
Multi-Step Density-Based Clustering

Stefan Brecheisen, Hans-Peter Kriegel, and Martin Pfeifle

Institute for Informatics, University of Munich
Oettingenstr. 67, 80538 Munich, Germany
{brecheis,kriegel,pfeifle}@dbs.ifi.lmu.de

Abstract. Data mining in large databases of complex objects from sci-
entific, engineering or multimedia applications is getting more and more
important. In many areas, complex distance measures are first choice
but also simpler distance functions are available which can be com-
puted much more efficiently. In this paper, we will demonstrate how the
paradigm of multi-step query processing which relies on exact as well
as on lower-bounding approximated distance functions can be integrated
into the two density-based clustering algorithms DBSCAN and OPTICS
resulting in a considerable efficiency boost. Our approach tries to con-
fine itself to ε-range queries on the simple distance functions and carries
out complex distance computations only at that stage of the clustering
algorithm where they are compulsory to compute the correct clustering
result. Furthermore, we will show how our approach can be used for
approximated clustering allowing the user to find an individual trade-
off between quality and efficiency. In order to assess the quality of the
resulting clusterings, we introduce suitable quality measures which can
be used generally for evaluating the quality of approximated partitioning
and hierarchical clusterings. In a broad experimental evaluation based on
real-world test data sets, we demonstrate that our approach accelerates
the generation of exact density-based clusterings by more than one order
of magnitude. Furthermore, we show that our approximated clustering
approach results in high quality clusterings where the desired quality is
scalable w.r.t. the overall number of exact distance computations.

1 Introduction

In recent years, the research community spent a lot of attention to the clus-
tering problem resulting in a large variety of different clustering algorithms [1].
One important class of clustering algorithms is density-based clustering which
can be used for clustering all kinds of metric data and is not confined to vec-
tor spaces. Density-based clustering is rather robust concerning outliers [2] and
is very effective in clustering all sorts of data, e.g. multi-represented objects
[3]. Furthermore, the reachability plot created by the density-based hierarchical
clustering algorithm OPTICS [4] serves as a starting point for an effective data
mining tool which helps to visually analyze cluster hierarchies [5].

Density-based clustering algorithms like DBSCAN [2] and OPTICS [4] are
based on ε-range queries for each database object. Each range query requires a

brecheis
Knowledge and Information Systems (KAIS), Vol. 9, No. 3, 2006.The original publication is available at www.springerlink.com.

lot of distance calculations, especially when high ε-values are used. Therefore,
these algorithms are only applicable to large collections of complex objects, e.g.
trees, point sets, and graphs (cf. Figure 1), if those range queries are supported
efficiently. When working with complex objects, the necessary distance calcula-
tions are the time-limiting factor. Thus, the ultimate goal is to save as many of
these complex distance calculations as possible.

In this paper, we will present an approach which helps to compute density-
based clusterings efficiently. The core idea of our approach is to integrate the
multi-step query processing paradigm directly into the clustering algorithm rather
than using it “only” for accelerating range queries. Our clustering approach itself
exploits the information provided by simple distance measures lower-bounding
complex and expensive exact distance functions. Expensive exact distance com-
putations are only performed when the information provided by simple distance
computations, which are often based on simple object representations, is not
enough to compute the exact clustering. Furthermore, we show how our approach
can be used for approximated clustering where the result might be slightly differ-
ent from the one we compute based on the exact information. In order to measure
the dissimilarity between the resulting clusterings, we introduce suitable quality
measures.

The remainder of this paper is organized as follows: In Section 2, we present
our new approach which integrates the multi-step query processing paradigm di-
rectly into the clustering algorithms rather than using it independently. As our
approach can also be used for generating approximated clusterings, we intro-
duce objective quality measures in Section 3 which allow us to assess the quality
of approximated clusterings. In Section 4, we present a detailed experimental
evaluation showing that the presented approach can accelerate the generation of
density-based clusterings on complex objects by more than one order of magni-
tude. We show that for approximated clustering the achieved quality is scalable
w.r.t. the overall runtime. We close this paper, in Section 5, with a short sum-
mary and a few remarks on future work.

2 Efficient Density-Based Clustering

In this section, we will discuss in detail how we can efficiently compute a flat
(DBSCAN) and a hierarchical (OPTICS) density-based clustering. First, in Sec-
tion 2.1, we present the basic concepts of density-based clustering along with the
two algorithms DBSCAN and OPTICS. Then, in Section 2.2, we look at different
approaches presented in the literature for efficiently computing these algorithms.
We will explain why the presented algorithms are not suitable for expensive dis-
tance computations if we are interested in the exact clustering structure. In
Section 2.3, we will present our new approach which tries to use lower-bounding
distance functions before computing the expensive exact distances.

Fig. 1. Complex objects.

2.1 Density-based Clustering

The key idea of density-based clustering is that for each object of a cluster the
neighborhood of a given radius ε has to contain at least a minimum number
MinPts of objects, i.e. the cardinality of the neighborhood has to exceed a given
threshold. In the following, we will present the basic definitions of density-based
clustering.

Definition 1 (directly density-reachable). Object p is directly density-reach-
able from object q w.r.t. ε and MinPts in a set of objects DB, if p ∈ Nε(q) and
|Nε(q)| ≥ MinPts, where Nε(q) denotes the subset of DB contained in the ε-
neighborhood of q.

The condition |Nε(q)| ≥ MinPts is called the core object condition. If this
condition holds for an object q, then we call q a core object. Other objects can
be directly density-reachable only from core objects.

Definition 2 (density-reachable and density-connected). An object p is
density-reachable from an object q w.r.t. ε and MinPts in a set of objects DB, if
there is a chain of objects p1, . . . , pn, p1 = q, pn = p, such that pi ∈ DB and pi+1

is directly density-reachable from pi w.r.t. ε and MinPts. Object p is density-
connected to object q w.r.t. ε and MinPts in a set of objects DB, if there is an
object o ∈ DB, such that both p and q are density-reachable from o in DB w.r.t.
ε and MinPts.

Density-reachability is the transitive closure of direct density-reachability
and does not have to be symmetric. On the other hand, density-connectivity is
symmetric (cf. Figure 2).

(a) p density-reachable from q, but q
not density-reachable from p.

(b) p and q density-connected to
each other by o.

Fig. 2. Density-reachability and density-connectivity.

DBSCAN A flat density-based cluster is defined as a set of density-connected
objects which is maximal w.r.t. density-reachability. Then the noise is the set of
objects not contained in any cluster. A cluster contains not only core objects but
also objects that do not satisfy the core object condition. These border objects
are directly density-reachable from at least one core object of the cluster.

The algorithm DBSCAN [2], which discovers the clusters and the noise in a
database, is based on the fact that a cluster is equivalent to the set of all objects
in DB which are density-reachable from an arbitrary core object in the cluster
(cf. lemma 1 and 2 in [2]). The retrieval of density-reachable objects is performed
by iteratively collecting directly density-reachable objects. DBSCAN checks the
ε-neighborhood of each point in the database. If the ε-neighborhood Nε(q) of a
point q has more than MinPts elements, q is a so-called core point, and a new
cluster C containing the objects in Nε(q) is created. Then, the ε-neighborhood of
all points p in C which have not yet been processed is checked. If Nε(p) contains
more than MinPts points, the neighbors of p which are not already contained
in C are added to the cluster and their ε-neighborhood is checked in the next
step. This procedure is repeated until no new point can be added to the current
cluster C. Then the algorithm continues with a point which has not yet been
processed trying to expand a new cluster.

