
ParetoPrep: Fast computation of Path Skylines Queries

Michael Shekelyan Gregor Jossé Matthias Schubert
Institute for Informatics, Ludwig-Maximilians-Universität München

Oettingenstr. 67
D-80538 Munich, Germany

{shekelyan,josse,schubert}@dbs.ifi.lmu.de

ABSTRACT
Computing cost optimal paths in network data is a very
important task in many application areas like transporta-
tion networks, computer networks or social graphs. In many
cases, the cost of an edge can be described by various cost
criteria. For example, in a road network possible cost cri-
teria are distance, time, ascent, energy consumption or toll
fees. In such a multicriteria network, a route or path skyline
query computes the set of all paths having pareto optimal
costs, i.e. each result path is optimal for different user pref-
erences. In this paper, we propose a new method for com-
puting path skylines which significantly decreases processing
time and memory consumption. Furthermore, our method
does not rely on any precomputation or indexing method
and thus, it is suitable for dynamically changing edge costs.
Our experiments demonstrate that our method outperforms
state of the art approaches and allows highly efficient path
skyline computation without any preprocessing.

1. INTRODUCTION
In recent years, querying network data has become more

and more important in many application areas like trans-
portation systems, the world wide web, computer networks
or social graphs. One of the most important tasks in network
data is computing cost optimal paths between two nodes.
Especially in transportation networks and computer net-
works finding shortest or cost optimal paths is essential for
optimizing the movement of objects or information. An opti-
mal path can depend on multiple cost criteria and a network
considering different cost dimensions for each link is called a
multicost or multicriteria network. In road networks, possi-
ble optimization criteria are travel time, travel distance, toll
fees, environmental hazards or energy consumption. In com-
puter networks, typical cost criteria are bandwidth, rental
cost and current traffic.

A simple solution to compute optimal paths in multicrite-
ria networks is to combine all cost values into a single opti-
mization criterion. However, finding a suitable combination

method is a difficult task because a good choice might de-
pend on personal preferences and the current query context.

An alternative approach is to compute all pareto optimal
paths, i.e. all paths that are potentially cost optimal under
any cost combination. In the database community, this task
is generally known as skyline query [1] and when looking for
routes in a network as route skyline query [11]. In other
communities like Artificial Intelligence and Operations Re-
search the latter task is known as multicriteria shortest path
optimization [19].

One of the most efficient approaches to answering path
skyline queries is the label correcting approach which ex-
ploits the pareto optimality of any subpath of a result path.
However, for large graphs this pruning mechanismen is not
enough to ensure efficient computation because the majority
of the network has to be visited. To efficiently compute path
skylines in large networks, it is necessary to direct the search
towards the target, e.g. by using lower bound approxima-
tions for the remaining cost in each criteria in a similar way
as A*-search does in the single criterion case.

For example, a lower bound approximation for network
distance is the Euclidean distance. Considering multiple
and arbitrary cost criteria requires a more general approach
for acquiring lower bound approximations. One solution
is precalculating bounds like a Reference Node Embedding
[6]. However, precalculated bounds have several drawbacks.
Firstly, the approximation quality is often insufficient for
the majority of queries. Secondly, they typically require a
lot of memory compared to the size of the network. And
finally, in dynamic networks – where edge costs vary over
time – the approximation may lose its bounding properties.

Alternatively, [25] makes use of the following skyline prop-
erty: For every particular cost criterion there exists an opti-
mal path and each nondominated path cannot have a smaller
cost value for this criterion. Now, by performing a single-
source all-target Dijkstra search, it is possible to compute
the single criterion optimal paths from each node in the net-
work to the target node and thus, derive lower bounds for
each cost value w.r.t. the considered cost criterion. Per-
forming this search for all cost criteria, computes a vector of
lower bounds for each node. Although the effort is large, the
quality of the bounds compensates for the overhead when
computing the path skyline later on. However, the runtime
degenerates for large graphs and multiple criteria because
the entire graph is visited once for each criterion.

To avoid the drawbacks of both approaches, we propose
a new method, ParetoPrep, which strongly increases the ef-
ficiency even for multiple cost criteria. Our method does

1

not rely on preprocessing, hence it is applicable to net-
works with dynamically changing costs. ParetoPrep com-
putes tight lower bound approximations which yield great
pruning power and low runtime. Additionally, ParetoPrep
finds the shortest paths between a start and a target node
with respect to all d cost criteria within a single graph traver-
sal. When traversing the graph ParetoPrep visits only a
small part of the network, keeping the search local. To even
further reduce the explored part of the graph, we introduce
a bidirectional optimization of ParetoPrep.

In our experimental evaluation, we show that our new
approach outperforms the state of the art in computing path
skylines, i.e. the above mentioned approach of computing
lower bounds through multiple Dijkstra searches [25] as well
as ARSC [11]. As test network, we use the open street map
road network of the German federal state of Bavaria and
examine searches for up to five different cost criteria. To
conclude, the contributions of this paper are:

• We introduce an algorithm, ParetoPrep, which com-
putes tighter lower bound cost approximations than
any state of the art approach.

• We show that ParetoPrep outperforms any compara-
ble algorithm in terms of runtime, memory space and
effectiveness.

• We present a complete algorithm for answering path
skyline queries on large and possibly dynamic network
data and a bidirectional optimization of this algorithm.

The rest of the paper is organized as follows: In Section 2
we present related work in the area of path skyline compu-
tation and routing in large networks. Section 3 provides ba-
sic notations, concepts and formalizes path skyline queries.
ParetoPrep, our new algorithm, is presented in Section 4.
Additionally, the section contains formal proofs concerning
the correctness of ParetoPrep. Section 5 describes the re-
sults of our experiments, demonstrating the various benefits
of ParetoPrep. The paper concludes with a summary and
directions for future work in Section 6.

2. RELATED WORK
The task of finding all pareto optimal elements within a

vector space was introduced to the database community as
skyline operator in [1]. Since then, multiple methods for
computing skylines in database systems on sets of (cost)
vectors followed [22, 10, 16].

With regard to network data and especially spatial net-
works there exist some approaches for computing skylines
on landmarks or other points of interest. In [3] the authors
introduce a method for calculating a skyline of landmarks
in a road network which are compared w.r.t. their network
distance to several query objects. In [8] the authors propose
in-route skyline processing in road networks. Assuming that
a user is moving along a predefined route to a known des-
tination, the algorithm processes minimal detours to sets of
landmarks being distributed along the path. In [9] the au-
thors discuss continuous skyline queries in road networks,
i.e. a moving user queries for a skyline of points of interest.

The task of computing a skyline of pareto optimal paths
between two nodes is referred to as route skyline query in
[11]. However, in accordance the graph theoretical terminol-
ogy, we refer to it as path skyline query. In the following, we

will discuss solutions from other areas of research and dis-
cuss the differences between the algorithm ARSC proposed
in [11] and alternative approaches.

In Operations Research, the problem of finding complete
path skylines is known as the Multiobjective Shortest Path
problem and surveys on existing solutions to this problem
can be found in [19, 17, 23, 5]. Early on, [7] proved that the
size of the path skyline may increase exponentially with the
number of hops between start and target node, and that the
problem therefore is NP-hard. More recently, [14] showed
that the number of routes is in practice feasibly low when
using strongly correlated cost criteria.

The potential complexity of the problem motivated solu-
tions which approximate the pareto front. A fully polynomial-
time approximation scheme is provided by [7], [26] and [24].
Many approximative solutions are also based on genetic al-
gorithms [15].

