object o ∈ D can be understood

to be such a scaled hypersphere where the distance of the kNN is the scaling factor and

k is the number of enclosed objects. Thus, it can be assumed that the kNN distances also

follow the power law, i.e.

k ∝ nndistk(o)df .

Transferred in log-log space (for an arbitrary logarithmic basis, e.g. for basis e), we have

0

20

40

60

80

100

0 20 40 60 80 100

0

1

2

3

4

0 1 2 3 4 5

ln(k)

ln
(k
N
N
-D
is
t)

0

10

20

30

40

0 20 40 60 80 100

k

kN
N
-D
is
ta
nc
e

p q

p

q

p
q

Synthetic uniform data distribution.

0

20

40

60

80

100

0 20 40 60 80 100
0

5

10

15

20

25

30

0 20 40 60 80 100

k

kN
N

-D
is

ta
nc

e

-1

0

1

2

3

4

0 1 2 3 4 5

ln(k)

ln
(k

N
N

-D
is

t)

p q
pp

q

q

Synthetic data: two Gaussian clusters.

0

40

80

120

160

0 20 40 60 80 100

k

kN
N
-D
is
ta
nc
e

-1

0

1

2

3

4

5

6

0 1 2 3 4 5

ln(k)

ln
(k
N
N
-D
is
t)

p q w

pp
q

q

ww

Real-world data set: Sacramento landmarks.

Figure 2: Illustration of the relationships between k and the kNN distance for different data distri-
butions.

a linear relationship [Sch91]:

log(nndistk(o)) ∝ 1
df

· log(k).

This linear relationship between k and the kNN distance in log-log space is illustrated

for different sample data distributions and a sample 2D real-world data set1 in Figure

2. Obviously this linear relationship is not perfect. However, as it can be anticipated

from Figure 2, the relationship between log(k) and log(nndistk(o)) for any object o in a

database of arbitrary distribution, exhibit a clear linear tendency.

From this observation, it follows that it is generally sensible to use a model function which

is linear in log-log space — corresponding to a parabola in non-logarithmic space — for

the approximation. Obviously, computing and storing a linear function needs considerably

less overhead than a higher order function. Since we focus in this section on the approx-

imation of the values of the kNN distance over varying k in a log-log sense, we consider

1The real-world data represents the spatial coordinates of landmarks in Sacramento, CA. The data originates

from: http://www.census.gov

the pairs (log(k), log(nndistk(o)) as points of a two-dimensional vector space (xk, yk).
These points are not to be confused with the objects stored in the database (e.g. the ob-

ject o the nearest neighbors of which are considered here) which are general metric objects.

Whenever we speak of points (x, y) or lines ((x1, y1), (x2, y2)) we mean points in the two-

dimensional log-log space where log(k) is plotted along the x-axis and log(nndistk(o))
for a given general metric object o ∈ D is plotted along the y-axis.

Like in most other applications of the theory of self-similarity, we need to determine a

classical regression line that approximates the true values of nndistk(o) with least square

error. A conventional regression line fo(x) = mo · x + to would find the parameters

(mo, to) minimizing least square error:

kmax∑

k=1

(yk − (mo · log k + to))2 → min

where yk = log nndistk(o), which evaluates the well known formula of a regression line

in 2D space. As indicated above, since this line is the best approximation of a point set, it

is exactly the approximation of the kNN distances we want to aggregate. In other words,

for each object o ∈ D, we want to calculate the function fo(x) = mo ·x+to that describes

the regression line of the point set {(log k, log nndistk(o)) | 1 ≤ k ≤ kmax}.

From the theory of linear regression, the parameters mo and to can be determined as

mo =
(
kmax∑
k=1

yk · log k) − kmax · ȳ · 1
kmax

kmax∑
k=1

log k

(
kmax∑
k=1

(log k)2) − kmax · (1
kmax

kmax∑
k=1

log k)2

where ȳ = 1
kmax

∑kmax

k=1 log nndistk(o), and

to = ȳ − mo · 1
kmax

kmax∑

k=1

log k.