OPTICS While the partitioning density-based clustering algorithm DBSCAN
[2] can only identify a “flat” clustering, the newer algorithm OPTICS [4] com-
putes an ordering of the points augmented by additional information, i.e. the
reachability-distance, representing the intrinsic hierarchical (nested) cluster struc-
ture. The result of OPTICS, i.e. the cluster ordering, is displayed by the so-called
reachability plots which are 2D-plots generated as follows: the clustered objects
are ordered along the x-axis according to the cluster ordering computed by OP-
TICS and the reachabilities assigned to each object are plotted along the ab-
scissa. An example reachability plot is depicted in Figure 3. Valleys in this plot

Fig. 3. Reachability plot (right) computed by OPTICS for a 2D data set (left).

indicate clusters: objects having a small reachability value are closer and thus
more similar to their predecessor objects than objects having a higher reacha-
bility value. Thus, it is possible to explore interactively the clustering structure,
offering additional insights into the distribution and correlation of the data.

In the following, we will shortly introduce the definitions underlying the
OPTICS algorithm, the core-distance of an object p and the reachability-distance
of an object p w.r.t. a predecessor object o.

Definition 3 (core-distance). Let p be an object from a database DB, let
Nε(p) be the ε-neighborhood of p, let MinPts be a natural number and let MinPts-
dist(p) be the distance of p to its MinPts-th neighbor. Then, the core-distance
of p, denoted as core-distε,MinPts(p) is defined as MinPts-dist(p) if |Nε(p)| ≥
MinPts and INFINITY otherwise.

Definition 4 (reachability-distance). Let p and o be objects from a database
DB, let Nε(o) be the ε-neighborhood of o, let dist(o, p) be the distance between o
and p, and let MinPts be a natural number. Then the reachability-distance of p
w.r.t. o, denoted as reachability-distε,MinPts(p, o), is defined as
max(core-distε,MinPts(o), dist(o, p)).

The OPTICS algorithm (cf. Figure 4) creates an ordering of a database,
along with a reachability-value for each object. Its main data structure is a
seedlist, containing tuples of points and reachability-distances. The seedlist is
organized w.r.t. ascending reachability-distances. Initially the seedlist is empty
and all points are marked as not-done.

The procedure update-seedlist(o1) executes an ε-range query around the
point o1, i.e. the first object of the sorted seedlist, at the beginning of each
cycle. For every point p in the result of the range query, it computes r =
reachability-distε,MinPts(p, o1). If the seedlist already contains an entry (p, s), it
is updated to (p, min(r, s)), otherwise (p, r) is added to the seedlist. Finally, the
order of the seedlist is reestablished.

Algorithm OPTICS:
repeat {

if the seedlist is empty {
if all points are marked “done”, terminate;
choose “not-done” point q;
add (q, INFINITY) to the seedlist;

}
(o1, r) = seedlist entry having the smallest reachability value;
remove (o1, r) from seedlist;
mark o1 as “done”;
output (o1, r);
update-seedlist(o1);

}

Fig. 4. The OPTICS algorithm.

2.2 Related Work

DBSCAN and OPTICS determine the local densities by repeated range queries.
In this section, we will sketch different approaches from the literature to acceler-
ate these density-based clustering algorithms and discuss their unsuitability for
complex object representations.

Exact Clustering In the following we will present some approaches leading to
exact density-based clusterings.

Multi-Dimensional Index Structures. The most common approach to acceler-
ate each of the required single range queries is to use multi-dimensional index
structures. For objects modelled by low-, medium-, or high-dimensional feature
vectors there exist several specific R-tree [6] variants. For more detail we refer
the interested reader to [7].

Metric Index Structures. In contrast to Figure 1a where the objects are modelled
by a high-dimensional feature vector, the objects presented in the example of
Figure 1b-1d are not modelled by feature vectors. Therefore, we cannot apply the
index structures mentioned in the last paragraph. Nevertheless, we can use index
structures, such as the M-tree [8] for efficiently carrying out range queries as long
as we have a metric distance function for measuring the similarity between two
complex objects. For a detailed survey on metric access methods we refer the
reader to [9].

Multi-Step Query Processing. The main goal of multi-step query processing is
to reduce the number of complex and, therefore, time consuming distance cal-
culations in the query process. In order to guarantee that there occur no false
drops, the used filter distances have to fulfill a lower-bounding distance criterion.

For any two objects p and q, a lower-bounding distance function df in the filter
step has to return a value that is not greater than the exact object distance do

of p and q, i.e. df (p, q) ≤ do(p, q). With a lower-bounding distance function it
is possible to safely filter out all database objects which have a filter distance
greater than the current query range because the exact object distance of those
objects cannot be less than the query range. Using a multi-step query archi-
tecture requires efficient algorithms which actually make use of the filter step.
Agrawal, Faloutsos and Swami proposed such an algorithm for range queries
[10] which form the foundation of density-based clustering. For efficiency rea-
sons, it is crucial that df (p, q) is considerably faster to evaluate than do(p, q)
and, furthermore, in order to achieve a high selectivity df (p, q) should be only
marginally smaller than do(p, q).

Using Multiple Similarity Queries. In [11] a schema was presented which trans-
forms query intensive KDD algorithms into a representation using the similarity
join as a basic operation without affecting the correctness of the result of the
considered algorithm. The approach was applied to accelerate the clustering al-
gorithms DBSCAN and OPTICS by using an R-tree like index structure. In [12]
an approach was introduced for efficiently supporting multiple similarity queries
for mining in metric databases. It was shown that many different data mining
algorithms can be accelerated by multiplexing different similarity queries.

Summary. Multi-dimensional index structures based on R-tree variants and clus-
tering based on the similarity join are restricted to vector set data. Furthermore,
the main problem of all approaches mentioned above is that distance computa-
tions can only be avoided for objects located outside the ε-range of the actual
query object. In order to create, for instance, a reachability plot without loss
of information, the authors in [4] propose to use a very high ε-value. There-
fore, all of the above mentioned approaches lead to O(|DB |2) exact distance
computations for OPTICS.

Approximated Clustering Other approaches do not aim at producing the
exact hierarchical clustering structure, but an approximated one.

Sampling. The simplest approach is to use sampling and apply the expensive
data mining algorithms to a subset of the dataspace. Typically, if the sample
size is large enough, the result of the data mining method on the sample reflects
the exact result well.

Grid-Based Clustering. Another approach is based on grid cells [1] to accelerate
query processing. In this case, the data space is partitioned into a number of non-
overlapping regions or cells which can be used as a filter step for the range queries.
All points in the result set are contained in the cells intersecting the query
range. To further improve the performance of the range queries to a constant
time complexity, query processing is limited to a constant number of these cells
(e.g. the cell covering the query point and the direct neighbor cells) and the
refinement step is dropped, thereby trading accuracy for performance.

Distance Mapping. In [13], 5 different distance-mapping algorithms were intro-
duced to map general metric objects to Euclidean or pseudo-Euclidean spaces
in such a way that the distances among the objects are approximately pre-
served. The approximated data mining algorithm is then performed within the
Euclidean space based on rather cheap distance functions. If there already exist
selective filters which can efficiently be computed, an additional mapping into a
feature space is superfluous, i.e. we can carry out the approximated data mining
algorithm directly on the filter information.