Concerning exact solutions, the most common approach
are labeling algorithms which label nodes with the cost vec-
tors of assembled paths ending at that node. They start with
paths consisting of the outgoing edges of the start node, and
in each iteration extend all previously assembled paths that
may be part of a skyline path and terminate once all as-
sembled paths were either extended or pruned. Paths can
be pruned if they are dominated by a path with the same
terminal node because all subpaths of nondominated paths
are also nondominated. We will refer to this type of pruning
as local domination. To perform local domination checks, a
path skyline is maintained for each node, which consists of
all so far nondominated routes ending at that node.

Labeling approaches can be subdivided into label setting
and label correcting approaches. In each iteration, label set-
ting approaches like Martin’s algorithm [13] extend a non-
dominated path and therefore have a well-defined worst case
performance, limited by the number of nondominated paths.
In contrast, label correcting approaches do not necessar-
ily extend nondominated paths which offers more flexibility.
For instance, the label correcting approach allows to extend
the complete route skyline of a node in each iteration, in-
stead of separately extending particular paths.

In the special case of two cost criteria, path skylines can be
sorted to improve the efficiency of local domination checks.
Two dimensional skyline cost vectors sorted in ascending
order by the first criterion are simultaneously sorted in de-
scending order w.r.t. the second criterion. When the path
skyline of node u is extended with edge (u, v), it has to be
merged with the set of nondominated paths ending at v. [2]
shows how to efficiently solve the problem of merging two
sorted path skylines and [20] describes an efficient method to
check if one skyline completely dominates the other making
the merging step trivial.

The labeling algorithms cited so far solve the single-source
problem of finding all nondominated paths from s to all
other nodes. In [21], it is shown that when solving the point-
to-point problem from a start node s to a target node t all
partially or fully extended paths being dominated by a path
from s to t can be pruned. We will refer to this type of
pruning as global domination. Global domination allows to
process only a part of the graph and significantly reduces
the number of considered paths to compute the path sky-
line. Thus, to answer path skyline queries in large graphs
global domination should be employed to direct the search.
[21] also showed that lower bound cost estimations of fully

2

extended paths can be utilized to considerably improve the
pruning power of global domination and can be used to pri-
oritize the extension of more promising paths.

For cost criteria other than distance, lower bound cost
estimations are usually acquired through some kind of pre-
processing. In ARSC [11], lower bounds are provided by a
Reference Node Embedding computed before any query is
posed. However, a Reference Node Embedding usually does
not yield good lower bounds for all possible queries. Fur-
thermore, the memory consumption is rather large and any
precomputed information has to be checked for validity in
case of dynamically changing edge costs. Another approach
is to compute lower bound costs individually for each query
[12]. Such lower bound cost computation may be combined
with computing the shortest paths for each criterion which
can then be used for global domination checks. Tung and
Chew [25] propose to perform a single-source all-target Di-
jkstra search for each cost criterion on the graph in reverse
direction [4] to find the costs of the shortest paths from all
other nodes in the graph to the target node t. We will refer
to this approach as Multidijkstra (MD). A major shortcom-
ing of this approach is that it processes the whole graph for
every cost criterion.

In the special case of two cost criteria, Machuca and Mandow
[12] propose a termination condition which makes use of spe-
cial properties of two dimensional skylines. We would like
to stress that this method is not applicable to the case of
more than two cost criteria. Since the algorithm in [12]
uses two Dijkstra searches, we shall refer to it as Doubledi-
jkstra (DD). In [27] the authors compute a set of optimal
paths in time-dependent, uncertain, multicriteria networks.
The presented model allows the complex representation of
a dynamic network model. However, the lower bound com-
putation relies on the same undirected search as in [25].

It should be stressed that MD and DD do not perform
point-to-point shortest path searches. Therefore, speed-up
techniques for point-to-point searches are not applicable.

The methods presented in this paper use significantly less
runtime and memory space compared to the MD and DD
approaches by restricting the visited part of the network and
deriving the required lower bounds in a single graph traver-
sal. Thus, ParetoPrep can be combined with any search
algorithm requiring time and memory efficient computation
of lower bound costs for multiple attributes.

3. PRELIMINARIES

3.1 Path Skyline Queries
A multicost network is represented by a directed weighted

graph G(V, E , C) which is comprised of a set of nodes V and
a set of directed edges E ∈ V × V. Each edge (n,m) ∈ E
is labeled with a cost vector cost(n,m) ∈ C ⊂ Rd+ which
consists of the costs for traversing edge (n,m) w.r.t. each
of the d cost criteria (in mathematical context also referred
to as cost dimensions). If there exists an edge (n,m) then n
and m are neighboring nodes and (n,m) shall be called an
outgoing edge of n and an incoming edge of m.

A sequence of adjacent edges connecting two nodes s and
t, w = ((s, n1), (n1, n2), . . . , (nk, t)) , is called a way from s
to t. If w does not visit any node twice it is called a path or
a route. The cost of a path p in the i-the cost dimension is

the sum of its individual edge costs:

cost(p)i =
∑

(n,m)∈p

cost(n,m)i

A cost vector a ∈ Rd+ dominates a cost vector b ∈ Rd+,
denoted a ≺dom b, iff a has a smaller cost value than b in
at least one dimension i and b does not have a smaller cost
value than a in any dimension j:

∃i∈{1,...,d} : ai < bi ∧ @j∈{1,...,d} : aj > bj :⇔ a ≺dom b

For a set of paths A, A ≺dom b implies that there exists
some path a ∈ A which dominates the path b. Cost vec-
tors which are not dominated by any other cost vector are
called nondominated or pareto optimal. The set of nondom-
inated cost vectors includes all optimal trade-offs between
cost criteria and is called the pareto front or skyline [1].

Definition 1 (Path Skyline). Let G(V, E , C) be a mul-
ticost network, let s ∈ V be the start node and let t ∈ V be
the target node. Then, the set of all paths between s and t
whose cost vectors are nondominated is defined as path sky-
line S(s, t).

The task we examine in this paper is to efficiently com-
pute S(s, t). In the following, we always assume a multicost
network is given.

3.2 Label Correction and Pruning
Our solution employs the label correcting approach and

incorporates two domination checks in order to prune paths
from the search tree. The first type of domination is local
domination which is used to compare paths starting and
ending at the same node. The second domination relation is
global domination which describes whether a path can still
can be extended to a nondominated path between the start
and the target node of the given query.

Definition 2 (Local Domination). Let p and q be
two paths starting at the same node s and ending at the
same node t. Iff cost(p) ≺dom cost(q) holds, we refer to q
as dominated by p : p ≺dom q. Correspondingly, q is re-
ferred to as nondominated iff @ p = ((s, n1), . . . , (nk, t)) :
cost(p) ≺dom cost(q).

For any path q = ((n1, n2), . . . , (nl−1, nl)), any subse-
quence of edges p = ((ni, ni+1), . . . , (nk−1, nk)) is called a
subpath of q. The following lemma shows that locally dom-
inated paths can be pruned from the search.

Lemma 1 (Local Domination Check). Any subpath
of a nondominated path is nondominated (w.r.t. its start
and target node).

Proof. Suppose, a path p had a dominated subpath q.
This subpath could be substituted with the dominating path
q′. The modified path p′ would then dominate the original
path p:

cost(p′) = cost(p)− cost(q) + cost(q′)

cost(q′) ≺dom cost(q)⇒ cost(p′) ≺dom cost(p)

This contradicts the assumption and thereby proves the
claim.

