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Abstract. Data measured in wireless sensor networks are inherently imprecise,
due to a number of reasons, and aggregate queries are often used to analyze the
collected data in order to alleviate the impact of such imprecision. In this paper
we will deal with the imprecision in the measured values explicitly by employing
a probabilistic approach and we focus on one particular type of aggregate query,
namely the SUM query. We consider that sensors in the network may, operate
(all collectively at the same time) in two different modes: (1) returning a finite
set of discrete values with a probability attached to each value, or (2) a continu-
ous probabilistic density function over a possibly infinite set of possible values.
Our foremost concern is to present the first algorithms to efficiently compute the
probabilistic SUM according to the possible world semantics, i.e., without any
loss of information. Furthermore, we show how this query can be efficiently up-
dated in dynamic environments where sensor values change often and we show
techniques to distribute computation over all network nodes. Our experimental
results show that processing queries in-network and incrementally as opposed to
collecting the measured values from all nodes at the base station and computing
the answer centrally, can reduce the total number of messages sent by at least
50%, thus saving energy and extending the network’s lifetime, a chief concern
regarding wireless sensor networks.

1 Introduction

Recent advances in sensors and wireless communication technologies have enabled the
development of small and relatively inexpensive multi-functional wireless sensors. This
has lead to the concept of a wireless sensor network (WSN), i.e. a set of spatially
distributed autonomous sensors that cooperatively monitor physical or environmental
conditions in an area of interest [31], [2]. The communication between the sensors is
specified by a network graph where the nodes correspond to the sensor nodes and the
edges between two nodes correspond to the ability that the two sensors can communi-
cate with each other wirelessly. The elements of a single sensor node are one (or more)
sensor devices, a microprocessor, a small amount of memory, a radio transceiver and a
battery [27]. The ability of sensing, processing, and transferring information leverages
the idea of sensor networks based on the collaborative effort of a large number of nodes.
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The above mentioned features ensure a wide range of scientific and industrial applica-
tions for sensor networks, e.g. environmental observation and many other applications
in the areas health, military and security [32].

This paper addresses efficient processing of SUM queries in such WSNs. SUM
queries are very useful for many applications, for example, if we want to observe the
overall amount of traffic in a road network in order to predict potential traffic jams
or areas where the risk that an accident will happen due to large volume of incoming
traffic is higher. Another example is to estimate the water level of a river by aggregating
over all potential inflows observed by a sensor network which is very important to
predict or avoid flooding. However, there are a number of challenges sensor network
applications have to cope with, including the large number of sensor nodes used in
typical sensor networks and the fact that they are prone to failures, as well as limited in
power, computational capacities, and memory. Specifically, in this paper we assume that
measurements taken by the sensors are imprecise, due to fluctuations in the environment
itself or due to hardware limitations [13]. Uncertainty is an inherent problem in sensor
networks and may have many reasons, such as:

Device driven uncertainty: Sensors are inherently imprecise, and their precision may
be given by the manufacturer. For instance, the precision of tracking devices such
as GPS is well documented (e.g. [22]) to be approximately bivariate normal dis-
tributed. Manufacturers usually specify the deviation of their devices.

Model driven uncertainty: Imprecision may additionally be imposed if we are not able
to make observations by directly measuring the respective value and we are forced
to make indirect observations (estimations) based on a given model. For example, in
order to measure the total inflow to an underground body of water, parameters like
precipitation, evaporation, soil moisture, soil temperature and other environmental
variables can be measured, and a geological model can be used to estimate the
inflow to a river [8]. The result of such geological models are often given a PDFs
due to their high uncertainty ( [8]).

Measurement driven uncertainty: Further imprecision arises due to obsoleteness of
sensor readings. To preserve energy, new information may only be updated in reg-
ular intervals or a sensor node may have died completely. In either case, the current
value of the measured parameter has to be estimated stochastically, usually using
a model based on empirical data and the last sensor reading. The age of the most
recent known sensor reading adds further uncertainty.