Data Bubbles. Finally, there exist efficient approximated versions of hierarchical
clustering approaches for non-vector data which are based on Data Bubbles [14].
These approaches augment suitable representatives with additional aggregated
information describing the area around the representatives.

Summary. All indicated approximated clustering approaches are able to generate
efficiently the corresponding clustering structure. The question at issue is: How
much quality do they have to pay for their efficiency gain?

In this paper, we will propose an approach which computes exact density-
based clusterings trying to confine itself to simple distance computations lower-
bounding the exact distances. Further expensive exact distance computations
are postponed as long as possible, and are only carried out at that stage of
the algorithm where they are compulsory to compute the correct clustering.
Furthermore, we will also indicate how to use our algorithm for approximated
clustering.

2.3 Accelerated Density-Based Clustering

In this section, we will demonstrate how to integrate the multi-step query pro-
cessing paradigm into the two density-based clustering algorithms DBSCAN and
OPTICS. We discuss in detail our approach for OPTICS and sketch how a sim-
plified version of this extended OPTICS approach can be used for DBSCAN.

Basic Idea DBSCAN and OPTICS are both based on numerous ε-range queries.
None of the approaches discussed in the literature can avoid that we have to
compute the exact distance to a given query object q for all objects contained
in Nε(q). Especially for OPTICS, where ε has to be chosen very high in order to
create reachability plots without loss of information, we have to compute |DB |
many exact distance computations for each single range query, even when one
of the methods discussed in Section 2.2 is used. In the case of DBSCAN, typ-
ically, the ε-values are much smaller. Nevertheless, if we apply the traditional
multi-step query processing paradigm with non-selective filters, we also have to
compute up to |DB | many exact distance computations.

In our approach, the number of exact distance computations does not pri-
marily depend on the size of the database and the chosen ε-value but rather
on the value of MinPts, which is typically only a small fraction of |DB |, e.g.

Fig. 5. Data structure Xseedlist.

MinPts = 5 is a suitable value even for large databases [4, 2]. Basically, we use
MinPts-nearest neighbor queries instead of ε-range queries on the exact object
representations in order to determine the “core-properties” of the objects. Fur-
ther exact complex distance computations are only carried out at that stage
of the algorithms where they are compulsory to compute the correct clustering
result.

Extended OPTICS The main idea of our approach is to carry out the range
queries based on the lower-bounding filter distances instead of using the ex-
pensive exact distances. In order to put our approach into practice, we have
to slightly extend the data structure underlying the OPTICS algorithm, i.e. we
have to add additional information to the elements stored in the seedlist.

The Extended Seedlist. We do not any longer use a single seedlist as in the
original OPTICS algorithm (cf. Figure 4) where each list entry consists of a pair
(ObjectId ,ReachabilityValue). Instead, we use a list of lists, called Xseedlist, as
shown in Figure 5. The Xseedlist consists of an ordered object list OL, quite
similar to the original seedlist but without any reachability information. The
order of the objects oi in OL, cf. the horizontal arrow in Figure 5, is determined

by the first element of each predecessor list PL(oi) anchored at oi, cf. the vertical
arrows in Figure 5.

An entry located at position l of the predecessor list PL(oi) belonging to
object oi consists of the following information:

– Predecessor ID. A processed object oi,l which was already added to the
reachability plot which is computed from left to right.

– Predecessor Flag. A flag Fi,l indicating whether we already computed the
exact object distance do(oi, oi,l) between oi and oi,l, or whether we only
computed the distance df (oi, oi,l) of these two objects based on the lower-
bounding filter information.

– Predecessor Distance. PreDist(oi, oi,l) is equal to

max(core-distε,MinPts(oi,l), do(oi, oi,l)),

if we already computed the exact object distance do(oi, oi,l), else it is equal
to

max(core-distε,MinPts(oi,l), df (oi, oi,l)).

Throughout our new algorithm, the conditions depicted in Figure 5 belonging
to this extended OPTICS algorithm are maintained. In the following, we will
describe the extended OPTICS algorithm trying to minimize the number of
exact distance computations.

Algorithm. The extended OPTICS algorithm exploiting the filter information is
depicted in Figure 6. The algorithm always takes the first element o1 from OL.
If it is at the first position due to a filter computation, we compute the exact dis-
tance do(o1, o1,1) and reorganize the Xseedlist. The reorganization might displace
o1,1 from the first position of PL(o1). Furthermore, object o1 might be removed
from the first position of OL. On the other hand, if the filter flag F1,1 indicates
that an exact distance computation was already carried out, we add object o1

to the reachability plot with a reachability-value equal to PreDist(o1, o1,1). Fur-
thermore, we carry out the procedure update-Xseedlist(o1).

Update-Xseedlist. This is the core function of our extended OPTICS algorithm.
First, we carry out a range query around the query object q := o1 based on the
filter information, yielding the result set Nfilter

ε (q). Then we compute the core-
distance of q by computing the MinPts-nearest neighbors of q as follows:

– If |Nfilter
ε (q)| < MinPts, we set the core-distance of q to INFINITY and

we are finished. Otherwise, we initialize a list SortListε(q) containing tuples
(obj, flag, dist) which are organized in ascending order according to dist.
For all objects o ∈ Nfilter

ε (q), we insert an entry (o,Filter, df (o, q)) into
SortListε(q).

– We walk through SortListε(q) starting at the first element. We set

SortListε(q)[1].dist = do(SortListε(q)[1].obj, q),
SortListε(q)[1].f lag = Exact,

and reorder SortListε(q). This step is repeated until the first MinPts ele-
ments of SortListε(q) are at their final position due to an exact distance
computation. The core-distance of q is equal to the distance

distMinPts = SortListε(q)[MinPts].dist,

if distMinPts ≤ ε holds, else it is set to INFINITY .

A tuple (objj , f lagj , distj) ∈ SortListε(q) is transferred into an Xseedlist
entry, if q is a core object and distj ≤ ε holds. If there exists no entry for objj in
OL, (objj , 〈(q, flagj ,max(distj , core-distε,MinPts(q)))〉) is inserted into OL, else
(q, flagj ,max(distj , core-distε,MinPts(q))) is inserted into PL(objj). Note that
in both cases the ordering of Figure 5 has to be maintained.

Lemma 1. The result of the extended OPTICS algorithm is equivalent to the
result of the original one.

Proof. First, the extended OPTICS algorithm computes the correct core-dis-
tances by applying a MinPts-nearest neighbor search algorithm. Second, in each
cycle the extended and the original OPTICS algorithm add the object o1 having
the minimum reachability-distance, w.r.t. all objects reported in the foregoing
steps, to the cluster ordering. For the extended OPTICS algorithm this is true, as
we have computed do(o1, o1,1) before adding it to the cluster ordering, due to the
ordering conditions of Figure 5, and due to the lower-bounding filter property.

