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Geo­Spatial Data
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• Huge flood of geo­spatial data
• Modern technology
• New user mentality

• Great research potential
• New applications
• Innovative research
• Economic Boost

• “$600 billion potential 
annual consumer surplus 
from using personal 
location data” [1]

[1] McKinsey Global Institute. Big data: The next frontier for
innovation, competition, and productivity. June 2011.



Spatio­Temporal Data
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• (object, location, time) triples

• Queries: 
• “Find friends that attended 

the same concert last 
saturday”

• Best case: Continuous function
݁݉݅ݐ → ݁ܿܽ݌ݏ

GPS log taken from a thirty minute drive through Seattle
Dataset provided by: P. Newson and J. Krumm. Hidden Markov Map Matching 
Through Noise and Sparseness. ACMGIS 2009.



Sources of Uncertainty
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• Missing Observations
• Missing GPS signal
• RFID sensors available in discrete locations only
• Wireless sensor nodes sending infrequently to preserve energy
• Infrequent check­ins of users of geo­social networks

Dataset provided by: E. Cho, S. A. Myers and J. Leskovek. Friendship and Mobility: User 
Movement in Location­Based Social Networks. SIGKDD 2011. 



Sources of Uncertainty
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• Uncertain Observations
• Imprecise sensor measurements (e.g. radio triangulation, Wi­Fi positioning)
• Inconsistent information (e.g. contradictive sensor data)
• Human errors (e.g. in crowd­sourcing applications)

 From database perspective, the position of a mobile object is uncertain

Dataset provided by: E. Cho, S. A. Myers and J. Leskovek. Friendship and Mobility: User 
Movement in Location­Based Social Networks. SIGKDD 2011. 



Traditional Solutions
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 Avoid uncertainty
 Store aggregated positions in the database

 Extrapolated positions
 Expected positions
 Most­likely positions

 Impossible to assess the confidence of results

10:05

10:06
10:07?



Research Challenge
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Include the uncertainty, which is inherent in spatial and spatio­temporal data, 
directly in the querying and mining process.
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Research Challenge
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Include the uncertainty, which is inherent in spatial and spatio­temporal data, 
directly in the querying and mining process.

Assess the reliability of similarity search and data mining results, 
enhancing the underlying decision­making process.

Improve the quality of modern location based applications and of research results 
in the field.



Uncertain Spatio­Temporal Data Model [1]
› Discretize Time and Space

› Model object movement as a Markov chain
– Weighted Random Walk

› Learn transition probabilities empirically

› Rejected possible worlds that do not match all observations

› Exact Probabilities can be computed for special queries [1]

› General Approach: Monte­Carlo­Sampling
– Draw a sufficiently high number of 

samples
– Approximate result probability = ratio 

of samples that satisfy the query and 
total number of drawn samples

› But how to draw samples efficiently 
such that they are conform with the 
observations?

› Solution: Adaption of transition matrices

[1] T. Emrich, H.­P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. Querying uncertain spatio­temporal data. 
In Proceedings of the 28th International Conference on Data Engineering (ICDE), Washington, DC, 2012.
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Probabilistic NN­Queries
› Extension of Nearest­Neighbor­Querys on (certain) 
trajectories to the uncertain case

› Certain Case:
– For a query trajectory q, and a time interval T, a 
∀­Nearest­Neighbor Query returns all objects having the smallest 
distance to q during the whole interval T.

– For a query trajectory q, and a time interval T, a 
∃­Nearest­Neighbor Query returns all objects having the smallest 
distance to q during any time in T.

› Uncertain Case:
– For an uncertain trajectory q, a probabilistic
∀ሺ∃ሻ­Nearest­Neighbor Query returns, for each object in the database, 
the probability to be a ∀ሺ∃ሻ­Nearest­Neighbor of q.

– Both variants are NP­hard to solve analytically. 
(Proofs given in the paper)
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Adding knowledge to the model: Bayesian Inference

• Using Bayesian inference, additional knowledge can be added to 
the model, such as discrete observations of an object.

• Use empirically learned transition probabilities as a­priori model
• Adapt this model to an a­posteriori given information about 

discrete observations of an object.
• Model adaption using a Forward­Backward approach

14
Observations



Adding knowledge to the model: Bayesian Inference
• The adapted a­posteriori model allows to effectively interpolate positions 

between discrete observations.
• Significant improvement to existing approaches.
• Good results even without having a trained a­priori model

A­posteriori Markov model
A­priori Markov model
A­posteriori Markov model without a­priori knowledge
Spatio­Temporal approximations (competitor approach)
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Summary & Other Contributions
• Theoretical Analysis: NP­hardness of NN­Queries using this model.

• Efficient Markov model adaption, given observations by Bayesian Inference
• Using the empirically learned Markov chain as prior
• Using a forward­backward approach to derive the posterior

• Efficient sampling approach using the posterior model
• Applicable for any query having a solution for the certain certain case!

• Index support for ∀ሺ∃ሻ­Nearest­Neighbor Queries
• Based on an existing index structure
• Algorithms for efficient query processing provided

• Strong Experimental Results
• Probabilistic Models can vastly reduce the expected prediction error
• Compared to

• Traditional approaches predicting a single location
• Existing approaches for uncertain spatio­temporal data
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Thank you for your attention
Questions?!


