Modelling and Querying

Uncertain Spatio- Temporal Data

Tobias Emrich

joint work with
Andreas Züfle, Matthias Renz, Johannes Niedermayer, Hans-Peter Kriegel, Nikos Mamoulis, Lei Chen

Overview

1. Uncertainty in Databases
2. Uncertain Spatio-Temporal Data
3. Modelling UST Data
4. Querying UST Data
5. Follow Up Works
6. Future Directions

1. Uncertainty in Databases

Motivation [1]

> Uncertainty is inherent in many datasets:

- Automated Extraction of Information from HTML (i.e. John works at Google vs. John works at Microsoft)
- Sensor Readings (i.e. RFID sensors tracking the position)
- Human Readings
 (i.e. the seen Bird was either a Raven (75\%) or a Crow (25\%))
- Data Integration/Entity Resolution (i.e. do „John Doe" and „J. Doe" refer to the same person?) - ...
, Two approaches to solve this
- Cleaning (e.g. get rid of uncertainty)
- Management (e.g. handle the uncertainty)

Example

> A spatial (discrete) uncertain Database may look like this

Example

> A spatial (discrete) uncertain Database may look like this

Example

>How many objects are in the query region?

Example

> Cleaning (take the most probable position)

Result $=1$

Example

, Cleaning (take the expected position)

Result $=4$

Example

, Managing considers all possible database instances (worlds)

, We get all possible results together with a probability
> But there is an exponential number of possible worlds!

Example

>New efficient techniques have to be developed

> Generating Functions [2] solve this problem efficiently
, $\left(0.9 x^{A}+0.1\right)\left(0.4 x^{B}+0.6\right)\left(0.45 x^{C}+0.5\right)\left(0.4 x^{\text {D }}+0.6\right)\left(0 x^{\text {E }}+1\right)=$ $0.0648 x^{4}+0.2736 x^{3}+0.3914 x^{2}+0.2022 x+0.018$

Goal of this research

, Jennifer Widom and others brought uncertainty in databases to the attention of the research community in ~2004
> Uncertainty has now been a hot topic for quite a while and many great ideas have been proposed to handle uncertainty efficiently(!)
> It's time to apply the lessons we learned to the area of spatio-temporal data where uncertainty was considered ~ 1998 by O. Wolfson, C. Jensen, D. Pfoser and others

2. Uncertain Spatio-Temporal Data

What is Uncertain in ST Data?

, Spatio-Temporal Data usually looks somehow like this

What is Uncertain in ST Data?

> But there are sources of uncertainty

 Triangulation

- Human errors e.g.

Uncertain observations

Solutions

> Missing Observations

- Bound the set of possible (location,time) pairs of an object between observations by using spatio-temporal approximations (diamonds)
- e.g. by modeling knowledge about maximum speed
- Allows to make statements like „its possible that o intersects some query window Q"
- But how likely is this event? "What is the probability of the object "traveling through Q?"

Solutions

, Imprecise Observations

- Model position of the object at each point of time either with a discrete or a probabilistic probability density function (pdf)
- Positions at each point of time are independent from the positions at previous points of time
- This yields wrong results according to PWS
- If e.g. an object can only move upwards (e.g. since it can go back on a highway) then the yellow path is not possible.
- Probability to intersect Q
, Independence: $1-(1-0.5)^{*}(1-0.3)=0.65$
, Dependent location: $=0.5$

time space $\sqrt{\square}$

2.1. Modelling Uncertain Spatio-Temporal Data

Stochastic Processes for UST [Questi1]

, Stochastic Processes are used to represent the evolution of some random value, or system, over time.
> A sound mathematical model which can be used to describe the uncertain location of an object over time.
> Many Stochastic Processes for different settings:

- Markov Chain
- Markov Process
- Poisson Process
- Wiener Process

A simple example

, Whenever the wooden board is hit, the ball stays or drops into one of the neighbour holes with certain probabilities.