Note that this approach carries out exact distance computations only for
those objects which are very close to the current query object q according to
the filter information, whereas the traditional multi-step query approach would
compute exact distance computations for all objects o ∈ Nfilter

ε (q). As ε has to
be chosen very high in order to create reachability plots without loss of infor-
mation [4], the traditional approach has to compute |DB | many exact distance
computations, even when one of the approaches discussed in Section 2.2 is used.
On the other hand, the number of exact distance computations in our approach
does not depend on the size of the database but rather on the value of MinPts,
which is only a small fraction of the cardinality of the database. Note that our
approach only has to compute |DB | ·MinPts, i.e. O(|DB |), exact distance com-
putations if we assume an optimal filter, in contrast to the O(|DB |2) distance
computations carried out by the original OPTICS run. Only when necessary, we
carry out further exact distance computations (cf. line (*) in Figure 6).

Extended DBSCAN Our extended DBSCAN algorithm is a simplified version
of the extended OPTICS algorithm also using the Xseedlist as its main data
structure. We carry out an ε-range query on the lower-bounding filter distances
for an arbitrary database object q which has not yet been processed. Due to the
lower-bounding properties of the filters, Nε(q) ⊆ Nfilter

ε (q) holds. Therefore, if
|Nfilter

ε (q)| < MinPts, q is certainly no core point. Otherwise, we test whether q
is a core point as follows.

Algorithm OPTICS:
repeat {

if the Xseedlist is empty {
if all points are marked “done”, terminate;
choose “not-done” point q;
add (q, empty list) to the Xseedlist;

}
(o1, list) = first entry in the Xseedlist;
if list[1].PredecessorFlag == Filter{

compute do(o1, list[1].PredecessorID); (*)
update list[1].PredecessorDistance;
list[1].PredecessorFlag = Exact;
reorganize Xseedlist according to the two conditions of Figure 5;

}
else {

remove (o1, list) from Xseedlist;
mark o1 as “done”;
output (o1, list[1].PredecessorDistance);
update-Xseedlist(o1);

}
}

Fig. 6. The extended OPTICS algorithm.

We organize all elements o ∈ Nfilter
ε (q) in ascending order according to their

filter distance df (o, q) yielding a sorted list. We walk through this sorted list,
and compute for each visited object o the exact distance do(o, q) until for MinPts
elements do(o, q) ≤ ε holds or until we reach the end. If we reached the end, we
certainly know that q is no core point. Otherwise q is a core object initiating a
new cluster C.

If our current object q is a core object, some of the objects o ∈ Nfilter
ε (q) are

inserted into the Xseedlist (cf. Figure 5). All objects for which we have already
computed do(o, q), and for which do(o, q) ≤ ε holds, certainly belong to the same
cluster as the core-object q. At the beginning of OL, we add the entry (o,NIL),
where PL(o) = NIL indicates that o certainly belongs to the same cluster as q.
Objects o for which do(o, q) > e holds are discarded. All objects o ∈ Nfilter

ε (q)
for which we did not yet compute do(o, q) are handled as follows:

– If there exists no entry belonging to o in OL, (o, 〈(q, Filter, df (o, q))〉) is
inserted into OL and the ordering conditions of Figure 5 are reestablished.

– If there already exists an entry for o in OL and, furthermore, PL(o) = NIL
holds, nothing is done.

– If there already exists an entry for o in OL and, furthermore, PL(o) 6= NIL
holds, (q, Filter, df (o, q)) is inserted into PL(o) and the ordering conditions
of Figure 5 are reestablished.

DBSCAN expands a cluster C as follows. We take the first element o1 from
OL and, if PL(o1) = NIL holds, we add o1 to C, delete o1 from OL, carry out

a range query around o1, and try to expand the cluster C. If PL(o1) 6= NIL
holds, we compute do(o1, o1,1). If do(o1, o1,1) ≤ ε, we proceed as in the case
where PL(o1) = NIL holds. If do(o1, o1,1) > ε holds and length of PL(o1) > 1,
we delete (o1,1, F1,1,PreDist(o1, o1,1)) from PL(o1). If do(o1, o1,1) > ε holds and
length of PL(o1) = 1, we delete o1 from OL. Iteratively, we try to expand the
current cluster by examining the first entry of PL(o1) until OL is empty.

Lemma 2. The result of the extended DBSCAN algorithm is equivalent to the
result of the original one.

Proof. First, the determination whether an object o is a core object is correct as
o′ ∈ Nε(o) ⇒ o′ ∈ Nfilter

ε (o) holds due to the lower-bounding filter property. We
test as many elements o′ ∈ Nfilter

ε (o) as necessary to decide whether |Nε(o)| ≥
MinPts holds. Second, similar to the proof of Lemma 1, we can guarantee that
an object o is only added to the current cluster if do(o, p) ≤ ε holds for an object
p which has already been singled out as a core object of the current cluster.

Length-Limitation of the Predecessor Lists In this section, we introduce
two approaches for limiting the size of the predecessor lists to a constant lmax

trying to keep the main memory footprint as small as possible. The first approach
computes additional exact distances to reduce the length of the object reacha-
bility lists, while still computing the exact clustering. On the other hand, the
second approach dispenses with additional exact distance computations leading
to an approximated clustering.

Exact Clustering. In the case of OPTICS, for each object oi in OL, we store
all potential predecessor objects oi,p along with PreDist(oi, oi,p) in PL(oi). Due
to the lower-bounding property of df , we can delete all entries in PL(oi) which
are located at positions l′ > l, if we have already computed the exact distance
between oi and the predecessor object oi,l located at position l. So each exact
distance computation might possibly lead to several delete operations in the
corresponding predecessor list. In order to limit the main memory footprint,
we introduce a parameter lmax which restricts the allowed number of elements
stored in a predecessor list. If more than lmax elements are contained in the
list, we compute the exact distance for the predecessor oi,1 located at the first
position. Such an exact distance computation between oi and oi,1 usually causes
oi,1 to be moved upward in the list. All elements located behind its new position
l are deleted. So if l ≤ lmax holds, the predecessor list is limited to at most lmax

entries. Otherwise, we repeat the above procedure.
For DBSCAN, if the predecessor list of oi is not NIL, we can limit its length

by starting to compute do(oi, oi,1), i.e. the exact distance between oi and the
first element of PL(oi). If do(oi, oi,1) ≤ ε holds, we set PL(oi) = NIL indi-
cating that oi certainly belongs to the current cluster. Otherwise, we delete
(oi,1, Fi,1,PreDist(oi, oi,1)) and if the length of PL(oi) is still larger than lmax,
we iteratively repeat this limitation procedure.

Lemma 3. The above length limitation approach does not change the result of
the extended DBSCAN and OPTICS algorithms.

Proof. The presented DBSCAN algorithm guarantees that no entries (oi,l, Fi,l,
PreDist(oi, oi,l) are deleted which are necessary for determining whether an ob-
ject is directly density-reachable (cf. Definition 1) from a core object of the
current cluster. For OPTICS we do not delete any entries which are necessary
for computing the minimum reachability distance w.r.t. all already processed
objects.

Approximated Clustering. In our approximated approach, we artificially limit
the length of the predecessor lists by discarding all elements which are located
at a position higher than lmax without computing any additional exact distances.
This approach might not produce the same result as the original OPTICS and
DBSCAN algorithms as the filter distances do not necessarily have to coincide
with the exact distances. Note that if we have a very exact filter, the cutting-
off of the predecessor lists will not worsen the quality heavily (cf. Section 4.2).
Nevertheless, we need to know how much quality we have to pay for the achieved
efficiency gain.