3.2 Aggregating the Approximations

So far, we have shown how to generate an accurate approximation for each object of the

database. When using a hierarchically organized index structure, the approximation can

also be used for the nodes of the index to prune irrelevant sub-trees. Usually, each node

N of the index is associated with a page region representing a set of objects in the subtree

which has N as root. In order to prune the subtree of node N , we need to approximate the

kNN distances of all objects in this subtree, i.e. page region. If the distance between the

query object q and the page region of N , called MINDIST, is larger than this approxima-

tion, we can prune N and thus, all objects in the subtree of N . The MINDIST is a lower

lo
g
(n
n
d
is
t k
(o
))

log(k)

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5

p2

p1

p3

p2
f

p3
f

p1
f

N
f

Figure 3: Visualization of the aggregated approximation fN for a node N containing objects
p1, p2, p3.

bound for the distance of q to any of the objects in N . The aggregated approximation

should again estimate the kNN distances of all objects in the subtree representing N with

least squared error. This is a little more complex than a simple regression problem.

Obviously, given a data node N with |N | data objects oi ∈ N , the parameters of the

optimal regression line FN (x) = mN · x + tN that approximates the kNN distances of all

objects in N can be determined as follows:

mN =

∑
oi∈N

(
kmax∑
k=1

yoi

k · log k) − kmax

|N | · ∑
oi∈N

ȳoi · |N |
kmax

kmax∑
k=1

log k

|N | · (
kmax∑
k=1

(log k)2) − kmax · (1
kmax

kmax∑
k=1

log k)2

and

tN =
1
|N |

∑

oi∈N

ȳoi − mo · 1
kmax

kmax∑

k=1

log k,

where yoi

k = log nndistk(oi) and

ȳoi =
1

kmax

kmax∑

k=1

log nndistk(oi).

The first equation can be reformulated as

mN =

∑
oi∈N

(
kmax∑
k=1

yoi

k · log k) − ∑
oi∈N

ȳoi ·
kmax∑
k=1

log k

|N | · (
kmax∑
k=1

(log k)2) − 1
kmax

(
kmax∑
k=1

log k)2

Thus, in order to generate an optimal approximation fN for any directory node N with

child nodes Ci, we need to aggregate
∑

oi∈Ci

kmax∑
k=1

yoi

k and
∑

oi∈Ci

ȳoi for each Ci. Thus, we

store for each child nodes Ci two additional values

v1 =
∑

oi∈Ci

kmax∑

k=1

yoi

k

and

v2 =
∑

oi∈Ci

ȳoi

in order to compute the distance approximation of the parent node N . Obviously, the

required storage overhead is negligible. On the other hand, we can now generate for each

node N in the tree the optimal regression line for the kNN distances of all objects located

in the subtree of N .

The idea of aggregating the kNN distance approximations for directory nodes is visualized

in Figure 3. The approximation fN of a node N representing objects p1, p2, p3 is depicted.

The regression line fN approximates the kNN distances of p1, p2, p3 with least square

error.

We call the resulting index structure AMRkNN-Tree (Approximate Metric Reverse kNN-

Tree). The original concepts of the AMRkNN-Tree presented here can be incorporated

within any hierarchically organized index for metric objects. Obviously, our concepts

can also be used for RkNN search in Euclidean data by integrating the approximation into

Euclidean index structures such as the R-tree [Gut84], the R*-tree [BKSS90], or the X-tree

[BKK96].

3.3 RkNN Search Algorithm

The algorithm for approximate RkNN queries on our novel AMRkNN-Tree is similar to

the exact RkNN query algorithms of the RdNN-Tree and the MRkNNCoP-Tree. However,

our index structure can answer RkNN queries for any k specified at query time. Let us

point out that the value of k is not bound by a predefined kmax parameter, although the

approximation of the kNN distances are computed by using only the first kmax values,

i.e. the kNN distances with 1 ≤ k ≤ kmax. The kNN distance for any k > kmax can be

extrapolated by our approximations in the same way as for any k ≤ kmax. In addition, due

Approximate RkNN query(D, q, k)

// D is assumed to be organized as AMRkNN-Tree

queue := new Queue;
insert root of AMRkNN-Tree into queue;
while not queue.isEmpty()

N := queue.getFirst();
if N is node then

if MINDIST(N, q) ≤ mN · log k + tN then
insert all elements of N into queue;

end if
else // N is a point

if log(dist(N, q)) ≤ mN · log k + tN then
add N to result set;

end if
end if

end while

Figure 4: Algorithm for approximate RkNN query.

to the use of a metric index structure, our AMRkNN-Tree is applicable to general metric

objects.