3

Using local domination allows to decide which paths be-
tween node s and some other node n have to be extended
when processing node n. However, it is not sufficient to de-
cide whether any path between s and n can be extended
into a nondominated path between s and t. To test this
property, we introduce global domination.

Definition 3 (Global Domination). Given a start
node s and a destination node t, an arbitrary path p is called
globally dominated iff it is a subpath of a dominated path q
between s and t. Respectively, any subpath p of a nondomi-
nated path q between s and t is called globally nondominated.

Due to global domination it is not necessary to extend any
path p between s and some other node n, if there does not
exist any extension q of p ending an the target t and being
part of S(s, t). Without the concept of global domination
an algorithm cannot stop the search until all path skylines
S(s, v) for all v ∈ V are calculated. To exploit the fact that
we are only interested in S(s, t), a simple global domina-
tion check is to compare the cost of any path p to S(s, t).
If ∃q ∈ S(s, t) : cost(q) ≺dom cost(p) then p cannot be
extended into an element of S(s, t) because cost(p) cannot
be decreased by extending p for any cost criterion i. This
basic global domination check is equivalent to the stopping
criterion of Dijkstra’s algorithm for single criterion shortest
path computation. However, the check is not sufficient to
restrict the search space for the path skyline to a limited
portion of the network. To check for global domination in
a more effective way, lower bound cost approximations are
employed.

Definition 4 (Lower Bound Costs). Let n and m
be nodes and let i be an arbitrary cost criterion. If for the
real value lb(a, b)i fulfills lb(a, b)i ≤ cost(p)i for any path p
connecting a and b then lb(a, b)i is called lower bound for i
w.r.t. a and b. The vector consisting of the lower bounds of
all cost criteria w.r.t. a and b is denoted as lb(a, b).

To compute lower bounds, it is possible to employ the
MultiDijkstra (MD) method which is computing all single
criterion optimal paths starting at some node n and ending
at node t as described in section 2. In the next section, we
will introduce our new method ParetoPrep which is com-
puting even tighter lower bounds in a much more efficient
way. Additionally, to computing lower bound costs both al-
gorithms compute the optimal paths between the start node
s and the target node t for each cost criterion i. Before
explaining the global domination check being employed in
this paper, we need to introduce some notation: max (a, b)
shall denote the component-wise (criterion-wise) maximum
of cost vectors a and b, i.e. (max (a, b))i := max{ai, bi}, for
all 1 ≤ i ≤ d). Both information are employed to prune
paths from the search space in the following domination
check:

Lemma 2 (Global Domination Check). Let p be a
path from n to m and q be a path from the start node s to
the target node t. If

cost(q) ≺dom max (lb(s, n) + cost(p) + lb(m, t), lb(s, t))

then the path p is globally dominated.

Proof. The cost vector lb(s, n) + cost(p) + lb(m, t) is the
lower bound cost of all paths from s to t via p. If this lower

bound cost is dominated by the cost of a path from s to t,
there does not exist a nondominated path from s to t via p.
Additionally, there cannot be any path q from s to t where
cost(q)i is smaller than the cost of the shortest path w.r.t.
to criterion i. Thus, the bound can always be increased to
the cost of the shortest path in dimension i.

Now that we have introduced our pruning criteria, let us
explain the label correcting algorithms being used in the pa-
per: Any label correcting approach employs two important
data structures. The first is a node table maintaining an
entry for each visited node. The entry of node n maintains
a local skyline, i.e. a list of nondominated paths starting
in s and ending in n. For each path a flag is maintained,
denoting whether the path has already been processed or
not. The second data structure is a queue of node entries
which is ordered with respect to a preference criterion. In
our implementation, we use the sum over the minimal cost
values of the local skyline in each cost criterion, but other
preference function work as well.

When answering a path skyline query for a given start
node s and a target node t, the search starts by visiting
the outgoing edges of s. For each newly reached node, a
node tab entry is generated and added to the queue. In
the main loop of the algorithm the top entry is removed
from the queue. Any path in its local skyline which has
neither been processed nor is globally dominated by any
result path found so far is extended. That means, the path
is extended by all outgoing links of node n. A new path is
registered in the local skyline of the respective target node
if it is not dominated by the other paths in that entry. If
a node tab entry is updated with a new path, it is added
to the queue. The algorithm terminates when the queue is
empty, i.e. no entry contains any unprocessed path. This
algorithm is similar to the ARSC algorithm introduced in
[11]. However, the global domination check in ARSC is less
strong because it cannot exploit the existence of the single
criterion shortest paths. Furthermore, the lower bounds are
less tight due to the use of a precomputed Reference Node
Embedding.

3.3 Special Case: Two Cost Criteria
Although we focus on the general multicriteria case, we

want to point out there exist two major optimizations for the
special case of two cost criteria. One pertains to the problem
of skyline merging, the other significantly limits the number
of nodes that have to be visited. Both optimizations stem
from the same quality of two-dimensional skylines: Sorting
cost vectors w.r.t. one criterion implies a sorting in reversed
order w.r.t. the other criterion.

This can be used to more efficiently maintain local sky-
lines in sorted lists [2]. As a result, the only paths potentially
dominating a path p are its two neighbors in the sorted sky-
line. Furthermore, the set of potentially dominated skyline
paths is also restricted to neighboring paths [18]. We em-
ploy this optimization for all compared algorithms in the
experiments using only two cost criteria.

The above also implies that the optimal path w.r.t. one
criterion (by definition part of the skyline) is the weakest
skyline path w.r.t. to the other criterion. Hence, if s1 is
the optimal path from s to t w.r.t. the first criterion, then
cost(s1)2 constitutes the upper bound for the second crite-
rion, and vice versa.

4

// step 1: initialisation

foreach outgoing edge (s,m) of s do

S(m)← S(m) ∪ path consisting of the edge (s,m)

open← open ∪ {m}

// step 2-4: main loop

while open 6= {} do

// step 2: node selection

n← argmino∈open
(
minp∈S(o)

∑d
i=1 cost(p)i+lb(o,t)i

)
open← open \ {n}

// step 3: mark globally dominated as processed

foreach unprocessed p ∈ S(n) do

if S(t) ≺dom max (lb(s, t), cost(p) + lb(n, t)) then

mark p as processed

// step 4: extend unprocessed paths in S(n)

A ← unprocessed paths in S(n)

foreach outgoing edge (n,m) of n do

B ← paths in A extended with (n,m)

S(m)← merged skyline of S(m) and B

if S(m) was modified then

open← open ∪ {m}

mark all paths in S(n) as processed

// step 5: termination

return S(t)

Algorithm 1: Pseudocode of a label-correcting search
for all nondominated paths from s to t.

This property can be used to restrict the search space of
lower bound computation of the MD approach for the two
criteria case and we will refer to this approach as Doubledi-
jkstra (DD) [12]. The optimization starts with a reverse
Dijkstra search for the shortest path from t to s w.r.t. the
first criterion. After this search reaches s, the search is done
w.r.t. the second criterion. Thus, we have upper bounds
for both criteria. Finally, the search for both criteria is con-
tinued until all nodes having one cost value being smaller
than the corresponding upper bound are found. Let us note
that this optimization is only applicable to the MD approach
and it is still significantly less efficient than our new method
ParetoPrep due to lower quality of the bounds.