3 Similarity Measures for Clusterings

The similarity measures introduced in this section are suitable for generally
measuring the quality between partitioning and hierarchical approximated clus-
terings w.r.t. a given reference clustering. Both partitioning and hierarchical
clustering algorithms rely on the notion of a cluster.

Definition 5 (cluster). A cluster C is a non-empty subset of objects from a
database DB, i.e. C ⊆ DB and C 6= ∅.
Definition 6 (partitioning clustering). Let DB be a database of arbitrary
objects. Furthermore, let C1, . . . , Cn be pairwise disjoint clusters of DB, i.e.
∀i, j ∈ {1, . . . , n} : i 6= j ⇒ Ci ∩ Cj = ∅. Then we call CLp = {C1, . . . , Cn} a
partitioning clustering of DB.

Note that due to the handling of noise, we do not demand from a partitioning
clustering CLp = {C1, . . . , Cn} that C1∪ . . .∪Cn = DB holds. In contrast to the
partitioning structure computed by DBSCAN, OPTICS computes a hierarchical
clustering order which can be transformed into a tree structure by means of
suitable cluster recognition algorithms [4, 5, 15].

Definition 7 (hierarchical clustering). Let DB be a database of arbitrary
objects. A hierarchical clustering is a tree troot where each subtree t represents
a cluster Ct, i.e. t = (Ct, (t1, . . . , tn)), and the n subtrees ti of t represent non-
overlapping subsets Cti

, i.e. ∀i, j ∈ {1, . . . , n} : i 6= j ⇒ Cti
∩Ctj

= ∅∧Ct1∪ . . .∪
Ctn ⊆ Ct. Furthermore, the root node troot represents the complete database, i.e.
Ctroot = DB.

Again, we do not demand from the n subtrees ti of t = (Ct, (t1, . . . , tn)) that
Ct1 ∪ . . . ∪ Ctn

= Ct holds (cf. Figure 3 where A1 ∪A2 6= A).

3.1 Similarity Measure for Clusters

As outlined in the last section, both partitioning and hierarchical clusterings
consist of flat clusters. In order to compare flat clusters to each other we need a
suitable distance measure between sets of objects. One possible approach is to use
distance measures as used for constructing distance-based hierarchical cluster-
ings, e.g. the distance measures used by single-link, average-link or complete-link
[1]. Although these distance measures are used for the construction of hierar-
chical clusterings, these measures are not suitable when it comes to evaluating
the quality of flat clusters. The similarity of two clusters w.r.t. quality solely
depends on the number of identical objects contained in both clusters which is
reflected by the symmetric set difference.

Definition 8 (symmetric set difference). Let C1 and C2 be two clusters of
a database DB. Then the symmetric set difference d∆ : 2DB × 2DB → [0..1] and
the normalized symmetric set difference dnorm

∆ : 2DB × 2DB → [0..1] are defined
as follows:

d∆(C1, C2) = |C1 ∪ C2| − |C1 ∩ C2|,

dnorm
∆ (C1, C2) =

|C1 ∪ C2| − |C1 ∩ C2|
|C1 ∪ C2|

.

Note that (2DB , d∆) and (2DB , dnorm
∆) are metric spaces.

3.2 Similarity Measure for Partitioning Clusterings

In this section, we will introduce a suitable distance measure between sets of
clusters. Several approaches for comparing two sets S and T to each other exist
in the literature. In [16] the authors survey the following distance functions: the
Hausdorff distance, the sum of minimal distances, the (fair-)surjection distance
and the link distance. All of these approaches rely on the possibility to match
several elements in one set to just one element in the compared set which is
questionable when comparing the quality of an approximated clustering to a
reference clustering.

A distance measure on sets of clusters that demonstrates to be suitable for
defining similarity between two partitioning clusterings is based on the minimal
weight perfect matching of sets. This well known graph problem can be applied
here by building a complete bipartite graph G = (Cl, Cl′, E) between two clus-
terings Cl and Cl′. The weight of each edge (Ci, C

′
j) ∈ Cl × Cl′ in this graph

G is defined by the distance d∆(Ci, C
′
j) introduced in the last section between

the two clusters Ci and C ′
j . A perfect matching is a subset M ⊆ Cl × Cl′ that

connects each cluster Ci ∈ Cl to exactly one cluster C ′
j ∈ Cl′ and vice versa.

A minimal weight perfect matching is a matching having maximum cardinality
and a minimum sum of weights of its edges. Since a perfect matching can only
be found for sets of equal cardinality, it is necessary to introduce weights for
unmatched clusters when defining a distance measure between clusterings.

Definition 9 (minimal matching distance). Let DB be a database and let
dist : 2DB × 2DB → R be a distance function between two clusters. Let Cl =
{C1, . . . , C|Cl|} and Cl′ = {C ′

1, . . . , C
′
|Cl′|} be two clusterings. We assume w.l.o.g.

|Cl| ≤ |Cl′|. Furthermore, let w : 2DB → R be a weight function for the un-
matched clusters, and let π be a mapping that assigns C ′ ∈ Cl′ a unique number
i ∈ {1, . . . , |Cl′|}, denoted by π(Cl′) = (C ′

1, . . . , C
′
|Cl′|). The family of all possi-

ble permutations of Cl’ is called Π(Cl′). Then the minimal matching distance
ddist,w

mm : 22DB × 22DB → R is defined as follows:

ddist,w
mm (Cl, Cl′) = min

π∈Π(Cl′)

|Cl|∑
i=1

dist(Ci, C
′
π(i)) +

|Cl′|∑
i=|Cl|+1

w(C ′
π(i))

 .

The weight function w : 2DB → R provides the penalty given to every unas-
signed cluster of the clustering having larger cardinality. Let us note that this
minimal matching distance is a specialization of the netflow distance [17] which
is shown to be a metric if the distance function dist is a metric and the weight
function meets the following conditions for two clusters C,C ′ ∈ 2DB :

1. w(C) > 0
2. w(C) + w(C ′) ≥ dist(C,C ′)

Note that the symmetric set difference d∆ is a metric and can be used as the
underlying distance function dist for the minimal matching distance. Further-
more, the unnormalized symmetric set difference allows us to define a meaningful
weight function based on a dummy cluster ∅ since the empty set is not included
as an element in a clustering (cf. Definition 6). We propose to use the following
weight function w∅(C) = d∆(C, ∅) where each unmatched cluster C is penalized
with a value equal to its cardinality |C|. Thus the metric character of the mini-
mal matching distance is satisfied. Furthermore, large clusters which cannot be
matched are penalized more than small clusters which is a desired property for
an intuitive quality measure. Based on Definition 9, we can define our final qual-
ity criterion. We compare the costs for transforming an approximated clustering
Cl≈ into a reference clustering Clref to the costs piling up when transforming
Cl≈ first into ∅, i.e. a clustering consisting of no clusters, and then transforming
∅ into Clref .

Definition 10 (quality measure QAPC). Let Cl≈ be an approximated par-
titioning clustering and Clref the corresponding reference clustering. Then, the
approximated partitioning clustering quality QAPC(Cl≈, Clref) is equal to 100%
if Cl≈ = Clref = ∅, else it is defined as(

1− d
d∆,w∅
mm (Cl≈, Clref)

d
d∆,w∅
mm (Cl≈, ∅) + d

d∆,w∅
mm (∅, Clref)

)
· 100%.