Similar to the M-Tree concept, a node N of our AMRkNN-Tree is represented by its

routing object No and the covering radius Nr. All objects represented by node N have a

distance less than Nr to No. The logarithm of the aggregated kNN distance of a node N ,

denoted by kNNagg(N) can be determined from the approximation fN (x) = mN ·x+ tN
of N by

kNNagg(N) = mN · log k + tN .

Note that the true (i.e. non-logarithmic) approximation of the aggregated kNN distance of

N is ekNNagg(N). To avoid unnecessary complex computations, we adapt the definition of

the MINDIST between a node and a point to the logarithmic scale of kNNagg(N). Thus,

the MINDIST of a node N and a query point q, denoted by MINDIST(N, q), is defined as

MINDIST(N, q) = log(max{dist(q, No) − Nr, 0}).
The pseudo code of the approximate RkNN query algorithm is depicted in Figure 4. A

query q is processed by traversing the index from the root of the index to the leaf level.

A node N needs to be refined if the MINDIST between q and N is smaller than the ag-

gregated kNN distance approximation of n, i.e. MINDIST(q, N) ≤ kNNagg(N). Those

nodes, where the MINDIST to q is larger than their aggregated kNN distance approxima-

tion are pruned, i.e. if MINDIST(N, q) > kNNagg(N).

The traversal ends up at a data node. Then, all points p inside this node are tested using

their approximation fp(x) = mp · x + tp. A point p is a hit if

log(dist(N, q)) ≤ mN · log k + tN .

Metric datasets
Name # objects

Road network 18,236

Sequence 10,000

Euclidean datasets
Name # objects dimension

SEQUOIA 100,000 5

ColorMoments 68,040 9

CoocTexture 68,040 16

Table 1: Real-world datasets used for our experiments.

Otherwise, if log(dist(N, q)) > mN ·log k+tN , point p is a miss and should be discarded.

In contrast to other approaches that are designed for RkNN search for any k, our algorithm

directly determines the results. In particular, we do not need to apply an expensive refine-

ment step to a set of candidates. This further avoids a significant amount of execution

time.

4 Evaluation

All experiments have been performed on Windows workstations with a 32-bit 4 GHz CPU

and 2 GB main memory. We used a disk with a transfer rate of 50 MB/s, a seek time of

6 ms and a latency delay of 2 ms. In each experiment we applied 100 randomly selected

RkNN queries to the particular dataset and reported the average results. The runtime is

presented in terms of the elapsed query time including I/O and CPU-time. All evaluated

methods have been implemented in Java.

We compared our AMRkNN-Tree with the index proposed in [ABK+06b] that is designed

for exact RkNN search in general metric spaces for any k ≤ kmax and the sequential scan.

The approach in [ABK+06b] claims to outperform all other approaches on general metric

data as well as on Euclidean data. We will show, that our AMRkNN-Tree is much more

efficient than this state-of-the-art approach on both general metric data and Euclidean data.

4.1 Datasets

Metric RkNN search. Our experiments were performed using two real-world datasets.

The first one is a road network dataset derived from the city of San Juan, CA, which

contains 18,236 nodes and 23,874 edges. The average degree of the nodes in this network

is 2.61. The dataset is online available2. The nodes of the network graph were taken as

database objects from which subsets of different size were selected to form the test data

set. For the distance computation we used the shortest-path distance computed by means

of the Djikstra algorithm. The second dataset consists of 10,000 protein sequences taken

from SWISSPROT database3, the Levenstein distance was used as similarity distance. For

2www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/
3http://www.expasy.org/sprot/

both datasets we used an M-Tree with a node size of 4 KByte.

Euclidean RkNN search. We also integrated our concepts into an X-Tree [BKK96] in

order to support RkNN search in Euclidean data. We used three real-world datasets for

our experiments including a set of 5-dimensional vectors generated from the well-known

SEQUOIA 2000 benchmark dataset and two ”Corel Image Features” benchmark datasets

from the UCI KDD Archive4. The first Corel Image dataset contains 9 values for each

image (“ColorMoments”), the second Corel Image dataset contains 16-dimensional texture

values (“CoocTexture”). The underlying X-Tree had a node size of 4 KByte.

The characteristics of the real-world datasets used for our evaluation are summarized in

Table 1.

