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Abstract

In high-dimensional feature spaces traditional clus-
tering algorithms tend to break down in terms of effi-
ciency and quality. Nevertheless, the data sets often con-
tain clusters which are hidden in various subspaces of the
original feature space. In this paper, we present a feature
selection technique called SURFING (SUbspaces Rele-
vant For clusterING) that finds all subspaces interest-
ing for clustering and sorts them by relevance. The sort-
ing is based on a quality criterion for the interestingness
of a subspace using the k-nearest neighbor distances of
the objects. As our method is more or less parameterless,
it addresses the unsupervised notion of the data mining
task ”clustering” in a best possible way. A broad evalua-
tion based on synthetic and real-world data sets demon-
strates that SURFING is suitable to find all relevant sub-
spaces in high dimensional, sparse data sets and produces
better results than comparative methods.

1. Introduction

One of the primary data mining tasks is clustering
which is intended to help a user discovering and under-
standing the natural structure or grouping in a data
set. In particular, clustering aims at partitioning the
data objects into distinct groups (clusters) while mini-
mizing the intra-cluster similarity and maximizing the
inter-cluster similarity. A lot of work has been done in
the area of clustering (see e.g. [8] for an overview). How-
ever, many real-world data sets consist of very high
dimensional feature spaces. In such high dimensional
feature spaces, most of the common algorithms tend
to break down in terms of efficiency and accuracy be-
cause usually many features are irrelevant and or corre-
lated. In addition, different subgroups of features may

be irrelevant or correlated according to varying sub-
groups of data objects. Thus, objects can often be clus-
tered differently in varying subspaces. Usually, global
dimensionality reduction techniques such as PCA can-
not be applied to these data sets because they cannot
account for local trends in the data.

To cope with these problems, the procedure of fea-
ture selection has to be combined with the clustering
process more closely. In recent years, the task of sub-
space clustering was introduced to address these de-
mands. In general, subspace clustering is the task of
automatically detecting all clusters in all subspaces of
the original feature space, either by directly comput-
ing the subspace clusters (e.g. in [3]) or by selecting in-
teresting subspaces for clustering (e.g. in [9]).

In this paper, we propose an advanced feature selec-
tion method preserving the information of objects clus-
tered differently in varying subspaces. Our method
called SURFING (SUbspaces Relevant For clus-
terING) computes all relevant subspaces and ranks
them according to the interestingness of the hierarchi-
cal clustering structure they exhibit.

The remainder of this paper is organized as follows.
We discuss related work and point out our contribu-
tions in Section 2. A quality criterion for ranking the
interestingness of subspaces is developed in Section 3.
In Section 4 the algorithm SURFING is presented. An
experimental evaluation of SURFING in the context of
comparative subspace clustering methods is presented
in Section 5. Section 6 concludes the paper.

2. Related Work

2.1. Subspace Clustering

The pioneering approach to subspace clustering is
CLIQUE [3], using an Apriori -like method to navigate
through the set of possible subspaces. The data space is
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partitioned by an axis-parallel grid into equi-sized units
of width ξ. Only units whose densities exceed a thresh-
old τ are retained. A cluster is defined as a maximal set
of connected dense units. The performance of CLIQUE
heavily depend on the positioning of the grid. Objects
that naturally belong to a cluster may be missed or ob-
jects that are naturally noise may be assigned to a clus-
ter due to an unfavorable grid position.

Another recent approach called DOC [10] proposes
a mathematical formulation for the notion of an opti-
mal projected cluster, regarding the density of points
in subspaces. DOC is not grid-based but as the den-
sity of subspaces is measured using hypercubes of fixed
width w, it has similar problems like CLIQUE.

In [2] the method PROCLUS to compute projected
clusters is presented. However, PROCLUS misses out
the information of objects clustered differently in vary-
ing subspaces. The same holds for ORCLUS [1].