In essence, sensor networks are mostly unable to capture exact parameter values
and do produce data with some error (or noise). Albeit impossible to derive the exact
values from inexact observations, we are often able to make some estimation about the
error given in the measurements. Here we assume that we know the probability distribu-
tion of the measurements of an observed event. The incorporation of such probabilistic
information enables us to achieve more reliable results in data analysis and query pro-
cessing. Therefore, we need methods that enable us to effectively and efficiently handle
as sensor that deliver probability distributions instead of certain values.

Our main goal is to show how to efficiently perform SUM queries on uncertain
sensor data while focusing on providing reliable results. We concentrate on the concept
of probabilistic query processing, specifically efficient processing of probabilistic SUM
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queries in WSNs capturing uncertain data. Thereby we assume that the sensor values
captured by the sensors are given as probability distributions. The problem to be solved
is to answer probabilistic sum queries such as “Report the probability that the sum of
sensor values exceeds a given threshold τ“

Table 1. Example of probabilistic sensor readings.

Sensor-ID Set of (Value,Probability) pairs
s1 {(12, 0.3), (13, 0.6), (14, 0.1)}
s2 {(7, 0.7), (8, 0.3)}
s3 {(18, 0.1), (19, 0.3), (20, 0.4), (21, 0.2)}

Table 1 shows a sample scenario for the discrete case of the SUM query . Let
S = {s1, s2, s3} be a WSN with three sensors monitoring three roads leading to a
single highway. The task of these sensors is to predict possible traffic jams depending
on whether the sum of the (probable) values reported by these nodes exceeds a given
threshold. For example s1 may use an inductor coil under the asphalt, s2 uses visual
(camera) data, and s3 uses GPS data.

Table 2. Example of probabilistic sensor readings.

Sensor-ID Set of (Probability,Value Range)
s1 {(0.5, [0, 0]), (0.3, [0, 10]), (0.2, [10, 20])}
s2 {(0.2, [0, 20]), (0.4, [20, 30], 0.3, [30, 40], (0.1, [40, 60])}
s3 {(0.5[0, 0]), (0.3, [10, 20]), (0.1, [20, 50]),(0.1[50,100])}

Another example, related to probabilistic continuous values, is shown in Table 2.
Continuity is not possible to measure directly, and thus we use ranges to model it.
Analogously to our first example let us assume the sensors s1, s2 and s3 are installed
on the tributaries of a river and measure the water level due to rainfall. Each sensor
reading contains a set of value ranges, each associated with respective probabilities. A
possible query is such a scenario is: “What is the probability that the water level rises
above some critical level?”.

The main contributions of this paper are the following:

– First, we are able to compute the sum query on uncertain data according to the
possible worlds semantics under the assumption of discrete data distributions.

– In the case of continuous distributed data or that an extreme amount of possible
results occur we propose a new algorithm on interval based approximations.

– We adapt these algorithms to a WSN environment and propose an incremental in-
network algorithm that minimizes communication costs at query processing time.

– Last but not least all these algorithms are evaluated experimentally.

The remainder of this paper is organized as follows. In Section 2 we briefly dis-
cuss related work. A formal description of our background theories and the problem
definition is given in Section 3. In Section 4 we present two solutions for solving the
probabilistic sum query. After that we refine these solutions in adding energy efficiency
in Section 6 to make our work valuable for WSNs and add the incremental approach
described in Section 6. We experimentally evaluate the efficiency of the proposed ap-
proaches in Section 7 and conclude the paper in Section 8.
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2 Related Work

2.1 Uncertain Data and Aggregation Query Processing

Uncertainty in databases is a relatively new field that has received a lot of attention in
the past few years. The main challenges here are data representation [1, 4, 7, 24] and
efficient query processing [18, 30].