4.2 Comparison to competing approaches in Euclidean space

In Euclidean space, there exist two competitors PDE and kDE [XLOH05] as discussed

in Section 2.2. In an initial setup, we compare the performance of our approach to both

competing approaches by measuring the average kNN-distance error. For all experiments,

we set kmax = 100. The κ parameter for the competing techniques was set to 50. Figure

5(a-c) depicts the error for varying parameter k. Because PDE and kDE store the exact

distance for k = κ, the error for both techniques decreases when k converges to κ. For

k �= κ, the distance approximations of PDE and kDE are significantly worse than those

of our approach. For the 16-dimensional Corel Image dataset, our AMRkNN approach

outperforms the competing techniques by a factor between 4 and 6, for k ≤ 30 resp.

k ≥ 70. In a next experiment, we evaluated the error for varying database size, as depicted

in Figure 5(d). The results show that the quality of the distance approximations for all

three techniques is almost independent from the database size, i.e. is not affected by the

density of the dataset.

Because the quality of the distance approximations of the AMRkNN-Tree clearly outper-

forms the distance approximations of PDE and kDE for varying parameter k and varying

database size, we do not take PDE and the kDE into account in the remaining experiments.

4.3 Runtime w.r.t. database size

We altered the number of database objects in order to evaluate the scalability of the com-

peting methods w.r.t. the database size. Throughout all experiments, we set k = 50 and

kmax = 100.

Metric RkNN search. A comparison of our novel index structure with the state-of-the-

art approach applied to our real-world metric datasets is shown in Figure 6. It can be seen

that our AMRkNN-Tree clearly outperforms the competing MRkNNCoP-Tree on the road

4http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html

0

0.05

0.1

0.15

0.2

0.25

10 40 70 100 130 160 190
k

av
g.

 k
N

N
-d

is
ta

nc
e

er
ro

r

AMRkNN PDE kDE

(a) SEQUOIA data.

0

0.02

0.04

0.06

0.08

0.1

0.12

10 40 70 100 130 160 190
k

av
g.

 k
N

N
-d

is
ta

nc
e

er
ro

r

AMRkNN PDE kDE

(b) Corel Image data (9D).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

10 40 70 100 130 160 190
k

av
g.

 k
N

N
-d

is
ta

nc
e

er
ro

r

AMRkNN PDE kDE

(c) Corel Image data (16D).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10000 20000 30000 100000

database size

av
g.

 1
0N

N
-d

is
ta

nc
e

er
ro

r

AMRkNN (k=10) PDE (k=10) KDE (k=10)
AMRkNN (k=100) PDE (k=100) KDE (k=100)

(d) SEQUOIA data.

Figure 5: Average kNN-distance error of competing methods w.r.t. parameter k (a, b, c) and database
size (d) on Euclidean data.

network dataset (cf. Figure 6(a)). The performance gain of our approach over the existing

method also grows with increasing database size. Both approaches show a linear scalabil-

ity w.r.t. the number of data objects, but the increase of runtime of our AMRkNN-Tree is

smaller than the increase of runtime of the MRkNNCoP-Tree. The runtime of the sequen-

tial scan also grows linear with increasing number of database objects. It is not shown in

Figure 6(a) for clearness reasons. In fact, we observed that the performance gain of our

AMRkNN-Tree over the sequential scan grows with increasing database size from a factor

of 150 to about 850.

A similar observation can be made on the dataset containing biological sequences. The

results are illustrated in Figure 6(b). Again, the sequential scan is not shown due to clarity

reasons.

Euclidean RkNN search. In Figure 7 a comparison of our novel index structure with

the state-of-the-art approach applied to our real-world Euclidean datasets is presented. As

it can be observed, our AMRkNN-Tree clearly outperforms the competing MRkNNCoP-

Tree on all three datasets. In addition, the performance gain of our approach over the

existing method also grows with increasing database size on all datasets. Both competing

0

0.1

0.2

0.3

0.4

0.5

0.6

5000 10000 15000 18263
DB Size

El
ap

se
d

Ti
m

e
[s

ec
]

AMRkNN
MRkNNCoP

(a) Road network dataset.

0

0.5

1

1.5

2

2.5

2500 5000 7500 10000
DB Size

El
ap

se
d

Ti
m

e
[s

ec
]

AMRkNN
MRkNNCoP

(b) Biological sequence dataset.

Figure 6: Scalability of competing methods w.r.t. the number of database objects on metric data
(sequential scan is not shown for clarity reasons).

approaches show a linear scalability w.r.t. the number of data objects, but the increase

of runtime of our AMRkNN-Tree is significantly smaller than the increase of runtime

of the MRkNNCoP-Tree. The superiority of our AMRkNN-Tree is even more obvious

on Euclidean data. The runtime of the sequential scan is also not shown in the charts

presented in Figure 7 for clearness reasons. In fact, the sequential scan is outperformed by

both methods by a factor of clearly over 100.