2.2. Feature Selection for Clustering

In [9] a method called RIS is proposed that ranks
the subspaces according to their clustering structure.
The ranking is based on a quality criterion using the
density-based clustering notion of DBSCAN [7]. An
Apriori -like navigation through the set of possible sub-
spaces in a bottom-up way is performed to find all in-
teresting subspaces. Aggregated information is accu-
mulated for each subspace to rank its interestingness.

In [6] a quality criterion for subspaces based on the
entropy of point-to-point distances is introduced. How-
ever, there is no algorithm presented to compute the
interesting subspaces. The authors propose to use a
forward search strategy which most likely will miss in-
teresting subspaces, or an exhaustive search strategy
which is obviously not efficient in higher dimensions.

2.3. Our Contributions

Recent density-based approaches to subspace clus-
tering or subspace selection methods (RIS) use a global
density threshold for the definition of clusters due to ef-
ficiency reasons. However, the application of a global
density threshold to subspaces of different dimension-
ality and to all clusters in one subspace is rather un-
acceptable. The data space naturally increases expo-
nentially with each dimension added to a subspace and
clusters in the same subspace may exceed different den-
sity parameters or exhibit a nested hierarchical clus-
tering structure. Therefore, for subspace clustering, it
would be highly desirable to adapt the density thresh-
old to the dimensionality of the subspaces or even bet-

ter to rely on a hierarchical clustering notion that is
independent from a globally fixed threshold.

In this paper, we introduce SURFING, a feature se-
lection method for clustering which does not rely on
a global density parameter. Our approach explores all
subspaces exhibiting an interesting hierarchical clus-
tering structure and ranks them according to a qual-
ity criterion. SURFING is more or less parameterless,
i.e. it does not require the user to specify parameters
that are hard to anticipate such as the number of clus-
ters, the (average) dimensionality of subspace clusters,
or a global density threshold. Thus, our algorithm ad-
dresses the unsupervised notion of the data mining task
“clustering” in a best possible way.

3. Subspaces Relevant for Clustering

Let DB be a set of N feature vectors with dimen-
sionality d, i.e. DB ⊆ Rd. Let A = {a1, . . . , ad} be the
set of all attributes ai of DB. Any subset S ⊂ A, is
called a subspace. T is a superspace of S if S ⊂ T . The
projection of an object o onto a subspace S ⊆ A is de-
noted by oS . We assume that d : DB ×DB → R is a
metric distance function.

3.1. General Idea

The main idea of SURFING is to measure the “in-
terestingness” of a subspace w.r.t. to its hierarchical
clustering structure, independent from its dimension-
ality. Like most previous approaches to subspace clus-
tering, we base our measurement on a density-based
clustering notion. Since we do not want to rely on a
global density parameter, we developed a quality crite-
rion for relevant subspaces built on the k-nearest neigh-
bor distances (k-nn-distances) of the objects in DB.

For a user-specified k ∈ N (k ≤ N) and a subspace
S ⊆ A let NNS

k (o) be the set of k-nearest neighbors of
an object o ∈ DB in a subspace S. The k-nn-distance
of o in a subspace S, denoted by nn-DistSk (o), is the dis-
tance between o and its k-nearest neighbor, formally:

nn-DistSk (o) = max{d(oS , pS) | p ∈ NNS
k (o)}.

The k-nn-distance of an object o indicates how
densely the data space is populated around o in S.
The smaller the value of nn-DistSk (o), the more dense
the objects are packed around o, and vice versa. If a
subspace contains a recognizable hierarchical cluster-
ing structure, i.e. clusters with different densities and
noise objects, the k-nn-distances of objects should dif-
fer significantly. On the other hand, if all points are uni-
formly distributed, the k-nn-distances can be assumed
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Figure 1: Usefulness of the k-nn distance to rate the interestingness of subspaces.

to be almost equal. Figure 1 illustrates these consider-
ations using a sample 2D subspace S = {a1, a2} and
k = 3. Consequently, we are interested in subspaces
where the k-nn-distances of the objects differ signifi-
cantly from each other, because the hierarchical clus-
tering structure in such subspaces will be considerably
clearer than in subspaces where the k-nn-distances are
rather similar to each other.