There are only few works on uncertain data in the context of aggregation in sensor
networks. Approximate count query processing strategies for sensor networks, aim-
ing at producing accurate results with low communication and computation overhead,
have been proposed in [9]. In this work the source of uncertainty arises from the net-
work connection between the sensors. Specifically the work assumes node and link fail-
ures in the network. Recently, an approach for probabilistic count queries in WSNs has
been proposed in [12]. Differently from previous works the source of error is assumed
to be the sensor measurement itself. Thus, a sensor returns a reading along with the
probability that that reading reflects the actual value3. Aggregation queries in the con-
text of uncertain and probabilistic databases have been extensively studied recently,
e.g., [5,6,15,16,23,25]. Murthy et al. proposed in [23] an approach for aggregation in
uncertain and probabilistic databases, in particular for the Trio system [34]. In order
to avoid exponentially-sized results usually produced by probabilistic aggregation (e.g.
SUM and AVERAGE) they provide methods for computing bounds of the aggrega-
tion value and the expected value. The approach proposed by Ross et.al [25] addresses
COUNT query processing in probabilistic databases. Further approaches for the com-
putation of expected aggregates are proposed in [5, 15, 16]. Approximate solutions for
query processing on uncertain data based on Monte Carlo sampling is proposed in [14].

2.2 Wireless Sensor Networks

WSNs have been investigated from a variety of angles in recent years, from the develop-
ment of new energy-efficient devices to the development of new networking protocols.
Considering the context of this paper, we focus on work related to query processing
within WSNs. If one wants to collect, at the base station, all the actual data from all
nodes in a WSN, there is not much alternative to transporting the raw data, hop-by-hop,
to the base station. This is energy-wise very expensive. Fortunately, in many applica-
tions one is interested in aggregated data, , e.g., what is the average temperature over a
given area, what is the maximum (or minimum) pressure exercised on a bridge or what
are the top-k more polluted spots in a city. For each one of those types of queries several
efficient algorithms have been proposed, and a variety of techniques have been utilized,
e.g., based pruning techniques to avoid unnecessary updates [21, 29] or model-based
optimization techniques [11,28]. Nonetheless, most approaches are in some way based
on the concept of in-network query processing proposed initially in [20].

Interestingly, not much work has been done regarding the uncertainty aspect of data
when processing queries in WSNs. Some efforts have addressed top-k queries, e.g.,

3 In this paper we extend this assumption to allow to sensor readings to be a set of possible
values each associated with a probability
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[33] and [35] but not as much for other types of aggregations. In [12] we investigated
probabilistic count queries, where the task is to find the probability that a given number
of sensors satisfy a query. Note that in that case a sensor either satisfies a query with a
given probability or does not with a complementary probability, i.e., there is only one
value and one probability involved. It turns out that even though COUNT queries are a
special case of the SUM queries we study in this paper, the techniques presented in [12]
are not well suited for the latter. In the (probabilistic) SUM queries we consider, each
sensor can generate an arbitrary non-binary set of value- or range-probability pairs. In
what follows we discuss in detail the probabilistic SUM queries as well as the solutions
we propose to process the same in a WSN setting.

3 Problem Definition

We consider a wireless sensor network WSN, consisting of a set S = {s1, s2, . . . , sn}
of n sensors, each yielding a value at a given point of time t. We assume that the network
topology is fixed (i.e. does not change over time) and is a shortest path tree with one
single sink node (the tree’s root). Instead of a deterministic value, a sensor value of
a sensor si is a random variable, specified by a probabilistic density function (PDF)
denoted as pdf(si). The function pdf(si) : V (si) → (0, 1] maps the domain V (si)
of si, i.e. each possible parameter value of si, to a non-zero probability value. The
measured sensor value si, and thus the respective PDF can be discrete (e.g., the number
of occurrences of some event, the number of vehicles) or continuous (e.g., temperature,
water flow). A sensor si producing such probabilistic values, i.e. values given by a PDF,
is called a probabilistic sensor.

