
Threshold Similarity Queries in Large Time Series Databases

Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin, Matthias Renz
Institute for Computer Science, University of Munich

{assfalg,kriegel,kroegerp,kunath,pryakhin,renz}@dbs.ifi.lmu.de

Abstract

Similarity search in time series data is an active
area of research. In this paper, we introduce the novel
concept of threshold-similarity queries in time series
databases which report those time series exceeding a
user-defined query threshold at similar time frames
compared to the query time series. In addition, we
present a new data structure to support threshold simi-
larity queries efficiently. The performance of our solu-
tion is demonstrated by an extensive experimental eval-
uation.

1 Introduction

Similarity search in time series data has attracted
a lot of research work recently. In this paper, we in-
troduce a novel type of similarity queries on time se-
ries databases called threshold similarity queries. A
threshold similarity query is defined by a query time
series Q and a threshold τ . The database time series
as well as the query sequence Q are decomposed into
time intervals of subsequent elements where the values
are (strictly) above τ . Now, the threshold similarity
query returns those time series which have a similar
interval sequence of values above τ . Note, that the en-
tire set of absolute values are irrelevant for the query
as long as they exceed the threshold τ .

The novel concept of threshold similarity queries is
an important technique useful for many practical ap-
plication areas. In pharmaceutical industry it can help
to identify drugs that cause similar effects in the blood
values of a patient at the same time after the drug
application. Obviously, effects like a certain blood pa-
rameter exceeding a critical level τ are of particular
interest. For environment observation applications, a
topic of research is the detection of dependencies be-
tween different air pollution attributes, e.g. the detec-
tion of attributes which nearly simultaneously exceed
their legal threshold. Queries like ”return all ozone

time series which exceed the threshold τ1 = 50µg/m3

at a similar time as the temperature reaches the thresh-
old τ2 = 25◦C” require an efficient support of threshold
similarity queries. In molecular biology the analysis of
gene expression data is important to understand cellu-
lar mechanisms. Biologists search for genes that have
a similar up and down pattern of their expression level
over time because this indicates a functional relation-
ship among the particular genes. Since the absolute
up/down-value is irrelevant, this problem can be repre-
sented by a threshold similarity query with a threshold
of τ = 0.

In this paper, we make the following contributions.
We formalize the novel concept of threshold similar-
ity queries on time series databases. In addition, we
present a novel data representation of time series which
supports such threshold similarity queries efficiently.
Finally, we present an experimental evaluation that in-
cludes performance tests of our proposed algorithms
and shows that our new concept of threshold queries
can be successfully employed in several application
fields.

The remainder is organized as follows. We briefly
overview related work in Section 2. Section 3 formalizes
the concept of threshold similarity queries. In Section
4, we show how time series can be represented in or-
der to support threshold similarity queries efficiently.
The effectiveness and efficiency of our algorithm are
evaluated in Section 5. Section 6 concludes the paper.

2 Related Work

A lot of work on similarity search in time series
databases has been published recently. The proposed
methods mainly differ in the representation of the time
series, a survey is given in [3]. However, all proposed
approaches usually cannot be applied to our novel
problem of threshold similarity queries. For example,
techniques which are based on dimension reduction suf-
fer from the problem that temporal information is lost.
Usually, in a reduced feature space, the original inter-

1

Proc. 22nd IEEE Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006



time

timeseries A

Threshold-Crossing Time Intervals (tct )
time

A

Figure 1. Threshold-Crossing Time Intervals

vals indicating that the time series is above a given
threshold cannot be generated. Specialized distance
functions, e.g. dynamic time warping (DTW) [1] that
considers the absolute values of the time series rather
than the intervals of values above a given threshold are
also not applicable to threshold similarity queries. In
[4], a novel bit level approximation of time series for
similarity search is proposed. Each value of the time
series is approximated by a bit which is set to 1 if the
value is strictly above the mean value of the entire time
series, otherwise it is set to 0. A distance function is de-
fined on this bit level representation that lower bounds
the Euclidean distance and, by using a variant, lower
bounds DTW, too. However, since this representation
is restricted to a certain predetermined threshold, this
approach is also not applicable for threshold queries
where the threshold is not known until query time.