> At the border of the wood board these probabilities are different

, This model is usually learned or given by experts

A simple example

> Initial Position
> After first hit

, After second hit
> After 40th hit

How can we model this?

> A Markov Chain is a "memoryless" Stochastic Process (the next state depends only on the current state)
, For our example we build the following transition Matrix M

How can we model this?

> First hit
, Second hit
> 40 ${ }^{\text {th }}$ hit
$\left(\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)^{*}$
M^{40}

$=\left(\begin{array}{llllll} & 0.8 & 0.12 & 0.12 & 0.12 & 0.12 \\ 0 & 0.12 & 0.12 & 0.12 & 0.08\end{array}\right)$

Fusion of Model and Reality

> Discretization of time and space

- We usually treat intersections as states and add additional states on long streets
- The time interval corresponding to a tick is $10-30 \mathrm{sec}$

> Estimation of model parameters
- Transition probabilities from one state to another are learned from historical data (very sparse matrix!!)
- Transition matrix can change over time and for different object groups

2.2. Querying Uncertain Spatio-Temporal

ST - Window Queries [ICDE12]

, Given the following state states and transition probabilities, what is the probability that the car is in s_{1} or s_{2} in the time interval $\mathrm{T}=[2,3]$?

Note: Again we have an exponential number of possible paths the car might take!

$$
M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

ST - Window Queries [ICDE12]

, Given the following state states and transition probabilities, what is the probability that the car is in s_{1} or s_{2} in the time interval $T=[2,3]$?

ST - Window Queries [ICDE12]

, Given the following state states and transition probabilities, what is the probability that the car is in s_{1} or s_{2} in the time interval $T=[2,3]$?

ST - Window Queries |ICDE12]

, Given the following state states and transition probabilities, what is the probability that the car is in s_{1} or s_{2} in the time interval $T=[2,3]$?

ST - Window Queries |ICDE12]

> Given the following state states and transition probabilities, what is the probability that the car is in s_{1} or s_{2} in the time interval $T=[2,3]$?

ST - Window Queries |ICDE12]

> Given the following state states and transition probabilities, what is the probability that the car is in s_{1} or s_{2} in the time interval $T=[2,3]$?

$$
M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

ST - Window Queries [icde12]

, Solution based on matrix multiplications introduces a new state for the winner trajectories and two matrices

$$
\begin{aligned}
M^{-} & =\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0.6 & 0 & 0.4 & 0 \\
0 & 0.8 & 0.2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
M^{+} & =\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0.2 & 0.8 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
{ }^{*} M^{-} \quad{ }^{*} M^{+} \quad{ }^{*} M^{+}
$$

Multiple Observations

, So far we had only one observation from which we could extrapolate

, This is not really of interest since cars do not move randomly
, With two observations we have to introduce more artificial states and
 adapt the techniques

Multiple Observations

$$
M=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0.6 & 0 & 0.4 \\
0 & 0.8 & 0.2
\end{array}\right)
$$

, We need to track where true hit worlds are located
$-2^{*}|S|$ classes of equivalent worlds

- One class S_{i}^{-}corresponding to worlds where o is located in state s_{i}, and o has not intersected the window
- One class S_{i}^{+}corresponding to worlds where o is located in state s_{i}, and o has not intersected the window

Multiple Observations

Bayes' Theorem

, Now what is the probability that the trajectory passes the query window given the fact that the object was seen in s_{3} ?
$\mathrm{S}_{1}{ }^{-}$
S_{2}^{-}
$\mathrm{S}_{3}{ }^{-}\left(\begin{array}{c}0 \\ 0.16 \\ \mathrm{~S}_{1}{ }^{+} \\ \mathrm{S}_{2}{ }^{+} \\ \mathrm{S}_{3}{ }^{+} \\ 0.04 \\ 0.48 \\ 0 \\ 0.32\end{array}\right)$,

$$
\begin{aligned}
& =\frac{P(\square \wedge)}{P(\wedge \wedge)+P(\wedge \wedge \square)}=\frac{0.32}{0.32+0.04}=0.89
\end{aligned}
$$

Experimental Results

> For 10,000 objects and 100,000 states on a single machine

(a) Synthetic data

(b) Munich dataset
, Can be distributed and parallelized!