4.4 Runtime w.r.t. parameter k

We executed RkNN queries on a database with varying k and compared the scalability of

both competing methods with the sequential scan. The parameter kmax was set to 100 for

both approaches in all experiments.

Metric RkNN search. The results of these experiments on the metric datasets are de-

picted in Figure 8. Applied to the road network dataset with 10,000 nodes, our novel

AMRkNN-Tree clearly outperforms the current state-of-the-art approach (cf. Figure 8(a)).

With increasing k, the performance gain of our method over the competitor further grows.

The runtime of the sequential scan is independent of the choice of k and was observed at

140 seconds per query for any k. It is not shown in Figure 8(a) for clearness reasons.

A similar observation can be made when applying the competing methods to the dataset of

10,000 biological sequences. The results are illustrated in Figure 8(b). For clarity reasons,

the runtime of the sequential scan (approx. 100 seconds) is again not shown. It can be

observed that with increasing k, the performance gain of our method over the competitor

is even stronger rising.

Euclidean RkNN search. The results of these experiments on the Euclidean datasets

are depicted in Figure 9. All three datasets contained 50,000 objects. Applied to the

SEQUOIA data, it can be seen that our approach scales linear with a very low slope. On the

0

0.2

0.4

0.6

0.8

1

10000 30000 50000 100000
DB size

R
un

tim
e

[s
ec

]
AMRkNN MRkNNCoP

(a) SEQUOIA data.

0

2

4

6

8

10

10000 30000 50000 68040
DB size

R
un

tim
e

[s
ec

]

AMRkNN MRkNNCoP

(b) Corel Image data (9D).

0

2

4

6

8

10

12

10000 30000 50000 68040
DB size

R
un

tim
e

[s
ec

]

AMRkNN MRkNNCoP

(c) Corel Image data (16D).

Figure 7: Scalability of competing methods w.r.t. parameter k on Euclidean data (sequential scan is
not shown for clarity reasons).

other hand, the MRkNNCoP-Tree exhibits a stronger rise of runtime. Similar observations

can be made on the Corel Image datasets (cf. Figure 9(b) and Figure 9(c)). In summary, in

almost all parameter settings, our novel AMRkNN-Tree is at least 4 times faster than the

MRkNNCoP-Tree. The sequential scan scales constant for any value of k. The reported

runtimes on the three Euclidean datasets of this naive solution are between 450 and 500

seconds. Those runtimes are not shown in Figure 9(a), Figure 9(b), and Figure 9(c) for

clearness reasons.

4.5 Effectivness

The two probably most widespread concepts for measuring the effectivness are the recall
and the precision. The recall measures the relative number of true hits reported as result,

whereas precision measures the relative number of reported objects that are true hits. Usu-

ally, a user does not care so much about false positives, i.e. objects reported as hits that

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70 80 90 100
k

El
ap

se
d

Ti
m

e
[s

ec
]

AMRkNN
MRkNNCoP

(a) Road network dataset.

0

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100
k

El
ap

se
d

Ti
m

e
[s

ec
]

AMRkNN
MRkNNCoP

(b) Biological sequence dataset.

Figure 8: Scalability of competing methods w.r.t. parameter k on metric data (sequential scan is not
shown for clarity reasons).

are true drops, as far as no true hits are missing. Thus, for measuring the quality of our

approximate results, we focused on the recall. This measurement is the most important

measurement to judge the quality of approximate results.

Metric RkNN search. We evaluated the effectiveness of our approximate RkNN search

on our metric datasets. In this experiment, we set kmax = 100 and executed several RkNN

queries for 10 ≤ k ≤ 200. The results are depicted in Figure 10(a). As it can be seen,

in almost all experiments, the recall is clearly above 90%. On the sequence dataset, the

recall falls below 80% for low k values but rises significantly over 90% at about k = 60.

This very accurate effectiveness is complemented by a rather high precision of the reported

queries (between 80 - 97 %). It is worth mentioning, that the recall does not decrease sig-

nificantly when answering RkNN queries with k > kmax. This observation confirms the

claim that our AMRkNN-Tree is applicable to any k ∈ N.