Note that our quality measure QAPC is between 0% and 100%. If Cl≈ and
Clref are identical, QAPC(Cl≈, Clref) = 100% holds. On the other hand, if the

clusterings are not identical and the clusters from Cl≈ and Clref have no objects
in common, i.e. ∀C≈ ∈ Cl≈, Cref ∈ Clref : C≈ ∩ Cref = ∅, QAPC(Cl≈, Clref)
is equal to 0%.

3.3 Similarity Measure for Hierarchical Clusterings

In this section, we present a quality measure for approximated hierarchical clus-
terings. To the best of our knowledge, the only quality measure for an approx-
imated hierarchical clustering was introduced in [14]. A simple heuristic was
applied to find the “best” cut-line, i.e. the most meaningful εcut-value (cf. Fig-
ure 3), for a reachability plot resulting from an approximated OPTICS run. The
number of clusters found w.r.t. εcut was compared to the maximum number of
clusters found in the reachability plot resulting from an exact clustering. This
quality measure has two major drawbacks. First, it does not reflect the hier-
archical clustering structure, but compares two flat clusterings to each other.
Second, the actual elements building up a cluster are not accounted for. Only
the number of clusters is used for computing the quality. In the following, we
will present a quality measure for hierarchical clusterings which overcomes the
two mentioned shortcomings.

As already outlined, a hierarchical clustering can be represented by a tree (cf.
Definition 7). In order to define a meaningful quality measure for approximated
hierarchical clusterings, we need a suitable distance measure for describing the
similarity between two trees t≈ and tref . Note that each node of the trees reflects
a flat cluster, and the complete trees represent the entire hierarchical clusterings.

A common and successfully applied approach to measure the similarity be-
tween two trees is the degree-2 edit distance [18]. It minimizes the number of
edit operations necessary to transform one tree into the other using three basic
operations, namely the insertion and deletion of a tree node and the change of
a node label. Using these operations, we can define the degree-2 edit distance
between two trees.

Definition 11 (cost of an edit sequence). An edit operation e is the in-
sertion, deletion or relabeling of a node in a tree t. Each edit operation e is
assigned a non-negative cost c(e). The cost c(S) of a sequence of edit operations
S = 〈e1, . . . , em〉 is defined as the sum of the cost of each edit operation, i.e.
c(S) = c(e1) + . . . + c(em).

Definition 12 (degree-2 edit distance). The degree-2 edit distance is based
on degree-2 edit sequences which consist only of insertions or deletions of nodes
n with degree(n) ≤ 2, or of relabelings. Then, the degree-2 edit distance ED2

between two trees t and t′ is the minimum cost of all degree-2 edit sequences that
transform t into t′ or vice versa, i.e. ED2(t, t′) = min{c(S) |S is a degree-2 edit
sequence transforming t into t′}.

It is important to note that the degree-2 edit distance is well defined. Two
trees can always be transformed into each other using only degree-2 edit opera-
tions. This is true because it is possible to construct any tree using only degree-2

edit operations. As the same is true for the deletion of an entire tree, it is al-
ways possible to delete t completely and then build t′ from scratch resulting in
a distance value for this pair of trees. In [18] the authors presented an algorithm
which computes the degree-2 edit distance in O(|t|·|t′|·D) time, where D denotes
the maximum fanout of the trees, and |t| and |t′| the number of tree nodes.

We propose to set the cost c(e) for each insert and delete operation e to 1.
Furthermore, we propose to use the normalized symmetric set difference dnorm

∆

as introduced in Definition 8 to weight the relabeling cost. Using the normalized
version allows us to define a well-balanced trade-off between the relabeling cost
and the other edit operations, i.e. the insert and delete operations. Based on
these costs, we can define our final quality criterion. We compare the costs for
transforming an approximated hierarchical clustering Cl≈ modelled by a tree t≈

into a reference clustering Clref modelled by a tree tref , to the costs piling up
when transforming t≈ first into an “empty” tree tnil and then transforming tnil

into tref .

Definition 13 (quality measure QAHC). Let tref be a tree representing a
hierarchical reference clustering Clref , and tnil a tree consisting of no nodes at
all, representing an empty clustering. Furthermore, let t≈ be a tree representing
an approximated clustering Cl≈. Then, the approximated hierarchical clustering
quality QAHC(Cl≈, Clref) is equal to(

1− ED2(t≈, tref)
ED2(t≈, tnil) + ED2(tnil, tref)

)
· 100%.

As the degree-2 edit distance is a metric [18], the approximated hierarchical
clustering quality QAHC is between 0% and 100%.

4 Evaluation

In this section, we present a detailed experimental evaluation which demonstrates
the characteristics and benefits of our new approach.

4.1 Settings

Test Data Sets. As test data, we used real-world CAD data represented by 81-
dimensional feature vectors [19] and vector sets where each element consists of 7
6D vectors [20]. Furthermore, we used graphs [21] to represent real-world image
data. If not otherwise stated, we used 1,000 complex objects from each data set,
and we employed the filter and exact object distance functions proposed in [20,
19, 21]. The used distance functions can be characterized as follows:

– The exact distance computations on the graphs are very expensive. On the
other hand, the used filter is rather selective and can efficiently be computed
[21].

– The exact distance computations on the feature vectors and vector sets are
also very expensive as normalization aspects for the CAD objects are taken
into account. We compute 48 times the distance between two 81-dimensional
feature vectors, and between two vector sets, in order to determine a normal-
ized distance between two CAD objects [20, 19]. As a filter for the feature
vectors we use their Euclidean norms [22] which is not very selective, but can
be computed very efficiently. The filter used for the vector sets is more se-
lective than the filter for the feature vectors, but also computationally more
expensive [20].

Implementation. The original OPTICS and DBSCAN algorithms, along with
their extensions introduced in this paper and the used filter and exact object
distances were implemented in Java 1.4. The experiments were run on a work-
station with a Xeon 2.4 GHz processor and 2 GB main memory under Linux.

Parameter Setting. As suggested in [4], for an OPTICS run we used a maximum
ε-parameter in order to create reachability plots containing the complete hier-
archical clustering information. For DBSCAN, we chose an ε-parameter, based
on the reachability plots (cf. the εcut-values in Figure 3), yielding as many flat
clusters as possible. Furthermore, if not otherwise stated, the MinPts-parameter
is set to 5, and the length of the predecessor lists is not limited.

Comparison Partners. As a comparison partner for extended OPTICS, we chose
the full table scan based on the exact distances, because any other approach
would include an unnecessary overhead and is not able to reduce the number
of the required |DB |2 exact distance computations. Furthermore, we compared
our extended DBSCAN algorithm to the original DBSCAN algorithm based on
a full table scan on the exact object distances, and we compared it to a version
of DBSCAN which is based on ε-range queries efficiently carried out according
to the multi-step query processing paradigm [10]. According to all our tests, this
second comparison partner outperforms a DBSCAN algorithm using ε-range
queries based on an M-tree [8] and the DBSCAN algorithm according to [12].

4.2 Experiments

Exact Clustering In this section, we first investigate the dependency of our
approach on the filter quality, the MinPts-parameter, and the maximum allowed
length of the predecessor lists. For these tests, we concentrate on the discussion
of the overall number of distance computations. Furthermore, we investigate the
influence of the ε-value in the case of DBSCAN, and, finally, we present the
absolute run-times, in order to show that the required overhead of our approach
is negligible compared to the saved exact distance computations.