3.2. A Quality Criterion for Subspaces

As mentioned above we want to measure how much
the k-nn-distances in S differ from each other. To
achieve comparability between subspaces of different
dimensionality, we scale all k-nn-distances in a sub-
space S into the range [0, 1]. Thus, we assume that
nn-DistSk (o) ∈ [0, 1] for all o ∈ DB throughout the rest
of the paper.

Two well-known statistical measures for our purpose
are the mean value µS of all k-nn-distances in subspace
Sand the variance. However, the variance is not appro-
priate for our purpose because it measures the squared
differences of each k-nn-distance to µS and thus, high
differences are weighted stronger than low differences.
For our quality criterion we want to measure the non-
weighted differences of each k-nn-distance to µS . Since
the sum of the differences of all objects above µS is
equal to the sum of the differences of all objects be-
low µS , we only take half of the sum of all differences
to the mean value, denoted by diffµS

, which can be
computed by

diffµS
=

1
2

∑
o∈DB

|µS − nn-DistSk (o)|.

In fact, diffµS
is already a good measure for rating

the interestingness of a subspace. We can further scale
this value by µS times the number of objects having

a smaller k-nn-distance in S than µS , i.e. the objects
contained in the following set:

BelowS := {o ∈ DB |nn-DistSk (o) < µS}.

Obviously, if BelowS is empty, the subspace con-
tains uniformly distributed noise.

Definition 1 (quality of a subspace) Let S ⊆ A.
The quality of S, denoted by quality(S), is defined as fol-
lows:

quality(S) =

{
0 if BelowS = ∅

diffµS

|BelowS |·µS
else.

The quality values are in the range between 0 and 1.
A subspace where all objects are uniformly distributed
(e.g. as depicted in Figure 1(b)) has a quality value of
approximately 0, indicating a less interesting clustering
structure. On the other hand, the clearer the hierarchi-
cal clustering structure in a subspace S is, the higher
is the value of quality(S). For example, the sample 2D
subspace in which the data is highly structured as de-
picted in Figure 1(a) will have a significantly higher
quality value. Let us note that in the synthetic case
where all objects in BelowS have a k-nn-distance of 0
and all other objects have a k-nn-distance of 2 ·µS , the
quality value quality(S) is 1.

In almost all cases, we can detect the relevant sub-
spaces with this quality criterion, but there are two ar-
tificial cases rarely found in natural data sets which
nevertheless cannot be ignored.

First, there might be a subspace containing some
clusters, each of the same density, and without noise
(e.g. data set A in Figure 2). If the number of data ob-
jects in the clusters exceeds k, such subspaces cannot be
distinguished from subspaces containing uniformly dis-
tributed data objects spread over the whole attribute
range (e.g. data set B in Figure 2) because in both



data set A data set B

% of inserted points quality(A) quality(B)
0 0.13 0.15

0.1 0.15 0.15
0.2 0.19 0.15
0.5 0.31 0.15
1 0.38 0.15
5 0.57 0.15
10 0.57 0.15

Figure 2: Benefit of inserted points.

cases, the k-nn-distances of the objects will marginally
differ from the mean value.

Second, subspaces containing data of one Gaussian
distribution spread over the whole attribute range are
not really interesting. However, the k-nn-distances of
the objects will scatter significantly around the mean
value. Thus, such subspaces cannot be distinguished
from subspaces containing two or more Gaussian clus-
ters without noise.