Euclidean RkNN search. A similar observation can be made when evaluating the recall

of our method on the Euclidean datasets. Again we set kmax = 100 and executed several

RkNN queries for 10 ≤ k ≤ 200. The results are depicted in Figure 10(b). As it can be

seen, for most parameter settings, the recall is clearly above 90%. Again we observed a

rather high precision (between 80 - 98 %). We also want to point out that the recall does

not decrease significantly when answering RkNN queries with k > kmax. Once again,

this observation confirms the claim that our AMRkNN-Tree is applicable to any k ∈ N.

5 Conclusions

In this paper, we proposed the first solution for approximate RkNN search in general

metric spaces for any k ∈ N. Our approach is based on the observation known from

the theory of self-similarity that the relationship between k and the kNN distance of any

object is linear in log-log space. We proposed to calculate an approximation of the kNN

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100

k parameter

R
un

tim
e

[s
ec

]
AMRkNN MRkNNCoP

(a) SEQUOIA data.

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

k parameter

R
un

tim
e

[s
ec

]

AMRkNN MRkNNCoP

(b) Corel Image data (9D).

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

k parameter

R
un

tim
e

[s
ec

]

AMRkNN MRkNNCoP

(c) Corel Image data (16D).

Figure 9: Scalability of competing methods w.r.t. parameter k on Euclidean data (sequential scan is
not shown for clarity reasons).

distances of any database object by means of a regression line in the log-log space from

a set of sample kNN distances. The kNN distance of any k can then be interpolated

from this approximation. We showed how these approximations can be integrated into

any hierarchically organized index structure (e.g. the M-Tree for metric objects or the R-

Tree for Euclidean vectors) by propagating the approximations of child nodes into parent

nodes. Our resulting index called AMRkNN-Tree has achieved significant performance

boosts compared to existing approaches. In addition, our experiments showed that our

performance gain caused only a negligible loss in accuracy.

For future work, we will examine parallel and distributed solutions to the RkNN problem.

References

[ABK+06a] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz. Approximate
Reverse k-Nearest Neighbor Queries in General Metric Spaces. In Proc. CIKM, 2006.

0.4

0.5

0.6

0.7

0.8

0.9

1

10 40 70 100 130 160 190
k

R
ec

al
l

Road Network
Sequence

k max

(a) Metric datasets.

0.4

0.5

0.6

0.7

0.8

0.9

1

10 40 70 100 130 160 190

k parameter

R
ec

al
l

Sequoia
ColorMoments
CoocTexture

kmax

(b) Euclidean datasets.

Figure 10: Recall of our method on real-world datasets.

[ABK+06b] E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz. Efficient Re-
verse k-Nearest Neighbor Search in Arbitrary Metric Spaces. In Proc. SIGMOD, 2006.

[BKK96] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-Tree: An Index Structure for
High-Dimensional Data. In Proc. VLDB, 1996.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient
and Robust Access Method for Points and Rectangles. In Proc. SIGMOD, pages 322–
331, 1990.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-Tree: An Efficient Access Method for Simi-
larity Search in Metric Spaces. In Proc. VLDB, 1997.

[DP03] Chris Ding and Hanchuan Peng. Minimum Redundancy Feature Selection from Mi-
croarray Gene Expression Data. In CSB03, 2003.

[Gut84] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc.
SIGMOD, pages 47–57, 1984.

[KM00] F. Korn and S. Muthukrishnan. Influenced Sets Based on Reverse Nearest Neighbor
Queries. In Proc. SIGMOD, 2000.

[SAA00] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Reverse Nearest Neighbor
Queries for Dynamic Databases. In Proc. DMKD, 2000.

[Sch91] M. Schroeder. Fractals, Chaos, Power Laws: Minutes from an infinite paradise. W.H.
Freeman and company, New York, 1991.

[SFT03] Amit Singh, Hakan Ferhatosmanoglu, and Ali Saman Tosun. High Dimensional Re-
verse Nearest Neighbor Queries. In Proc. CIKM, 2003.

[TPL04] Yufei Tao, Dimitris Papadias, and Xiang Lian. Reverse kNN Search in Arbitrary Di-
mensionality. In Proc. VLDB, 2004.

[XLOH05] C. Xia, H. Lu, B. C. Ooi, and J. Hu. ERkNN: Efficient Reverse k-Nearest Neighbors
Retrieval with Local kNN-Distance Estimation. In Proc. CIKM, 2005.

[YL01] Congjun Yang and King-Ip Lin. An index structure for efficient reverse nearest neigh-
bor queries. In Proc. ICDE, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