Summary

, Pros

- Allows to answer queries according to possible worlds semantics
- Considers location dependencies over time
- Scales up very well since it is purely based on sparse matrix multiplications
- Natively extendable for uncertain observations
- Seems to work adequately on real-world data (more validation needed)
> Cons
- Discrete time and space
- Matching from time to tics might not be the perfect modelling

2.3. Follow-Up Works

Indexing UST Data [сікміг]

, With the current techniques we have to process each object in the database
> Index Structure based on R-Tree indexing the ST-Space
> The leafs contain the "intelligence" and enable probabilistic pruning (at max $\times \%$ of the possible trajectories of o may intersect Q)

KNN queries + Sampling on UST Data [pvLDB13]

, Not all queries can be solved as elegant as window queries
, Popular in uncertain databases: Monte-Carlo-Sampling

- Draw a sufficiently high number of samples
- Approximate result probability = ratio of samples that satisfy the query and total number of drawn samples
>But how to draw samples efficiently such that they are conform with the observations?
, Solution: Adaption of transition
 matrices

Other query predicates

, Similarity search on UST data [SISAP13]

- How similar are two uncertain trajectories?
- A probabilistic measure based on Longest Common Subsequence
> Reverse nearest neighbor queries [DASFAA14]
- Not really intended, but to clarify an ICDE '13 paper that picked um the model
- ...and Bali is nice ;-)

Demo [submitted to SIGMOD14]
, All code is available as C++ Code
> Together with a graphical user interface

Future Directions for the UST Project

, Other probabilistic spatio-temporal queries
> Integration of other kinds of observations
> Analysis of other stochastic processes
, Continuous space
, Continuous time
, Object dependence
> Learning of the parameters of stochastic processes
, Probabilistic Datamining on UST Data

Thanks for listening!

Does the Markov assumption hold in reality?

, Of course single cars do not follow the Markov Chain (random walk)
> However the Markov Model is just the apriori Model in
 which we infer the observations

800
600
400
200

+ A-posteriori Markov model
* A-priori Markov model
\times A-posteriori Markov model without a-priori knowledge
\square Spatio-Temporal approximations (competitor approach)

Related Work

> [QUeST11] T. Bernecker, L. Chen, T. Emrich, H.-P. Kriegel, N. Mamoulis, and A. Züfle. Managing Uncertain Spatio-Temporal Data. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Querying and Mining Uncertain Spatio-Temporal Data (QUeST), Chicago, Illinois, 2011.
, [ICDE12] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. Querying uncertain spatio-temporal data.
In Proceedings of the 28th International Conference on Data Engineering (ICDE), Washington, DC, 2012.
, [CIKM12] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. Indexing uncertain spatio-temporal data. In Proceedings of the 21th ACM International Conference on Information and Knowledge Management (CIKM), Maui, Hawaii, USA, 2012.
, [PVLDB13] Johannes Niedermayer, Andreas Züfle, Tobias Emrich, Matthias Renz, Nikos Mamoulis, Lei Chen, Hans-Peter Kriegel: Probabilistic Nearest Neighbor Queries on Uncertain Moving Object Trajectories. PVLDB 7(3): 205-216 (2013)
> Project Page: http://www.dbs.ifi.lmu.de/cms/Publications/UncertainSpatioTemporal

Related Work

> [1] http://infoblog.stanford.edu/2008/07/why-uncertainty-in-data-is-greatposted.html
, [2] Jian Li, Barna Saha, Amol Deshpande: A unified approach to ranking in probabilistic databases. VLDB J. 20(2): 249-275 (2011)