To overcome these two artificial cases, we can vir-
tually insert some randomly generated points before
computing the quality value of a subspace. In cases of
uniform or Gaussian distribution over the whole at-
tribute range, the insertion of a few randomly gener-
ated additional objects does not significantly affect the
quality value. The k-nn-distances of these objects are
similar to the k-nn-distances of all the other data ob-
jects. However, if there are dense and empty areas in a
subspace, the insertion of some additional points very
likely increases the quality value, because these addi-
tional objects have large k-nn-distances compared to
those of the other objects. The table in Figure 2 shows
the quality value of the 2D data set A depicted in Fig-
ure 2 w.r.t. the percentage of virtually inserted random
objects. Data set B in Figure 2 has no visible cluster
structure and therefore the virtually inserted points do
not affect the quality value. For example, 0.2 % addi-
tionally inserted points means that for n = 5, 000 10
random objects have been virtually inserted before cal-
culating the quality value.

Thus, inserting randomly generated points is a
proper strategy to distinguish (good) subspaces con-
taining several uniformly distributed clusters of equal
density or several Gaussian clusters without noise from
(bad) subspaces containing only one uniform or Gaus-
sian distribution. In fact, it empirically turned out that
1% of additional points is sufficient to achieve the de-
sired results. Let us note that this strategy is only
required, if the subspaces contain a clear cluster-
ing structure without noise. In most real-world data
sets the subspaces do not show a clear cluster struc-
ture and often have much more than 10% noise. In
addition, the number of noise objects is usually grow-
ing with increasing dimensionality. In such data
sets, virtually inserting additional points is not re-
quired. Since our quality criterion is very sensible to
areas of different density, it is suitable to detect rel-
evant subspaces in data sets with high percentages
of noise, e. g. in gene expression data sets or in syn-
thetic data sets containing up to 90% noise.

4. Algorithm

The pseudocode of the algorithm SURFING is given
in Figure 3. Since lower dimensional subspaces are more
likely to contain an interesting clustering, SURFING
generates all relevant subspaces in a bottom-up way,
i.e. it starts with all 1-dimensional subspaces S1 and
discards as many irrelevant subspaces as early as pos-
sible. Therefore, we need a criterion to decide whether
it is interesting to generate and examine a certain sub-
space or not. Our above described quality measure can
only be used to decide about the interestingness of an
already given subspace. An important information we
have gathered while proceeding to dimension l is the
quality of all (l − 1)-dimensional subspaces. We can
use this information to compute a quality threshold
which enables us to rate all l-dimensional candidate
subspaces Sl. We use the lowest quality value of any
(l − 1)-dimensional subspace as threshold. If the qual-
ity values of the (l − 1)-dimensional subspaces do not
differ enough (it empirically turned out that a differ-
ence of at least 1/3 is a reasonable reference difference),
we take half of the best quality value instead. Using this
quality threshold, we can divide all l-dimensional sub-
spaces into three different categories:
Interesting subspace: the quality value increases or
stays the same w.r.t. its (l− 1)-dimensional subspaces.
Neutral subspaces: the quality decreases w.r.t. its
(l−1)-dimensional subspaces, but lies above the thresh-
old and thus might indicate a higher dimensional inter-
esting subspace.
Irrelevant subspaces: the quality decreases w.r.t its



(l − 1)-dimensional subspace below the threshold.
We use this classification to discard all irrelevant l-
dimensional subspaces from further consideration. We
know that these subspaces are not interesting itself and,
as our quality value is comparable over different di-
mensions, we further know that no superspace of such
a subspace will obtain a high quality value compared
to interesting subspaces of dimensionality l. Even if
through adding a “good” dimension, the quality value
would slightly increase it will not be getting better than
already existing ones.

However, before we discard an irrelevant subspace S
of dimensionality l, we have to test whether its cluster-
ing structure exhibits one of the artificial cases men-
tioned in the previous section. For that purpose, if the
quality of S is lower than the quality of a subspace con-
taining an l-dimensional Gaussian distribution, we in-
sert 1% random points and recompute the quality of S.
Otherwise, the clustering structure of S cannot get bet-
ter through the insertion of additional points. In case of
a clean cluster structure without noise in S, the quality
value improves significantly after the insertion. At least
it will be better than the quality of the l-dimensional
Gaussian distribution, and, in this case, S is not dis-
carded.