4. LOWER BOUND COMPUTATION
In this section, we introduce our novel approach Pareto-

Prep which computes all required lower bounds for efficiently
computing the path skyline S(s, t). The idea of ParetoPrep
is to compute all single criterion shortest paths between s
and t within a single partial graph traversal. It will be shown
that there cannot be a nondominated path between s and t
containing any edge that is not visited during this traversal.
Thus, ParetoPrep visits all required nodes and edges for pro-
cessing a path skyline query. At the end of the section, we
will introduce bidirectional ParetoPrep which further limits
the nodes being visited.

s
0
0

4
4

5
5

3
1

5
4

8
4

3
12

2
1

5
2

3
11

12
3

1
1

3
3

2
2

n
()

()()
()

()
()

()

()
() () ()

()

()()

a
b c

t

d

m

Figure 1: Exemplary output of ParetoPrep given
a start node s and a target node t. The indicated
paths {s, a, b, c, t} and {s, a, d, t} are the shortest paths
for the first and second criterion. The vectors next
to each node are the computed lower bound costs lb
of reaching t from the respective nodes.

s

t

s

t

Doubledijkstra Bidirectional ParetoPrep

Figure 2: Comparison of visited nodes by Doubledi-
jkstra and Bidirectional ParetoPrep for a routing
task from Augsburg to Munich with dur/ener as cost
criteria.

4.1 ParetoPrep
The goal of a precomputation step such as ParetoPrep

or MD is to compute a lower bound for each cost criterion
and each node that is potentially visited when computing
the path skyline with a label correcting algorithm. The cost
of the shortest path w.r.t. each cost criterion represents
an optimal bound. The shortest paths are always part of
the route skyline and any additional path being part of the
skyline cannot have any cost value being smaller than the
shortest path w.r.t. the corresponding cost criterion. The
MD approach performs separate searches for each cost cri-
terion and visits the entire network for each criterion.

The idea of ParetoPrep is to avoid traversing the same
subpaths multiple times by computing the bounds in a single
traversal of the relevant portion of the graph. Furthermore,
ParetoPrep limits the search space due to the usage of a
global domination check.

In this subsection, we will describe ParetoPrep and the in-
formation it computes. In the next subsection, we will show
why this resulting information allows a fast computation of
the path skyline. We will start our discussion by giving an
overview of the used data structures. ParetoPrep maintains
a set of open nodes open and a set S of paths from s to t.

5

s
t

Figure 3: Comparison of visited nodes by Bidirec-
tional ParetoPrep (black subgraph) and Multidijk-
stra (complete graph in gray) for a routing task from
Augsburg (s) to Munich (t) with all 5 criteria.

s

t

s

t

without ParetoPrep with ParetoPrep

Figure 4: The comparison of label correcting search
areas for a routing task from Augsburg (s) to Mu-
nich (t) with two cost criteria shows that the la-
bel correcting search considers almost no dominated
paths when using the information provided by Pare-
toPrep.

Each visited node n has an entry consisting of two vectors
{lb(n, t), succi(n)}. The cost vectors lb(n, t) ∈ Rd+ are the
lower bound costs of all paths from n to t, through which n
was previously reached in ParetoPrep. Upon termination of
the algorithm n has been reached by all globally nondomi-
nated paths from n to t. The edges succi(n) ∈ Ed are the
first edges of the currently shortest path from n to t w.r.t.
criterion i. These successor edges are used to reconstruct the
shortest paths from s to t w.r.t. each of the cost criteria.

An entry of an unvisited node n is assumed to be lb(n, t)i =
∞, succi(n) = ∅. lb(t, t)i is the zero vector because the lower
bound costs of reaching t from t are zero.

The pseudocode of the algorithm is provided in Algo-
rithm 2. Let s be the start node, t the target node and
d the number of cost criteria.

The first step of the algorithm is the initialization. The
open set is created and the target node t is added to the open
set. The second step is node selection. In each iteration, an
open node n is selected and removed from the open set. To
reduce the number of nodes which have to be visited twice,
the nodes closest to t should be visited first. To achieve this,
each node is ranked by the linear sum over the cost vector
and the node with the smallest value is selected first.

// step 1: initialisation

S ← {}
open← {t}
// step 2-5: main loop

while open 6= {} do

// step 2: node selection

n← arg minq∈open
∑d
i=1 lb(q, t)i

open← open \ {n}
// step 3: global domination

if S ≺dom lb(n, t) then

skip step 4 and 5

// step 4: node expansion

foreach incoming edge (m,n) of n do

foreach criterion i do

if lb(n, t)i + cost(m,n)i < lb(m, t)i then

lb(m, t)i ← lb(n, t)i + cost(m,n)i
succi(m)← (m,n)
open← open ∪ {m}

// step 5: path construction

if lb(s, t) was modified in step 4 then
foreach modified component i of lb(s, t) do

p← reconstructpath(s, t, succi, i)
S ← S ∪ {p}
remove paths dominated by p from S

RETURN S AND lb

Algorithm 2: Pseudocode of ParetoPrep

The third step is a check whether the selected node n has
to be extended. In other words, we compare the current
lower bound lb(n, t) to the current set of shortest paths S
from s to t. If the vector lb(n, t) is globally dominated,
the node does not need to be extendend. This means, there
cannot be any path from s to t via n which is not dominated
by the already found shortest paths in S.

If lb(n, t) is not globally dominated, we perform step four
and five. The fourth step is the extension of the selected
node n. In this step, we consider the neighboring nodes
having a directed edge ending at n, i.e. the predecessors
of n. The cost of each predecessor node m for each cost
dimension i is set to the minumum of lb(m, t)i and lb(n, t)i+
cost(m,n)i. For each criterion i in which c(m)i is changed,
the i-th predecessor edge succi(m) is set to (m,n). If lb(m, t)
was changed and m is not the start node s, m is added to
the set of open nodes.

The fifth step is the construction of paths from s to t.
Let us note that S contains the set of shortest paths w.r.t.
each cost criterion and thus, S is a subset of the path sky-
line being computed in the following label correcting search.
This path construction step is only performed if at least one
component of the vector lb(s, t) was modified in the previous
step. For each modified cost criterion the currently short-
est path from s to t is constructed. These paths are con-

6

Data: s, t, succi, i
Result: Current shortest path from s to t for criterion i
m← s
p← new empty path
while m 6= t do

(m,n)← succi(m)
p← p extended with (m,n)
m← n

return p

Algorithm 3: Pseudocode of ParetoPrep’s path con-
struction routine

structed by following the respective successors succi, sim-
ilarly to how paths are reconstructed in Dijkstra’s search.
The pseudocode is provided in Algorithm 3.

If the open set is empty, the algorithm terminates. Upon
termination, S contains a shortest path from s to t for each
cost criterion. And for every node n which could be part of
a skyline path from s to t, lb(n, t) contains the lower bound
costs of reaching t.

Figure 4.1 illustrates an exemplary execution of the algo-
rithm for a simple search task.

4.2 Formal Aspects of ParetoPrep
To show that ParetoPrep is a correct preprocessing step

for computing path skylines, we will show that ParetoPrep
computes valid lower bounds for all nodes that have to be
visited during the search. Furthermore, we show that all
single criterion shortest paths between s and t are found. We
will start by introducing the relevant subgraph of G(V, E , C)
which is specific for a path skyline query between s and t.

Definition 5 (Solution Graph). Let ESOL(s, t) ⊆ E
denote the set of all edges contained in some p ∈ S(s, t).
Furthermore, let VSOL := {v ∈ V | v ∈ ESOL(s, t)} and
CSOL := C|ESOL(s,t). The Solution Graph is defined as
GSOL(s, t) := (VSOL, ESOL(s, t), CSOL).

There are two important properties of GSOL(s, t) making
it the central concept for examining the correctness of Pare-
toPrep:

• It is not necessary to visit any edge e 6∈ ESOL(s, t)
during the search.