Even though sensor values are typically spatially correlated, our proposed meth-
ods do not rely on such assumption. However, it is important to note that we assume
that the measurement errors of different sensors are mutually independent, even if the
underlying observed events are mutually dependent. Consequently, the sensor value
distributions of two different sensors are assumed to be independent.

Furthermore, we note that sensors that measure deterministic values in a traditional
sense can be considered as a special case of probabilistic sensors, given by a single
discrete value associated with a probability of one. Previous work on uncertain wireless
sensor networks [12] assumes that each sensor s measures a single value v associated
with a single (existential) probability p. Again, such sensors are a special case of prob-
abilistic sensors as defined above, where the PDF (s) maps the value v to probability
p, and maps the value 0 to probability 1 − p. Note that in the context of SUM queries,
if a sensor s reports the value 0, this is equivalent to the case that the sensor s does not
exist in the network or does not report any value.

3.1 Probabilistic Query and Possible Worlds Semantic

Based on the above probabilistic sensor model, queries are issued in a probabilistic way
by applying the possible worlds semantic model. This model was originally proposed
by Kripke [17] for modal logics and is commonly used for representing knowledge with
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uncertainties. However, there have been different adaptations of the model for proba-
bilistic databases, e.g., [3], [10], [26]. We use the model as proposed in [26], specifi-
cally, a possible worldw is a setw = {sw1 , . . . , swn } of instances of sensor values, where
each sensor s ∈ S is assigned to a (certain) value v ∈ V (si). The probability P (w) de-
notes the probability that the world w is true, i.e., that the instances in w coexist in the
sensor network. The set of all possible worlds is denoted byW = {wi, . . . , w|W|}.

Queries like the SUM query require one to deal with distributions of potential an-
swers. In general, the possible worlds model is the foundation of the concept of proba-
bilistic query processing. From an abstract point of view, the possible worlds are used
to generate possible answers to a given query predicate and the probabilities associated
with the possible worlds can be used to assign probabilities to the answers.

3.2 Probabilistic Sum Queries

We consider a wireless sensor network WSN consisting of a set of probabilistic sensors
S and a probability threshold τ . A probabilistic SUM query computes the probability,
that the random variable corresponding to the sum of all sensor values in the WSN is at
least τ .

Definition 1. A probabilistic sum query (PSQ) is defined as:

PSQ(WSN, τ) =
∑

w∈W,sum(Sw)≥τ

P (w), (1)

whereW denotes the set of possible worlds and sum(Sw) denotes the sum of all sensor
(value) instances s ∈ S in world w, as defined by

sum(Sw) =
∑
si∈S

swi .

In accordance to the above definition, we can answer probabilistic sum queries by
materializing all possible worlds with the corresponding probabilities and accumulate
the probabilities of all worlds w where the sum of sensor instances in w exceeds τ .
However, since the number of possible worlds is exponential in the number of proba-
bilistic sensors, this naive method is not practical. In the following, we will show how
to efficiently compute a probabilistic sum query in sensor networks. We consider effi-
cient solutions for the case of discrete, and the case of continuous data distributions. In
addition to solutions focusing on reducing the computational overhead of probabilistic
sum queries, we show how to reduce the communication overhead, in terms of number
of messages, in the sensor network.

4 Probabilistic Sum Queries in Probabilistic Wireless Sensor
Networks

We consider two scenarios regarding sensors’ operation mode. In the first one, we con-
sider probabilistic sensors with discrete distributions, while the second approach ex-
tends the techniques of the first approach in order to cope with continuous distributions
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that are approximated by value ranges. Table 3 summarizes the notation used through-
out the paper.

Table 3. Summary of the notation used throughout the paper.