Dependency on the Filter Quality. In order to demonstrate the dependency of our
approach on the quality of the filters, in a first experiment we utilized artificial
filter distances df lower bounding the exact object distances do, i.e. df (o1, o2) =

0

100

200

300

400

500

600

0,2 0,4 0,6 0,7 0,8 0,85 0,9 0,95 0,99

κ

no
. o

f d
is

ta
nc

e
co

m
pu

ta
tio

ns
 [x

1,
00

0] OPTICS: vector set
OPTICS: feature vector
OPTICS: graph
DBSCAN: vector set
DBSCAN: feature vector
DBSCAN: graph

(a) Dependency on the filter quality
df (o1, o2) = κ · do(o1, o2).

0

50

100

150

200

250

300

2 5 10 20

MinPts

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns
 [x

1,
00

0]

(b) Dependency on the MinPts-parameter.

0

100

200

300

400

500

0 200 400 600 800 1000

lmax

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns
 [x

1,
00

0]

(c) Dependency on the maximum allowed
length of the predecessor lists.

Fig. 7. Distance calculations for exact clusterings.

1

10

100

1000

0 0,2 0,4 0,6 0,8 1

normalized ε-parameter

ru
nt

im
e

tra
di

tio
na

l m
ul

tis
te

p
ap

pr
oa

ch
 /

ru
nt

im
e

ne
w

 in
te

gr
at

ed
 m

ul
ti-

st
ep

 a
pp

ro
ac

h

DBSCAN: vector set
DBSCAN: feature vector
DBSCAN: graph

Fig. 8. Speed-up dependent on the ε-parameter.

κ·do(o1, o2) where κ is between 0 and 1. Figure 7a depicts the number of distance
computations ndist w.r.t. κ. In the case of DBSCAN, even rather bad filters, i.e.
small values of κ, help to reduce the number of required distance computations
considerably, indicating a possible high speed-up compared to both comparison
partners of DBSCAN. For good filters, i.e. values of κ close to 1, ndist is very
small for DBSCAN and OPTICS indicating a possible high speed-up compared
to a full table scan based on the exact distances do.

Dependency on the MinPts-Parameter. Figure 7b demonstrates the dependency
of our approach for a varying MinPts-parameter while using the filters in-
troduced in [22, 20, 19]. As our approach is based on MinPts-nearest neigh-
bor queries, obviously the efficiency of our approach increases with a decreas-
ing MinPts-parameter. Note that even for rather high MinPts-values around
10 = 1% · |DB |, our approach saves up to one order of magnitude of exact dis-
tance computations compared to a full table scan based on do, if selective filters
are used, e.g. the filters for the vector sets and the graphs. Furthermore, even
for the filter of rather low selectivity used by the feature vectors, our approach
needs only 1/9 of the maximum number of distance computations in the case of
DBSCAN and about 1/4 in the case of OPTICS.

Dependency on the Maximum Allowed Length of the Predecessor Lists. Figure 7c
depicts how the number of distance computations ndist depends on the available
main memory, i.e. the maximum allowed length lmax of the predecessor lists.
Obviously, the higher the value for lmax, the less exact distance computations
are required. The figure shows that for OPTICS we have an exponential decrease
of ndist w.r.t. lmax, and for DBSCAN ndist is almost constant w.r.t. changing
lmax parameters, indicating that small values of lmax are sufficient to reach the
best possible runtimes.

1

10

100

1000

10000

500 1000 2000 3000

no. of objects

ru
nt

im
e

[s
ec

.]

1

10

100

1000

10000

500 1000 2000 3000

no. of objects

ru
nt

im
e

[s
ec

.]

100

1000

10000

500 1000 2000 3000

no. of objects

ru
nt

im
e

[s
ec

.]

100

1000

10000

500 1000 2000 3000

no. of objects

ru
nt

im
e

[s
ec

.]

1

10

100

1000

10000

500 1000 2000 3000

no. of objectsru
nt

im
e

[s
ec

.]

1

10

100

1000

10000

500 1000 2000 3000

no. of objects

ru
nt

im
e

[s
ec

.]

Fig. 9. Absolute runtimes w.r.t. varying database sizes.

Dependency on the ε-parameter. Figure 8 shows how the speed-up for DBSCAN
between our integrated multi-step query processing approach and the traditional
multi-step query processing approach depends on the chosen ε-parameter. The
higher the chosen ε-parameter, the more our new approach outperforms the
traditional one which has to compute the exact distances between o and q for
all o ∈ Nfilter

ε (q). In contrast, our approach confines itself to MinPts-nearest
neighbor queries on the exact distances and computes further distances only if
compulsory to compute the exact clustering result.

Absolute Runtimes. Figure 9 presents the absolute run-times of the new ex-
tended DBSCAN and OPTICS algorithms which integrate the multi-step query
processing paradigm compared to the full-table scan on the exact object repre-
sentations. Furthermore, we also compare our extended DBSCAN to a DBSCAN

0

20

40

60

80

100

120

1 5 10 20

lmaxno
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns
 [x

1,
00

0]

OPTICS: vector set
OPTICS: feature vector
OPTICS: graph
DBSCAN: vector set
DBSCAN: feature vector
DBSCAN: graph

Fig. 10. Distance calculations for approximated clusterings.

variant using ε-range queries based on the traditional hmulti-step query process-
ing paradigm. Note, that this comparison partner would induce an unnecessary
overhead in the case of OPTICS where we have to use very high ε-parameters
in order to detect the complete hierarchical clustering order. In all experiments,
our approach was always the most efficient one. For instance, for DBSCAN on
the feature vectors, our approach outperforms both comparison partners by an
order of magnitude indicating that rather bad filters are already useful for our
new extended DBSCAN algorithm. Note that the traditional multi-step query
processing approach does not benefit much from non-selective filters even when
small ε-values are used. In the case of OPTICS, the performance of our approach
improves with increasing filter quality. For instance, for the graphs we achieve
a speed-up factor of more than 30 indicating the suitability of our extended
OPTICS algorithm.

Approximated Clustering In this section, we carry out experiments where
we just cut off the predecessor lists PL(o) after the lmax-th element without
computing any additional exact distance computations between o and the dis-
carded potential predecessor objects. Note that this approach might lead to an
information loss. Figure 10 shows that the maximum number of needed distance
calculations only marginally increases for higher lmax-values for the graphs and
the vector sets indicating that we can cut off the object reachability lists at small
lmax-values without a considerable information loss. On the other hand, for the
feature vectors we have to compute more exact distance computations the higher
the lmax-value is. The additionally needed exact distance computations (cf. line
(*) in Figure 6) are due to the rather low filter selectivity of the used filter.

Next, we examine the quality of our approximated clustering algorithms by
using the quality measures introduced in Section 3. For extracting the hierar-
chical tree structure, we used the cluster recognition algorithm presented in [5].
Figure 11 depicts the quality measures QAPC for DBSCAN and QAHC for OP-

70

75

80

85

90

95

100

1 5 10 20

lmax

qu
al

ity
 m

ea
su

re
s

Q
AP

C
 a

nd
 Q

AH
C
 [%

]

OPTICS: vector set DBSCAN: vector set
OPTICS: feature vector DBSCAN: feature vector
OPTICS: graph DBSCAN: graph

Fig. 11. Quality measures for approximated clusterings.