3 Threshold Similarity Queries on
Time Series

A time series X is a sequence of values xi ∈ R
(i = 1 . . . N) at different points ti ∈ T in time, where
T denotes the domain of time and ∀i ∈ {1, .., N − 1} :
ti < ti+1. Let us note that we assume that missing con-
tinuous values are linearly interpolated from discrete
measurements. Then, a threshold-crossing time inter-
val sequence of a time series X = 〈xi ∈ R : i = 1..N〉
w.r.t. a threshold τ ∈ R denoted by TCTτ (X) is the
smallest sequence TCTτ (X) = 〈(lj , uj) ∈ T × T : j ∈
{1, ..,M},M ≤ N〉 of time intervals, such that

∀t ∈ T : (∃j ∈ {1, ..,M} : lj < t < uj) ⇔ xt > τ.

An interval tctτ,j = (lj , uj) of TCTτ (X) is called
threshold-crossing time interval. This concept is vi-
sualized in Figure 1.

In the following, we consider time intervals as points
in a two dimensional space (time interval plane). This
plane is spanned by the starting times (first dimen-
sion) and the ending times (second dimension) of in-
tervals. Consequently a threshold-crossing time inter-
val sequence is represented by a set of 2-dimensional
points in the time interval plane.

We define two time intervals to be similar if they
have similar starting and ending points. In the time

interval plane this similarity inversely corresponds to
the Euclidean distance of the associated points. To
compute the similarity dTS(X, Y, τ) of two threshold-
crossing time interval sequences X and Y for a thresh-
old τ , we use the Sum of Minimum Distances (SMD)[2]
as it adequately reflects the notion of similarity be-
tween two point sets in the time interval plane.

Based on the similarity function defined on
threshold-crossing time interval sequences, we define
the Threshold Similarity Query as follows: For a given
parameter k, a query time series Q, and a threshold τ ,
the Threshold Similarity Query yields the k-Nearest-
Neighbors of Q with respect to the similarity of the cor-
responding threshold-crossing time interval sequences.
Note that we set k = 1 if not stated otherwise.

4 Efficient Management of Threshold-
Crossing Time Intervals

The simplest way to execute a threshold similar-
ity query is to sequentially read each time series X
from the database, to compute the threshold-crossing
time interval sequence TCTτ (X) and to compute the
threshold-similarity function dTS(X, Y, τ). Finally,
we report this time series which yield the smallest
dTS(X, Y, τ). However, if the time series database con-
tains a large number of objects and the time series are
reasonably large, then obviously this type of perform-
ing the query becomes unacceptably expensive.

The basic idea of our approach is to pre-compute the
TCTτ (X) for all threshold values for each time series
object X and store it on disk in such a way it can be
accessed efficiently. Due to this pre-computation we
do not need to access the complete time series data
at query time. Instead only partial information of the
time series objects is required to execute the query,
which saves a lot of I/O cost.

4.1 Trapezoid Decomposition of Time Series

The set of all time intervals which start and end at
the same time series segment can be described by a
single trapezoid whose left and right bounds are each
congruent with one single time series segment. Let
sl = ((tl1, xtl1), (tl2, xtl2)) denote the segment of the
left bound and sr = ((tr1, xtr1), (tr2, xtr2)) denote the
segment of the right bound. The top-bottom bounds
correspond to the two threshold-crossing time intervals
tctτtop and tctτbottom

whose threshold values are com-
puted as follows:

τtop = min(max(xtl1 , xtl2),max(xtr1 , xtr2))
τbottom = max(min(xtl1 , xtl2),min(xtr1 , xtr2))

2

Proc. 22nd IEEE Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006



time series (native space)
th

re
s
h
o
ld

time

decomposed time teries

Figure 2. Time Series Decomposition

For our decomposition algorithm we can use the follow-
ing property. Threshold-crossing time intervals always
start at increasing time series segments (positive seg-
ment slope) and end at decreasing time series segments
(negative segment slope). Obviously, all values of X
within the threshold-crossing time interval tctτ (X) are
greater than the corresponding threshold value τ . Let
us assume that the time series segment sl which lower-
bounds the time interval at time tl has a negative slope.
Then all xt on sl with t > tl are lower than τ which
contradicts the definition of threshold-crossing time in-
tervals. The property of the ending segment can be
made clear analogously.