If, due to the threshold, there are only irrelevant l-
dimensional subspaces, we don’t use the threshold, but
keep all l-dimensional subspaces. In this case, the in-
formation we have so far, is not enough to decide about
the interestingness.

Finally, the remaining l-dimensional subspaces in Sl

are joined if they share any (l−1)-dimensions to gener-
ate the set of (l + 1)-dimensional candidate subspaces
Sl+1. SURFING terminates if the resulting candidate
set is empty.

SURFING needs only one input parameter k, the
choice of which is rather simple. If k is too small, the
k-nn-distances are not meaningful, since objects within
dense regions might have similar k-nn-distance values
as objects in sparse regions. If k is too high, the same
phenomenon may occur. Obviously, k must somehow
correspond to the minimum cluster size, i.e. the mini-
mal number of objects regarded as a cluster.

5. Evaluation

We tested SURFING on several synthetic and real-
world data sets and evaluated its accuracy in compar-
ison to CLIQUE, RIS and the subspace selection pro-
posed in [6] (in the following called Entropy). All ex-
periments were run on a PC with a 2.79 GHz CPU and
504 MB RAM. We combined SURFING, RIS and En-
tropy with the hierarchical clustering algorithm OP-

algorithm SURFING(Database DB, Integer k)

// 1-dimensional subspaces

S1 := {{a1}, . . . , {ad}};
compute quality of all subspaces S ∈ S1;
Sl := S ∈ S1 with lowest quality;
Sh := S ∈ S1 with highest quality;
if quality(Sl) > 2

3
· quality(Sh) then

τ := quality(Sh)
2

;
else

τ := quality(Sl);
S1 = S1 − {Sl};

end if

// k-dimensional-subspaces

k := 2;
create S2 from S1;
while not Sk = ∅ do

compute quality of all subspaces S in Sk;
Interesting := {S ∈ Sk|quality(S) ↑};
Neutral := {S ∈ Sk|quality(s) ↓ ∧ quality(S) > τ};
Irrelevant := {S ∈ Sk|quality(S) ≤ τ};
Sl := S ∈ Sk with lowest quality;
Sh := S ∈ Sk − Interesting with highest quality;
if quality(Sl) > 2

3
· quality(Sh) then

τ := quality(Sh)
2

;
else

τ := quality(sl);
end if
if not all subspaces irrelevant then
Sk := Sk − Irrelevant;

end if
create Sk+1 from Sk;
k := k + 1;

end while
end

Figure 3: Algorithm SURFING.

TICS [4] to compute the hierarchical clustering struc-
ture in the detected subspaces.
Synthetic Data. The synthetic data sets were gener-
ated by a self-implemented data generator. It permits
to specify the number and dimensionality of subspace
clusters, dimensionality of the feature space and den-
sity parameters for the whole data set as well as for each
cluster. In a subspace that contains a cluster, the aver-
age density within that cluster is much larger than the
density of noise. In addition, it is ensured that none
of the synthetically generated data sets can be clus-
tered in the full dimensional space.
Gene Expression Data. We tested SURFING on a
real-world gene expression data set studying the yeast
mitotic cell cycle [11]. We used only the data set of the
CDC15 mutant and eliminated those genes from our
test data set having missing attribute values. The re-



Table 1: Results on synthetic data sets.
data d cluster N # subspaces time
set dim. m % (s)