• The cost vector of single criterion shortest paths in
GSOL(s, t) represent a viable lower bound for comput-
ing the path skyline.

The first property follows from the definition ofGSOL(s, t).
The second property is shown by the following lemma:

Lemma 3. Let p = ((s, n1), .., (m,n), .., (nl, t)) ∈ S(s, t)
be a nondominated path, let q = ((s, n1), .., (m,n)) be a sub-
path of p and let lb(n, t)SOL be the vector of the single cri-
terion shortest paths between n and t for each criterion in
GSOL(s, t). Then cost(q) + lb(n, t)SOL cannot be dominated
in S(s, t).

Proof. The single criterion shortest paths between n and
t in GSOL(s, t) lower bounds any path between n and t in
GSOL(s, t). p is nondominated and for all 1 ≤ i ≤ d:
cost(p)i ≤ lb(n, t)SOL + cost(q)i. Thus, cost(q) + lb(n, t)SOL

cannot be dominated in S(s, t).

()

After Iteration 1:
open = {t, n, m}

0+3
0+1

()0
0

()0+1
0+3 = lb(n)

lb(m) =

= lb(t)

m

n

ts

()1+1
1

()1
3

()1+2
3+1

= lb(n)

lb(m) =

lb(s) =

n

ts

()2
1

()1
1+1

()3
3

()3
4

= lb(n)

lb(m) =

lb(s) =

m

n

ts ()1
1

()1
3

()3
1

()2
1

()1
1

m

()0
0 = lb(t)

()0
0 = lb(t)

()2
1

()12 = lb(n)

lb(m) =
m

n

ts

After Iteration 4
open = {n}

()0
0 = lb(t)

()2
1

()1
1()3

2+1lb(s) =

After Iteration 2:
open = {n, m}

After Iteration 3:
open = {m, n}

Figure 5: Exemplary execution of ParetoPrep. The
selected node of the iteration is underlined. After
iteration 2 the path through [s, n1, t] with the costs
[3, 4] and after iteration 3 the path through [s, n1, n2, t]
with the costs [6, 3] is constructed. ParetoPrep ter-
minates after iteration 4.

We can now show two properties of ParetoPrep which
prove the correctness of our approach:

• ParetoPrep visits every edge in GSOL(s, t).

• For every node n ∈ GSOL(s, t) : lb(n, t)i ≤ cost(pi)i,
where pi is the shortest path in GSOL(s, t) w.r.t. cost
dimension i.

The first property implies that every necessary node or edge
is visited. The second property implies that the lower bounds
for the nodes relevant to the solution are correct. Note that
for any node n 6∈ GSOL(s, t) lb(n, t) does not have to be a
correct lower bound of the cost of paths between n and t.
An incorrect lower bound would imply larger values which
could lead to excluding n from the search. However, since
n 6∈ GSOL(s, t), it is not required to follow paths through n.
We will start by defining the graph ParetoPrep visits when
traversing G(V, E , C):

7

Definition 6 (ParetoPrep Graph). Let EPP(s, t) ⊆
E denote the set of all edges which are considered in Step 4
of Algorithm 2. Analogously, VPP denotes the set of vertices
of EPP(s, t) and CPP denotes the costs restricted to EPP(s, t).
Finally, we refer to GPP(s, t) := (VPP, EPP(s, t), CPP) as the
ParetoPrep Graph.

Now, the first property is formulated and shown by the
following lemma:

Lemma 4. Given a path skyline query from s to t in a
multicost network G(V, E , C), it holds: GSOL ⊆ GPP (for the
pair (s, t) which is omitted here for reasons of clarity).

Proof. It suffices to show that ESOL ⊆ EPP. Then the
claim follows by construction of the respective graphs. We
show the proposed by contradiction: Suppose, there exists
ESOL 3 (ni−1, ni) /∈ EPP. Let p = ((s, n1), . . . , (nk, t)) ∈ S
denote a skyline path which contains edge (ni−1, ni). Since
(ni−1, ni) /∈ EPP, the lower bound cost vector of some nj , j ≥ i,
must have been globally dominated (cf. Step 3 in Algorithm
2). Since lb(nj , t)i ≤ cost((nj , nj+1), . . . , (nk, t))i for all
cost dimensions i, the subpath from nj to t is also glob-
ally dominated. But the negation of Lemma 1 states: If a
subpath is dominated, so is the whole path. Hence, p must
be dominated which contradicts the assumption.

The second property we have to show is that the lower
bounds for any node n ∈ GSOL(s, t) are correct:

Lemma 5. Given a path skyline query from s to t and
its solution graph GSOL(s, t), let pi(n, t) denote the shortest
paths between node n ∈ GSOL(s, t) and t for cost criterion i
and let lb(n, t)i be the lower bound value being computed by
ParetoPrep for n and i. Then, lb(n, t)i ≤ cost(pi(n, t)).

Proof. Case (i): pi(n, t) = ((n, n1), ..(nl, t)) is the short-
est path w.r.t. criterion i in both graphs GSOL(s, t,) and
GPP(s, t). We now show that ParetoPrep traverses pi(n, t)
and thus, lb(n, t)i = cost(pi(n, t))i. This is proven by induc-
tion.
Basis: (nl, t) is traversed by ParetoPareto because any in-
coming node of t is examined. Inductive step: Given that
((nk, nk+1), .., (nl, t)) is traversed, then lb(nk, t)i is updated
and nk is inserted into the open set. Because ParetoPrep
does not terminate until the open set is empty, nk will be
processed at some iteration. Now, if lb(nk, t) is currently
globally nondominated in step 3, step 4 is performed and
(nk − 1, nk) is examined which means the claim is proven.
If lb(nk, t) is currently globally dominated in step 3, we have
to show that there has to be a later point in time where
nk is globally nondominated. Since nk ∈ GSOL(s, t,) and
GSOL(s, t) ⊆ GPP(s, t), we know that nk is guaranteed to be
nondominated at the end of ParetoPrep. Thus, there must
exist an iteration where nk passes step 3 for the first time
and step 4 is performed traversing the final edge (nk−1, nk).
Case (ii): pi(n, t) is the shortest path w.r.t. criterion i in
GSOLs, t but not w.r.t. GPP(s, t). In this case lb(n, t)i <
cost(pi(n, t))i holds because GSOL(s, t,) ⊆ GPP(s, t) and the
cost of any shortest path cannot be increased by extending
the graph.

After proving that ParetoPrep visits all relevant nodes
n ∈ GSOL(s, t) and computes valid lower bounds lb(n, t), we
show that all single criterion shortest paths between s and
t for the complete graph are computed.

t r

primary search graph secondary search graph

open node
closed node

open node
closed node

s

Montag, 25. November 13

Figure 6: Bidirectional ParetoPrep, when both its
ParetoPrep searches rendezvous at node r. To reach
s from outside the secondary search graph costs at
least as much as the minimum of all lbβ cost vectors
of the secondary search.

Corollary 6. Given a multicost network G(V, E , C) and
a path skyline query from s to t, it holds: For all cost dimen-
sions i lb(s, t)i is the cost value of the shortest path from s
to t (w.r.t. dimension i) in the original graph G(V, E , C).

Proof. The single criterion shortest paths between s and
t are part of S(s, t) and also shortest paths in the complete
graph G(V, E , C). Thus, case (i) of the previous lemma can
be applied.