Based on this observation, we developed an algo-
rithm for the decomposition of the time series into
corresponding trapezoids (cf. Figure 2) in linear time
w.r.t. the length of the time series.

4.2 Indexing Segments of the Parameter Space

The threshold similarity of time series is computed
in the time interval plane for a certain threshold. In
order to support threshold similarity queries for arbi-
trary thresholds, we transform the trapezoids into seg-
ments in a three-dimensional space which we call pa-
rameter space. This space is spanned by the time inter-
val plane and an additional dimension for the threshold
values. An example is depicted in Figure 3. We apply
the R*-tree for the efficient management of the three-
dimensional segments representing the time series ob-
jects in the parameter space. As the R*-tree index
can only manage rectangles, we represent the three-
dimensional segments by rectangles where the segments
correspond to one of the diagonals of the rectangles.

In fact, for all trapezoids which result from the time
series decomposition, the lower bound time interval
covers the upper bound time interval. Furthermore,
intervals which are covered by another interval are lo-
cated in the lower-right area of this interval represen-
tation in the time interval plane, as depicted in Figure
3. Consequently, the locations of the segments within
the rectangles in the parameter space are fixed. There-
fore, in the parameter space the bounds of the rectangle
which represents a segment suffice to uniquely identify

t1

t2

t2

t1

t
x

parameter space

start time

e
n
d
tim
e

th
re
s
h
o
ld

t1

t2

t1

t2

t
x t

x

native space

time

th
re
s
h
o
ld

tx.start(tx) = t1.start + (t2.start - t1.start) Ö (tx - t1) / (t2 - t1)

tx.end(tx) = t1.end + (t2.end – t1.end) Ö (tx - t1) / (t2 - t1)

sl = tx.start(tx)

su = tx.end(tx)

Figure 3. Interval Ranges in Parameter Space

the represented segment. Let ((xl, yl, zl), (xu, yu, zu))
be the coordinates of a rectangle in the parameter
space. Then the coordinates of the corresponding seg-
ment are ((xl, yu, zl), (xu, yl, zu)).

5 Experimental Evaluation

We compared the efficiency of our proposed ap-
proach (in the following denoted by ‘RPar’) for an-
swering threshold similarity queries using one of the
following techniques: The first competitor, denoted
by ‘SeqNat’, works with the native time series. At
query time the threshold-crossing time intervals (TCT)
are computed for the query threshold and afterwards
the distance between the query time series and each
database object can be derived. The second competi-
tor, denoted by ‘SeqPar’, works on the parameter space
rather than on the native data. It stores all TCTs with-
out using any index structures, i.e. a sequential scan
over the elements of the parameter space is performed
for query evaluation. All experiments were performed
on a workstation featuring a 1.8 GHz Opteron CPU
and 8GB RAM. We used a disk with a transfer rate of
100 MB/s, a seek time of 3 ms and a latency delay of
2 ms. Performance is presented in terms of the elapsed
time including I/O and CPU-time.

We used several synthetic datasets and two real-
world data sets for our evaluation. The real-world data
sets are derived from two different applications: the
analysis of environmental air pollution and gene ex-
pression data analysis. The data on environmental air
pollution is derived from the Bavarian State Office for
Environmental Protection, Augsburg, Germany 1 and
contains the daily measurements of 8 sensor stations
distributed in and around the city of Munich from the
year 2000 to 2004. Each time series represents the mea-
surement of one station at a given day containing 48
values for one of 10 different parameters such as tem-
perature, ozone concentration, etc. The data on gene
expression from [5] contains the expression level of ap-
proximately 6,000 genes measured at 24 different time
slots.

1www.bayern.de/lfu

3

Proc. 22nd IEEE Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006



0

50

100

150

200

250

300

350

0 200000 400000 600000

Number of Objects in Database

e
la

p
s

e
d

 t
im

e
 [

s
]

R-Par

Seq-Par

Seq-Nat

(a) Scalability w.r.t.
database size.

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

Length of Time Series in Database

e
la

p
s

e
d

 t
im

e
 [

s
]

R-Par

Seq-Par

Seq-Nat

(b) Scalability w.r.t. time
series length.