02 10 4 4936 107 10.45 351

03 10 4 18999 52 5.08 2069

04 10 4 27704 52 5.08 4401

05 15 2 4045 119 0.36 194

06 15 5 3802 391 1.19 807

07 15 3,5,7 4325 285 0.87 715

08 15 5 4057 197 0.60 391

09 15 7 3967 1046 3.19 3031

10 15 12 3907 4124 12.59 15321

11 10 5 3700 231 22.56 442

12 20 5 3700 572 0.05 1130

13 30 5 3700 1077 0.0001 2049

14 40 5 3700 1682 1.5·10−7 3145

15 50 5 3700 2387 2.1·10−10 4255

16 15 4,6,7,10 2671 912 2.8 4479

sulting data set contains around 4000 genes measured
at 24 different time slots. The task is to find function-
ally related genes using cluster analysis.
Metabolome Data. In addition we tested SURFING
on high-dimensional metabolic data provided from the
newborn screening program in Bavaria, Germany. Our
experimental data sets were generated from modern
tandem mass spectrometry. In particular we focused on
a dimensionality of 14 metabolites in order to mine sin-
gle and promising combinations of key markers in the
abnormal metabolism of phenylketonuria (PKU), a se-
vere amino acid disorder. The resulting database con-
tains 319 cases designated as PKU and 1322 control
individuals expressed as 14 amino acids and interme-
diate metabolic products.The task is to extract a sub-
set of metabolites that correspond well to the abnor-
mal metabolism of PKU.

5.1. Efficiency

The runtimes of SURFING applied to the synthetic
data sets are summarized in Table 1. In all experiments,
we set k = 10.

For each subspace, SURFING needs O(N2) time to
compute for each of the N points in DB the k-nn-
distance, since there is no index structure which could
support the partial k-nn-queries in arbitrary subspaces
in logarithmic time. If SURFING analyzes m different
subspaces the overall runtime complexity is O(m ·N2).
Of course in the worst case m can be 2d, but in prac-
tice we are only examining a very small percentage of
all possible subspaces. Indeed, our experiments show,
that the heuristic generation of subspace candidates

used by SURFING ensures a small value for m (cf. Ta-
ble 1). For most complex data sets, SURFING com-
putes less than 5% of the total number of possible sub-
spaces. In most cases, this ratio is even significantly
less than 1%. For data set 10 in Table 1 where the
cluster is hidden in a 12-dimensional subspace of a 15-
dimensional feature space, SURFING only computes
12.5% of the possible subspaces. Finally, for both the
real world data sets, SURFING computes even signif-
icantly less than 0.1% of the possible subspaces (not
shown in Table 1). The worst ever observed percentage
was around 20%. This empirically demonstrates that
SURFING is a highly efficient solution for the com-
plex subspace selection problem.

5.2. Effectivity

Results on Synthetic Data. We applied SURF-
ING to several synthetic data sets (cf. Table 1).
In all but one case, SURFING detected the cor-
rect subspaces containing the relevant clusters and
ranked them first. Even for data set 16, SURF-
ING was able to detect 4 out of 5 subspaces
containing clusters, although the clustering struc-
ture of the subspaces containing clusters was rather
weak, e.g. one of the 4-dimensional subspaces con-
tained a cluster with only 20 objects having an av-
erage k-nn-distance of 2.5 (the average k-nn-distance
for all objects in all dimensions was 15.0). SURF-
ING only missed a 10-dimensional subspace which
contained a cluster with 17 objects having an aver-
age k-nn-distance of 9.0.
Results on Gene Expression Data. We tested
SURFING on the gene expression data set and re-
trieved a hierarchical clustering by applying OPTICS
[4] to the top-ranked subspaces. We found many bi-
ologically interesting and significant clusters in sev-
eral subspaces. The functional relationships of the
genes in the resulting clusters were validated us-
ing the public Saccharomyces Genome Database1.
Some excerpts from sample clusters in varying sub-
spaces found by SURFING applied to the gene
expression data are depicted in Table 2. Clus-
ter 1 contains several cell cycle genes. In addition,
the two gene products are part of a common pro-
tein complex. Cluster 2 contains the gene STE12, an
important regulatory factor for the mitotic cell cy-
cle [11] and the genes CDC27 and EMP47 which are
most likely co-expressed with STE12. Cluster 3 con-
sists of the genes CDC25 (starting point for mitosis),
MYO3 and NUD1 (known for an active role dur-