Hence, ParetoPrep computes all single criterion shortest
paths between s and t (w.r.t. G(V, E , C)). Also, ParetoPrep
visits the subgraph that is relevant for answering a path
skyline query and therein computes valid and tight lower
bounds during one single traversal of GPP.

4.3 Bidirectional ParetoPrep
Now that we have introduced the basic version of our algo-

rithm and proven its theoretic foundation, we will introduce
an optimized version of ParetoPrep. The idea of this opti-
mization is the fact that the global domination check limit-
ing the search space can still be improved. This is achieved
by employing bidirectional search. In ParetoPrep we do not
extend a node n if lb(n, t) is dominated by some path in S.
Though this check is correct, it is not tight in most cases
because the cost of the path connecting s and n is disre-
garded. Thus, if we had a lower bound approximation for
the costs of getting from s to n lb(s, n), the check for global
domination in Step 3 of Algorithm 2 could be optimized by
checking if S ≺dom lb(n, t) + lb(s, n).

The idea of bidirectional ParetoPrep is to start two searches
simultaneously. A backward search starts at t and proceeds
in the same way as described above to derive lower bounds
between the visited nodes and the target t. Additionally,
a forward search starts at s and traverses the graph in the
forward direction in order to find lower bounds for the path
between s and intermediate nodes n.

At the beginning both searches take turns, i.e. iterations
are alternated. Once both searches meet at some rendezvous
node r, as shown in Figure 6, a path from s to t can be
constructed for each cost dimension i by merging the current
shortest paths from s to r and r to t. After that, only the
backward search is continued.

In the following, we will refer to paths ending at nodes in
the open set of the forward search as open paths. If t was
not reached by a nondominated path p from s to t, there

8

has to be an open path, which is contained in p. If there is
no such open path, ParetoPrep cannot reach s through p.

Let mincostforward be the minimum cost of all open paths
of the forward search. The cost vector mincostforward con-
sists of the lower bound costs of all globally nondominated
paths from s to any node which has not been visited by the
forward search. The minimum of all cost vectors of open
nodes yields the minimum cost of all open paths:

mincostβi = min
o∈openβ

lbβ(o)i

Let lb(s, n) denote the lower bound costs of all paths from
s to n contained in a nondominated path from s to t. If no
such costs are known, they have to be assumed as zero. If
n was not reached by the forward search, they can be set to
mincostβ :

lb(s, n)i ≥

{
0, if n not visited by β search

mincostβi , if n visited by β search

The cost vector mincostforward is computed once when
both searches rendezvous. The forward search is discontin-
ued after the rendezvous. The cost vectors lb(s, n) are then
used in the backward search to determine if a node was only
reached by globally dominated paths. If that is the case, the
node can be pruned.

In conclusion, this bidirectional ParetoPrep yields greater
pruning power and thus, it restricts the search space even
further.

5. EXPERIMENTS

Experimental Setup: The experiments we present in
this section aim to show three things. Firstly, any label
correcting search (LCS) for all skyline paths between des-
ignated start and target nodes in a network should utilize
global domination. Secondly, our proposed algorithms Pare-
toPrep (PP) and Bidirectional ParetoPrep (BPP) outper-
form the state of the art approaches Doubledijkstra (DD),
Multidijkstra (MD) and ARSC in terms of runtime as well
as memory usage.

The LCS we implemented as comparative method is ARSC
[11] (cf. Algorithm 1) but any other LCS yields similar
results. The Reference Node Embedding, a preprocessing
step which is presented in [11], is not used unless stated
otherwise. Any lower bound costs are either set to zero or
provided by a prior search like ParetoPrep. Note that any
preprocessing step which is not executed at query time (like
the Reference Node Embedding) cannot be applied to dy-
namic graphs. As mentioned before (cf. Section 3.3), for
the special case of two cost criteria an optimized variant of
ARSC is used which maintains skylines in sorted lists and
utilizes the sorting order when merging skylines [2, 20].

The experiments were conducted on the road network of
the German state of Bavaria, provided by OpenStreetMap
and consisting of 1 023 561 nodes and 2 418 437 edges. There
are two sets of routing tasks. The first set is comprised
of
(
27
2

)
· 2 = 702 routing tasks with Munich’s central sta-

tion, Munich’s airport and Munich’s 25 city districts as end
points. The second set is comprised of

(
10
2

)
· 2 = 90 routing

tasks between the ten biggest cities in Bavaria.
In the experiments three variables are measured: the num-

ber of visited nodes, the number of the assembled paths and

the runtime of the search task. The number of visited nodes
by DD / MD / PP / BPP corresponds to the number of node
entries and thereby reflects memory usage. The number of
assembled paths by the LCS is also strongly correlated with
memory usage since all paths not dominated by assembled
paths have to be stored. The runtime is measured by letting
all compared algorithms perform each task three times and
taking the average. If a run takes longer than five minutes,
it is aborted and counted as a time out. All experiments are
conducted on a machine with an Intel Xeon E5-2609 (10MB
Cache, 2.40 GHz, 1066 MHz FSB) and 32 GB RAM, running
SUSE Linux 3.20.1 and Java OpenJDK IcedTea 1.7.0 09.

The cost criteria utilized in the experiments are travel du-
ration (dur), route length (len), number of crossings (cros),
penalized travel duration (durp) and energy loss (ener). Cri-
terion (dur) assumes travel speeds to equal the speed limits
whereas the penalized estimate (durp) assumes additional
30 and 15 seconds for each crossing with and without traffic
lights, respectively.

The energy loss estimate (ener) is an synthetic model roughly
derived from typical battery capacities of electric cars and
their respective ranges. It incorporates altitude differences
in the following sense: ascent increases the energy consump-
tion by the gained potential energy and descent reduces the
energy consumption (while negative values are corrected to
zero). Let us stress that the authenticity of the cost mod-
els used has absolutely no influence on the computational
benefits of our algorithms.

millions of time
assembled average outs

algorithm paths runtime (>5min)

702 Munich tasks with dur/ener (avg: 11.15 paths)

LCS 0.29 (53.3×) 0.1s (54×) 0
LCSss 15.95 (1.0×) 5.44s (1×) 0

Table 1: Comparison of point-to-point LCS and
single-source LCSss

The Impact of Global Domination: Global domi-
nation pruning is indispensable for larger graphs and more
difficult tasks. In this experiment only a part of the graph of
Bavaria (around the city of Munich) with 221 465 nodes and
519 917 edges was used. This is because the single-source la-
bel correcting search (LCSss) has to compute the nondom-
inated paths from s to all other nodes in the graph which is
not feasible for the complete graph of Bavaria. Even though
restricting the graph assists the LCSss , it can be observed
that even in the smaller graph employing global domination
checks reduces the number of assembled paths by a factor
greater than 53 and leads to a reduction in runtime by the
factor 54 (cf. Table 1). It should be noted that this is with-
out utilizing lower bound costs which significantly improve
the pruning power of global domination checks even further.

Label Correcting Search and PP: Utilizing lower bounds
in global domination checks significantly reduces the number
of paths that have to be assembled. This improves runtime
and memory usage of the search. The runtime of Pareto-
Prep in these experiments is only 0.8s on average per query.