TICS for our three test data sets w.r.t. varying lmax values. Our quality measures
indicate a very high quality for the graphs and the vector sets over the full range
of the investigated lmax values. On the other hand, when using the feature vectors
both quality measures QAPC (for DBSCAN) and QAHC (for OPTICS) increase
with increasing lmax values. These tests not only indicate that we can cut off
the predecessor lists at small values of lmax without considerably worsening the
clustering quality when using selective filters. The tests also demonstrate the
suitability of our quality measures QAPC and QAHC which indicate low quality
when filters of low selectivity are combined with small lmax values.

5 Conclusion

In many different application areas, density-based clustering is an effective ap-
proach for mining complex data. Unfortunately, the runtime of these data-mining
algorithms is rather high, as the distance functions between complex object
representations are often very expensive. In this paper, we showed how to in-
tegrate the well-known multi-step query processing paradigm directly into the
two density-based clustering algorithms DBSCAN and OPTICS. We replaced
the expensive exact ε-range queries by MinPts-nearest neighbor queries which
themselves are based on ε-range queries on lower-bounding filter distances. Fur-
ther exact complex distance computations are only carried out at that stage
of the algorithms where they are compulsory to compute the correct clustering
result. Furthermore, we showed how we can use the presented approach for ap-
proximated clustering. In order to evaluate the trade-off between the achieved
efficiency gain and the quality loss, we introduced suitable quality measures for
comparing the partitioning and hierarchical approximated clusterings to the ex-
act ones. In a broad experimental evaluation based on real-world test data sets

we demonstrated that our new approach leads to a significant speed-up compared
to a full-table scan on the exact object representations as well as compared to an
approach, where the ε-range queries are accelerated by means of the traditional
multi-step query processing concept. Furthermore, we showed that for approxi-
mated clusterings we can reduce the number of required distance computations
even further. Finally, we pointed out that the resulting approximated clustering
quality heavily depends on the filter quality demonstrating the suitability of our
introduced quality measures.

In our future work, we will demonstrate that other data mining algorithms
dealing with complex object representations also benefit from a direct integration
of the multi-step query processing paradigm.

References

1. Jain, A.K., Murty, M.N., Flynn, P.J.: “Data Clustering: A Review”. ACM Com-
puting Surveys 31(3) (1999) 265–323

2. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”. In: Proc. 2nd Int.
Conf. on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, AAAI
Press (1996) 291–316

3. Kailing, K., Kriegel, H.P., Pryakhin, A., Schubert, M.: “Clustering Multi-
Represented Objects with Noise”. In: Proc. 8th Pacific-Asia Conf. on Knowledge
Discovery and Data Mining (PAKDD’04), Sydney, Australia. (2004) 394–403

4. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: “OPTICS: Ordering Points
to Identify the Clustering Structure”. In: Proc. ACM SIGMOD Int. Conf. on
Management of Data (SIGMOD’99), Philadelphia, PA. (1999) 49–60

5. Brecheisen, S., Kriegel, H.P., Kröger, P., Pfeifle, M.: “Visually Mining Through
Cluster Hierarchies”. In: Proc. SIAM Int. Conf. on Data Mining (SDM’04), Lake
Buena Vista, FL. (2004) 400–412

6. Guttman, A.: “R-trees: A Dynamic Index Structure for Spatial Searching”. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’84). (1984)
47–57

7. Gaede V., G.O.: “Multidimensional Access Methods”. ACM Computing Surveys
30(2) (1998) 170–231

8. Ciaccia, P., Patella, M., Zezula, P.: “M-Tree: An Efficient Access Method for
Similarity Search in Metric Spaces”. In: Proc. 23rd Int. Conf. of Very Large Data
Bases, Athens, Greece. (1997) 426–435

9. Chávez, E., Navarro, G., Beaza-Yates, R., Marroqúın, J.: “Searching in Metric
Spaces”. ACM Computing Surveyes 33(3) (2001) 273–321

10. Agrawal, R., Faloutsos, C., Swami, A.: “Efficient Similarity Search in Sequence
Databases”. In: Proc. 4th. Int. Conf. on Foundations of Data Organization and
Algorithms (FODO’93), Evanston, ILL. Volume 730 of Lecture Notes in Computer
Science (LNCS)., Springer (1993) 69–84

11. Böhm, C., Braunmüller, B., Breunig, M., Kriegel, H.P.: “High Performance Clus-
tering Based on the Similarity Join”. In: Proc. 9th Int. Conf. on Information and
Knowledge Management (CIKM 2000), Washington, DC. (2000) 298–313

12. Braunmüller, B., Ester, M., Kriegel, H.P., Sander, J.: “Efficiently Supporting
Multiple Similarity Queries for Mining in Metric Databases”. In: Proc. Int. Conf.
on Data Engineering (ICDE 2000), San Diego, CA. (2000) 256–267

13. Wang, J.T.L., Wang, X., Lin, K.I., Shasha, D., Shapiro, B.A., Zhang, K.: “Eval-
uating a Class of Distance-Mapping Algorithms for Data Mining and Clustering”.
In: Proc. 5th Int. Conf. on Knowledge Discovery and Data Mining (KDD’99), San
Diego, CA. (1999) 307–311

14. Zhou, J., Sander, S.: “Data Bubbles for Non-Vector Data: Speeding-up Hierarchical
Clustering in Arbitrary Metric Spaces”. In: Proc. 29th Int. Conf. on Very Large
Databases (VLDB’03), Berlin, Germany. (2003) 452–463

15. Sander, J., Qin, X., Lu, Z., Niu, N., Kovarsky, A.: “Automatic Extraction of
Clusters from Hierarchical Clustering Representations”. In: Proc. 7th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD 2003), Seoul, Ko-
rea. (2003) 75–87

16. Eiter, T., Mannila, H.: “Distance Measures for Point Sets and Their Computation”.
Acta Informatica 34 (1997) 103–133

17. Ramon, J., Bruynooghe, M.: “A polynomial time computable metric between point
sets”. Acta Informatica 37 (2001) 765–780

18. Zhang, K., Wang, J., Shasha, D.: “On the editing distance between undirected
acyclic graphs”. International Journal of Foundations of Computer Science 7(1)
(1996) 43–57

19. Kriegel, H.P., Kröger, P., Mashael, Z., Pfeifle, M., Pötke, M., Seidl, T.: “Effective
Similarity Search on Voxelized CAD Objects”. In: Proc. 8th Int. Conf. on Database
Systems for Advanced Applications (DASFAA’03), Kyoto, Japan. (2003) 27–36

20. Kriegel, H.P., Brecheisen, S., Kröger, P., Pfeifle, M., Schubert, M.: “Using Sets of
Feature Vectors for Similarity Search on Voxelized CAD Objects”. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’03), San Diego, CA. (2003)
587–598

21. Kailing, K., Kriegel, H.P., Schönauer, S., Seidl, T.: “Efficient Similarity Search
for Hierarchical Data in Large Databases”. In: Proc. 9th Int. Conf. on Extending
Database Technology (EDBT’04), Heraklion, Greece. (2004) 676–693

22. Fonseca, M.J., Jorge, J.A.: “Indexing High-Dimensional Data for Content-Based
Retrieval in Large Databases”. In: Proc. 8th Int. Conf. on Database Systems for
Advanced Applications (DASFAA’03), Kyoto, Japan. (2003) 267–274