1 http://www.yeastgenome.org/



Table 2: Results on gene expression data.
Gene Name Function

Cluster 1 (subspace 90, 110, 130, 190)

RPC40 builds complex with CDC60

CDC60 tRNA synthetase

FRS1 tRNA synthetase

DOM34 protein synthesis, mitotic cell cycle

CKA1 mitotic cell cycle control

MIP6 RNA binding activity, mitotic cell cycle

Cluster 2 (subspace 90, 110, 130, 190)

STE12 transcription factor (cell cycle)

CDC27 possible STE12-site

EMP47 possible STE12-site

XBP1 transcription factor

Cluster 3 (subspace 90, 110, 130, 190)

CDC25 starting control factor for mitosis

MYO3 control/regulation factor for mitosis

NUD1 control/regulation factor for mitosis

Cluster 4 (subspace 190, 270, 290)

RPT6 protein catabolism; complex with RPN10

RPN10 protein catabolism; complex with RPT6

UBC1 protein catabolism; part of 26S protease

UBC4 protein catabolism; part of 26S protease

Cluster 5 (subspace 70, 90, 110, 130)

SOF1 part of small ribosomal subunit

NAN1 part of small ribosomal subunit

RPS1A structural constituent of ribosome

MIP6 RNA binding activity, mitotic cell cycle

Cluster 6 (subspace 70, 90, 110, 130)

RIB1 participate in riboflavin biosynthesis

RIB4 participate in riboflavin biosynthesis

RIB5 participate in riboflavin biosynthesis

ing mitosis) and various other transcription factors
required during the cell cycle. Cluster 4 contains sev-
eral genes related to the protein catabolism. Clus-
ter 5 contains several structural parts of the ribo-
somes and related genes. Let us note, that MPI6 is
clustered differently in varying subspaces (cf. Clus-
ter 1 and Cluster 5). Cluster 6 contains the genes that
code for proteins participating in a common path-
way.
Results on Metabolome Data. Applying SURF-
ING to metabolic data, we identified 13 subspaces
considering quality values > 0.8. In detail, we ex-
tracted 5 one-dimensional spaces (the metabolites
ArgSuc, Phe, Glu, Cit and Arg), 6 two- dimen-
sional spaces (e.g. Phe-ArgSuc, Phe-Glu) and 3
three-dimensional spaces (e.g. Phe-Glu-ArgSuc). Al-
terations of our best ranked single metabolites cor-
respond well to the abnormal metabolism of PKU
[5]. We compared SURFING findings with results us-

Table 3: Comparative tests on synthetic data.
data # clusters/ correct clusters/subspaces found by
set subspaces CLIQUE RIS E SURFING

06 2 1 2 0 2

07 3 1 2 0 2

08 3 1 3 0 3

16 5 0 3 0 4

ing PCA. Only components with eigen value > 1 were
extracted. Varimax rotation was applied. PCA find-
ings showed 4 components (eigen values of compo-
nents 1-4 are 4.039, 2.612, 1.137 and 1.033) that
retain 63% of total variation. However, SURF-
ING’s best ranked single metabolites ArgSuc, Glu,
Cit and Arg are not highly loaded (> 0.6) on one
of four extracted components. Moreover, combina-
tions of promising metabolites (higher dimensional
subspaces) are not able to be considered in PCA. Par-
ticularly in abnormal metabolism, not only alterations
of single metabolites but more interactions of sev-
eral markers are often involved. As our results demon-
strate, SURFING is more usable on metabolic
data taking higher dimensional subspaces into ac-
count.
Influence of Parameter k. We re-ran our
experiments on the synthetic data sets with
k = 3, 5, 10, 15, 20. We observed that if k = 3, SURF-
ING did find the correct subspaces but did not rank
the subspaces first (i.e. subspaces with a less clear hi-
erarchical clustering structure got a higher qual-
ity value). In the range of 5 ≤ k ≤ 20, SURF-
ING produced similar results for all synthetic data
sets. This indicates that SURFING is quite ro-
bust against the choice of k within this range.
Comparison with CLIQUE. The results of
CLIQUE applied to the synthetic data sets con-
firmed the suggestions that its accuracy heavily de-
pends on the choice of the input parameters which is
a nontrivial task. In some cases, CLIQUE failed to de-
tect the subspace clusters hidden in the data but com-
puted some dubious clusters. In addition, CLIQUE
is not able to detect clusters of different density. Ap-
plied to our data sets which exhibit several clus-
ters with varying density (e.g. data set 16), CLIQUE
was not able to detect all clusters correctly but
could only detect (parts of) one cluster (cf. Ta-
ble 3) — even though we used a broad parameter
setting. A similar result can be reported when we ap-
plied CLIQUE to the gene expression data set.
CLIQUE was not able to obtain any useful clus-
ters for a broad range of parameter settings. In sum-