9

millions of time
assembled average outs

algorithm paths runtime (>5min)

90 Bavaria tasks with dur/ener (avg: 229.1 paths)

PP+LCS 5.2 (15.2×) 5.8s (6.9×) 0
REF49+LCS 20.7 (3.8×) 14.4s (2.8×) 0
REF16+LCS 22.4 (3.5×) 13.5s (2.9×) 0
REF4+LCS 26.9 (2.9×) 14.9s (2.7×) 0
REF1+LCS >48.1 (1.6×) >30.3s (1.3×) 2
LCS >79.6 (1.0×) >40.5s (1.0×) 3

702 Munich tasks with dur/ener/durp (avg: 125.9 paths)

PP+LCS 0.05 (38.2×) 1.4s (48.8×) 0
MD+LCS 0.05 (38.2×) 4.0s (17.3×) 0
REF49+LCS >0.44 (4.3×) >14.4s (4.7×) 10.3
REF16+LCS >0.46 (4.1×) >16.3s (4.3×) 15
LCS >1.93 (1.0×) >70.4s (1.0×) 102

Table 2: Comparison of runtime and number of
assembled paths of LCS on its own and preceded
by PP / MD or in combination with a Reference
Node Embedding with k evenly distributed land-
marks (REFk+LCS).

Munich routing tasks with dur/ener/durp

0 10 20 30 40 50 60 70

0
5

10
15

avg hops between end points

av
g

ru
nt

im
e

in
 s

ec
on

ds LC
MD + LC
PP + LC

Figure 7: Runtime comparison of LCS on its own
and preceded by MD and PP for 290 local tasks
with less than 70 hops between endpoints.

This is only a small portion of the overall query time but the
reduction of the label correcting runtime is about tenfold.

Preceding a LCS with PP and MD is crucial to solve more
difficult routing tasks in a manageable time frame. As can
be seen in Table 2 for 702 Munich tasks with dur/ener/durp,
a LCS on its own can solve less than one seventh of the
Munich tasks in less than five minutes whereas with PP or
MD all tasks are solved in less than two and a half minutes.
On average LCS is at least 17 times slower than MD+LCS
and at least 49 times slower than PP+LCS.

PP is clearly preferable to MD. As shown in Figure 7,
MD+LCS is often slower than LCS on its own. PP+LCS,
on the other hand, is always faster – on average 2.7 times
faster than MD+LCS.

Table 2 also shows that a LCS in combination with PP is
about twice as fast as with a Reference Node Embedding.
This result is very impressive since PP, unlike the Reference
Node Embedding, does not require any precomputation and
works instantly for any given graph. It is faster because
the information provided by PP is superior to that provided

by a Reference Node Embedding and thereby reduces the
number of assembled paths during the LCS. PP also does
not compute the minimum of lower bound vectors provided
by different reference nodes, which is why 49 reference nodes
lead to worse runtime results than 16 for two cost criteria
although the overall number of assembled paths is smaller.

% of graph’s nodes visited

cost criteria LCS DD/MD+LC PP+LC BPP+LC

90 Bavaria tasks

dur/len 37.7 % 58 % 44.9 % 30.8 %
dur/ener 39.2 % 39.2 % 44.7 % 32.8 %

702 Munich tasks

dur/ener/durp 2.57 % 100 % 3.87 % 2.1 %

Table 3: Comparison of visited nodes by an LCS on
its own and when preceded by DD / MD, PP or
BPP.

Preceding a LCS by BPP reduces the number of visited
nodes. As shown in Table 3, PP and DD visit more nodes
than an LCS whereas BPP visits less.

avg % of nodes visited (× less than DD)

DD PP BPP

702 Munich routing tasks

dur/len 3.6 (1.0×) 2.7 (1.3×) 1.6 (2.3×)
dur/ener 3.6 (1.0×) 2.8 (1.3×) 1.8 (2.0×)
dur/durp 5.4 (1.0×) 3.6 (1.5×) 1.7 (3.1×)
dur/cros 11 (1.0×) 4.5 (2.5×) 2.0 (5.6×)

90 Bavaria routing tasks

dur/len 58 (1.0×) 44 (1.3×) 30 (1.9×)
dur/ener 56 (1.0×) 44 (1.3×) 32 (1.7×)
dur/durp 45 (1.0×) 41 (1.1×) 26 (1.7×)
dur/cros 59 (1.0×) 46 (1.3×) 31 (1.9×)

Table 4: Search area comparison of previous ap-
proach DD and proposed approaches PP and BPP.

Comparison of PP with DD: This comparison is lim-
ited to two cost criteria because DD cannot handle more
than two cost criteria.

As can be seen in Table 4, PP and BPP visit less nodes
than DD. For the Munich tasks BPP visits from two up to
almost six times less nodes than DD and almost half as many
nodes for the Bavaria tasks. Since there is one node entry
for each visited node, BPP can be implemented noticeably
more memory efficient than DD.

PP also outperforms DD in terms of runtime, as can be
seen in Table 5. BPP is about twice as fast for the Munich
tasks and about 1.5 times faster for the Bavaria tasks.

Comparison of PP with MD: Table 6 shows that PP
and BPP visit only a small portion of the graph. This is ex-
tremly important if local searches in very large graphs have
to performed which is a common use case. Even when us-
ing five cost criteria, PP and BPP explore a fraction of the

10

avg runtime in ms (× faster than DD)

DD PP BPP

702 Munich routing tasks

dur/len 58 (1.0×) 43 (1.4×) 32 (1.8×)
dur/ener 53 (1.0×) 43 (1.2×) 36 (1.5×)
dur/durp 83 (1.0×) 55 (1.5×) 34 (2.4×)
dur/cros 145 (1.0×) 72 (2.0×) 41 (3.5×)

90 Bavaria routing tasks

dur/len 1118 (1.0×) 804 (1.4×) 726 (1.5×)
dur/ener 1119 (1.0×) 883 (1.3×) 816 (1.4×)
dur/durp 887 (1.0×) 717 (1.2×) 573 (1.5×)
dur/cros 1057 (1.0×) 945 (1.1×) 768 (1.4×)

Table 5: Runtime comparison of previous approach
DD and proposed approaches PP and BPP.

avg % of nodes visited (× less than MD)

MD PP BPP

702 Munich routing tasks

dur/ener/durp 100 (1.0×) 3.9 (25.8×) 2.2 (46.0×)
dur/len/cros 100 (1.0×) 4.8 (20.7×) 2.4 (41.9×)
dur/ener/cros 100 (1.0×) 4.8 (20.7×) 2.5 (39.9×)
all 5 criteria 100 (1.0×) 4.7 (21.5×) 2.4 (41.6×)

90 Bavaria routing tasks

dur/ener/durp 100 (1.0×) 47 (2.1×) 35 (2.8×)
dur/len/cros 100 (1.0×) 52 (1.9×) 38 (2.6×)
dur/ener/cros 100 (1.0×) 52 (1.9×) 39 (2.5×)
all 5 criteria 100 (1.0×) 52 (1.9×) 39 (2.5×)

Table 6: Search area comparison of previous ap-
proach MD and proposed approaches PP and BPP.

graph (cf. Figure 8). In contrast, MD always visits the com-
plete graph once for each cost criterion. Figure 3 illustrates
the visited area of the graph for one of these tasks and im-
plies that BPP would also work well on gigantic graphs, e.g.
consisting of all road networks in the world.

Table 7 shows that PP as well as BPP are much faster
than MD. This of course is due to the limited search space.
Using five criteria, BPP is 75.6 times faster than MD for the
Munich tasks and 3.5 times faster for the Bavaria tasks. As
can be seen in Figure 9 PP has the biggest runtime advan-
tage for local search tasks.