Figure 4. Performance Results

5.1 Performance Results

At first we performed threshold similarity queries
against databases of different sizes to measure the in-
fluence of the database size. The elements of the
databases are time series of fixed length l. To ob-
tain more reliable and significant results we used 5
randomly chosen query objects. Furthermore, these
query objects were used in conjunction with 5 different
thresholds. We obtained 25 different threshold simi-
larity queries. Figure 4(a) exhibits the performance
results for each database averaged over the 25 queries.
Second, we explored the impact of the length of the
query object and the time series in the database. We
randomly chose 5 query time series objects and com-
bined them with appropriate thresholds. This yielded
25 threshold similarity queries that were executed on
the databases containing time series of different length.
The results are shown in Figure 4(b). In both exper-
iments our technique outperforms the competing ap-
proaches whose cost increase very fast due to the ex-
pensive distance computations. The results show that
our approach scales very well even for large databases
and is hardly influenced by the size of the time series
objects.

5.2 Results on Real-World Datasets

We performed 10-nearest neighbor threshold queries
with randomly chosen query objects on the air pollu-
tion dataset. Interestingly, when we choose time se-
ries as query objects, that were derived from rural sen-
sor stations representing particulate matter parameters
(M10), we obtained only time series also measured at
rural stations. This confirms that our novel query type
is able to detect the differences between rural and ur-
ban pollution measurements.
The results on the gene expression dataset were also
very interesting. The task was to find the most similar

gene w.r.t. τ = 0 to a given query gene. We posed
several randomized queries to this dataset with τ = 0
and evaluated the results w.r.t. biological interesting-
ness using the SGD database 2. Indeed, we retrieved
functionally related genes for most of the query genes.
For example, for query gene CDC25 we obtained the
gene CIK3. Both genes play a role during the mitotic
cell cycle.

To sum up, the results on the real-world datasets
suggest the practical relevance of threshold queries for
important real-world applications.

6 Conclusions

In this paper, we proposed a novel type of query
on time series databases called threshold similarity
query. Given a query object Q and a threshold τ , a
threshold similarity query returns those time series in
the database that exhibit the most similar threshold-
crossing time interval sequence. The threshold-crossing
time interval sequence of a time series represents the
interval sequence of elements that have a value above
the threshold τ . We presented a novel approach for
managing time series data to efficiently support such
threshold similarity queries. Our experimental evalu-
ation demonstrates the importance of the new query
type and shows the scalability of our proposed ap-
proach.

References

[1] D. Berndt and J. Clifford. ”Using dynamic time warp-
ing to find patterns in time series”. In AAAI-94 Work-
shop on Knowledge Discovery in Databases, 1994.

[2] T. Eiter and H. Mannila. ”Distance Measure for Point
Sets and Their Computation”. In Acta Informatica, 34,
pages 103–133, 1997.

[3] E. Keogh, K. Chakrabati, S. Mehrotra, and M. Paz-
zani. ”Locally Adaptive Dimensionality Reduction for
Indexing Large Time Series Databases”. In Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIG-
MOD’01), Santa Barbara, CA, 2001.

[4] C. A. Ratanamahatana, E. Keogh, A. J. Bagnall, and
S. Lonardi. ”A Novel Bit Level Time Series Representa-
tion with Implication for Similarity Search and Cluster-
ing”. In Proc. 9th Pacific-Asian Int. Conf. on Knowl-
edge Discovery and Data Mining (PAKDD’05), Hanoi,
Vietnam, 2005.

[5] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. An-
ders, M. Eisen, P. Brown, D. Botstein, and B. Futcher.
”Comprehensive Identification of Cell Cycle-Regulated
Genes of the Yeast Saccharomyces Cerevisiae by Mi-
croarray Hybridization.”. Molecular Biolology of the
Cell, 9:3273–3297, 1998.

2http://www.yeastgenome.org/

4

Proc. 22nd IEEE Int. Conf. on Data Engineering (ICDE'06), Atlanta, GA, 2006


	1 Introduction
	2 Related Work
	3 Threshold Similarity Queries on Time Series
	4 Efficient Management of Threshold-Crossing Time Intervals
	4.1 Trapezoid Decomposition of Time Series
	4.2 Indexing Segments of the Parameter Space

	5 Experimental Evaluation
	5.1 Performance Results
	5.2 Results on Real-World Datasets

	6 Conclusions