mary, SURFING does not only outperform CLIQUE
by means of quality, but also saves the user from find-
ing a suitable parameter setting.
Comparison with RIS. Using RIS causes simi-
lar problems as observed when using CLIQUE. The
quality of the results computed by RIS also de-
pends, with slightly less impact, on the input pa-
rameters. Like CLIQUE, in some cases RIS failed
to detect the correct subspaces due to the utiliza-
tion of a global density parameter (cf. Table 3). For
example, applied to data set 16, RIS was able to com-
pute the lower dimensional subspaces, but could
not detect the higher dimensional one. The ap-
plication of RIS to the gene expression data set
is described in [9]. SURFING confirmed these re-
sults but found several other interesting subspaces
with important clusters, e.g. clusters 5 and 6 in sub-
space 70, 90, 110, 130 (cf. Figure 2). Applying RIS
to the metabolome data set the best ranked sub-
space contains 12 attributes which represent nearly
the full feature space and are biologically not in-
terpretable. The application of RIS to all data sets,
was limited by the choice of the right parameter set-
ting. Again, SURFING does not only outperform RIS
by means of quality, but also saves the user from find-
ing a suitable parameter setting.
Comparison with Entropy. Using the quality cri-
terion Entropy (E) in conjunction with the proposed
forward search algorithm in [6], none of the correct sub-
spaces were found. In all cases, the subspace selection
method stops at a dimensionality of 2. Possibly, an ex-
haustive search examining all possible subspaces could
produce better results. However, this approach obvi-
ously yields unacceptable run times. Applied to the
metabolome data, the biologically relevant 1D sub-
spaces are ranked low.

6. Conclusion

In this paper, we introduced a new method to sub-
space clustering called SURFING which is more or less
parameterless and — in contrast to most recent ap-
proaches — does not rely on a global density thresh-
old. SURFING ranks subspaces of high dimensional
data according to their interestingness for clustering.
We empirically showed that the only input parame-
ter of SURFING is stable in a broad range of settings
and that SURFING does not favor subspaces of a cer-
tain dimensionality. A comparative experimental eval-
uation shows that SURFING is an efficient and accu-
rate solution to the complex subspace clustering prob-
lem. It outperforms recent subspace clustering meth-
ods in terms of effectivity.
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K. Weinberger, B. Olgemöller, B. Liebl, and A. A.
Roscher. ”Supervised machine learning techniques for
the classification of metabolic disorders in newborns”.
Bioinformatics, 2004. in press.

[6] M.Dash,K.Choi,P. Scheuermann, andH.Liu. ”Feature
Selection for Clustering – A Filter Solution”. In Proc.
IEEE Int. Conf. on Data Mining (ICDM’02), 2002.

[7] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. ”A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise”. In Proc. 2nd
Int. Conf. on Knowledge Discovery and Data Mining
(KDD’96), 1996.

[8] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Academic Press, 2001.

[9] K. Kailing, H.-P. Kriegel, P. Kröger, and S. Wanka.
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