6. CONCLUSION
In this paper, we introduce a new efficient algorithm to

compute path skyline queries between two nodes in large
multicriteria networks. Our methods works with multiple
dimensions and are suitable for dynamic networks because
they do not require any precomputed information. The core
of the proposed is the algorithm ParetoPrep which efficiently
computes all single criterion shortest paths between the two
query nodes and additionally provides lower bound costs
for the subgraph being relevant to the query. The informa-
tion being computed by ParetoPrep can then be employed
by a label correcting search algorithm like ARSC in two
ways. First of all the set of single criterion shortest paths

100 200 300 400 500

0
20

40
60

80
10
0

hops

av
g

pe
rc

en
t

of
 la

be
lle

d
no

de
s

MD
PP
BPP

Figure 8: Percentage of visited nodes for different
number of hops using Munich and Bavaria Routing
tasks with all 5 criteria.

avg runtime in ms (× faster than MD)

MD PP BPP

702 Munich routing tasks

dur/ener/durp 3082 (1.0×) 88 (35.0×) 58 (52.4×)
dur/len/cros 3374 (1.0×) 94 (35.5×) 58 (57.7×)
dur/ener/cros 3204 (1.0×) 102 (31.2×) 65 (49.3×)
all 5 criteria 5323 (1.0×) 112 (47.1×) 70 (75.6×)

90 Bavaria routing tasks

dur/ener/durp 3345 (1.0×) 1272 (2.6×) 1163 (2.9×)
dur/len/cros 3299 (1.0×) 1561 (2.1×) 1301 (2.5×)
dur/ener/cros 3344 (1.0×) 1521 (2.2×) 1382 (2.4×)
all 5 criteria 5436 (1.0×) 1690 (3.2×) 1533 (3.5×)

Table 7: Runtime comparison of previous approach
MD and proposed approaches PP and BPP.

allows pruning by global domination from the start. Fur-
thermore, the computed lower bounds provide tight forward
estimations and thus, strongly help to reduce the number of
constructed paths. We show that the results of ParetoPrep
fulfill the formal requirements for this usage. Additionally,
we introduce an optimized version of ParetoPrep, Bidirec-
tional ParetoPrep that further limits the visited part of the
graph and hence, increases the runtime efficiency of path
skyline computation. In our experimental evaluation, we
show that global domination is a key technique to allow fast
path skyline computation. Furthermore, we demonstrate
that ParetoPrep considerably outperforms other methods
which compute lower bounds like Reference Node Embed-
ding and the state of the art multiple Dijkstra searches.

For future work, we investigate more complex versions
of multicost networks having uncertain and time-dependent
cost values. Furthermore, we will investigate the combina-
tion of ParetoPrep with hierarchical networks for long dis-
tance skyline computation.

7. REFERENCES
[1] S. Borzsonyi, D. Kossmann, and K. Stocker. The

skyline operator. In Proceedings of the 17th
International Conference on Data Engineering
(ICDE), Heidelberg, Germany, 2001.

[2] J. Brumbaugh-Smith and D. Shier. An empirical
investigation of some bicriterion shortest path

11

100 200 300 400 500
0

1
2

3
4

5

hops

ru
nt

im
e

in
 s

ec
s

MD
PP
BPP

Figure 9: Runtime for different number of hops us-
ing Munich and Bavaria Routing tasks with all 5 cri-

teria.

algorithms. European Journal of Operational Research,
43(2):216–224, 1989.

[3] K. Deng, Y. Zhou, and H. T. Shen. Multi-source
query processing in road networks. In Proceedings of
the 23th International Conference on Data
Engineering (ICDE), Istanbul, Turkey, 2007.

[4] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische mathematik, 1(1):269–271,
1959.

[5] M. Ehrgott and X. Gandibleux. A survey and
annotated bibliography of multiobjective
combinatorial optimization. OR-Spektrum,
22(4):425–460, 2000.

[6] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A* search meets graph theory.
Technical Report MSR-TR-2004-24, Microsoft
Research, 2004.

[7] P. Hansen. Bicriterion path problems. In Multiple
criteria decision making theory and application, pages
109–127. Springer, 1980.

[8] X. Huang and C. S. Jensen. In-route skyline querying
for location-based services. In In Proc. of the Int.
Workshop on Web and Wireless Geographical
Information Systems (W2GIS), Goyang, Korea, pages
120–135, 2004.

[9] S. M. Jang and J. S. Yoo. Processing continuous
skyline queries in road networks. In International
Symposium onComputer Science and its Applications
(CSA2008), 2008.

[10] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: an online algorithm for skyline queries. In
Proceedings of the 28th International Conference on
Very Large Data Bases (VLDB), Hong Kong, China,
2002.

[11] H. P. Kriegel, M. Renz, and M. Schubert. Route
skyline queries: a multi-preference path planning
approach. In Proceedings of the 26th International
Conference on Data Engineering (ICDE), Long Beach,
CA, pages 261–272, 2010.

[12] E. Machuca and L. Mandow. Multiobjective heuristic
search in road maps. Expert Syst. Appl.,
39(7):6435–6445, June 2012.

[13] E. Q. V. Martins. On a multicriteria shortest path
problem. European Journal of Operational Research,
16(2):236–245, 1984.

[14] M. Müller-Hannemann and K. Weihe. Pareto shortest
paths is often feasible in practice. In Algorithm
Engineering, pages 185–197. Springer, 2001.

[15] J. M. A. Pangilinan and G. JANSSENS. Evolutionary
algorithms for the multi-objective shortest path
problem. 2007.

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An
optimal and progressive algorithm for skyline queries.
In Proceedings of the ACM International Conference
on Management of Data (SIGMOD), San Diego, CA,
2003.

[17] A. Raith and M. Ehrgott. A comparison of solution
strategies for biobjective shortest path problems.
Computers & Operations Research, 36(4):1299–1331,
2009.

[18] M. Shekelyan, G. Jossé, M. Schubert, and H.-P.
Kriegel. Linear path skyline computation in bicriteria
networks. In Proceedings of the 19th International
Conference on Database Systems for Advanced
Applications (DASFAA), Bali, Indonesia, pages 0–16,
2014.

[19] A. J. Skriver. A classification of bicriterion shortest
path (bsp) algorithms. Asia Pacific Journal of
Operational Research, 17(2):199–212, 2000.

[20] A. J. Skriver and K. A. Andersen. A label correcting
approach for solving bicriterion shortest-path
problems. Computers & Operations Research,
27(6):507–524, 2000.

[21] B. S. Stewart and C. C. White III. Multiobjective a*.
Journal of the ACM (JACM), 38(4):775–814, 1991.

[22] K. L. Tan, P.-K. Eng, and B. C. Ooi. Efficient
progressive skyline computation. In Proceedings of the
27th International Conference on Very Large Data
Bases (VLDB), Roma, Italy, 2001.

[23] Z. Tarapata. Selected multicriteria shortest path
problems: An analysis of complexity, models and
adaptation of standard algorithms. Int. J. Appl. Math.
Comput. Sci., 17(2):269–287, June 2007.

[24] G. Tsaggouris and C. Zaroliagis. Multiobjective
optimization: Improved fptas for shortest paths and
non-linear objectives with applications. In Algorithms
and Computation, pages 389–398. Springer, 2006.

[25] C. Tung Tung and K. Lin Chew. A multicriteria
pareto-optimal path algorithm. European Journal of
Operational Research, 62(2):203–209, 1992.

[26] A. Warburton. Approximation of pareto optima in
multiple-objective, shortest-path problems. Operations
Research, 35(1):70–79, 1987.

[27] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and
S. Shang. Multi-cost optimal route planning under
time-varying uncertainty. In Proceedings of the 30th
International Conference on Data Engineering
(ICDE),Chicago,IL, USA, 2014.

12