S = {s1, . . . , s|S|} set of all sensors
Sn ⊂ S subset of size n of sensors in S

W = {w1, . . . w|W|} set of possible worlds
P (w) probability of world w
sw

i value of si in world w
pdf(vj

i ) probability value that si = j

ub(vj
i ), lb(v

j
i ) upper and lower bound of value interval j of sensor si

w = {sw
1 , . . . , s

w
|S|} set of values of all sensors in world w

Sw
n set of values of sensors in Sn in world w

sum(S) random variable corresponding to the sum of sensors s ∈ S
GF (S) generating function representing sum(S)

4.1 Probabilistic Sensors with Discrete Distributions

In the discrete case, the distribution (pdf ) of the values of a sensor s corresponds to a
set of possible values Vi = {v1

i , . . . v
|V i|
i }, each associated with a non-zero probability.

As we have seen in the previous section, a probabilistic sum query can be answered in
O(2|S|) time. The reason for this exponential run-time, is the fact that the number of
possible worlds is exponential, and all possible worlds contribute to the result.

In order to reduce such time cost, we need to identify classes of possible worlds that
we can treat as equal, i.e. possible worlds having the same sum, and then consider this
(smaller) set of equivalent classes of worlds. We propose a technique, that is based on
the probabilistic sum of n sensors Sn ⊂ S iteratively computes the probabilistic sum
of subset Sn+1 = Sn ∪ s ∈ S \ Sn. Since the set S has no particular order, we assume
without loss of generality that s = sn+1. In each iteration, worlds of sensors in Sn are
grouped into a (smaller) set of equivalent classes. Only equivalent classes are used in
the subsequent iteration.

For this approach, we require the following observation.

Lemma 1. Let Sn ⊂ S and let Wn
k = {w ∈ W|

∑
s∈Sn

sw = k}, then

∀w1, w2 ∈Wn
k , j : P (

∑
s∈Sn+1

s = j|sw1
1 , ..., sw1

n ) = P (
∑

s∈Sn+1

s = j|sw2
1 , ..., sw2

n )

where P (
∑
s∈Sn+1

s = j|swi1 , ..., s
w
in

) denotes the probability that the sum of all sensors
in s ∈ Sn+1 equals j, assuming that the sensor values of the sensors s ∈ Sn are given
by world w.
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Proof. Letw ∈Wn
k , and let the value of sensor sn+1 in worldw be swn+1. By exploiting

that the sum of sensors in Sn is k, we can rewrite P (
∑
s∈Sn+1

s = j|swi1 , ..., s
w
in

) as the
probability that sensor sn+1 has the value k − j:

P (
∑

s∈Sn+1

s = j|sw1 , ..., swn ) = P (sn+1 = j − k|sw1 , ..., swn )

exploiting independence between all sensors, this can be rewritten as

P (sn+1 = j − k)

which is independent of w.

Lemma 1 allows us, to treat all worlds in Wn
k as one single world with probability∑

w∈Wn
k
P (w). The reason is that due to independence of sensor errors, sensor sn+1 is

not affected by the fact of how k is distributed among sensors in Sn. Furthermore, we
can use the following Lemma to prune possible worlds from computation.

Lemma 2. Let PSQ(WSN, τ) be a probabilistic sum query on a probabilistic WSN
having nodes S. For any Sn ⊂ S, it is sufficient to only consider worlds where the sum
of sensor values in Sn is less than τ .

Proof. Equation 10 can be rewritten as

PSQ(WSN, τ) =
∑

w∈W,
∑

s∈S
sw≥τ

P (w) =

1−
∑

w∈W,
∑

s∈S
sw<τ

P (w)

Assume a possible world w where the sum of sensor values in Sn is at least τ . Since the
values of sensors in S \Sn in each world w must return non-negative values, we obtain
τ ≤

∑
s∈Sn

sw ≤
∑
s∈S s

w, and thus, w is not considered in the rewritten equation
above.

Lemma 2 allows us to discard, for each intermediate set of sensors Sn, any world
in which the sum of sensor values in Sn already returns a value greater than k. Then,
PSQ(WSN, τ) can still be computed as one minus the probability of the remaining
worlds.

Assume that the values of each sensor node si ∈ S is given by a finite set of values
Vi = {v1

i , ..., v
|Vi|
i } having a non-zero probability. The probabilities of each value vji

are given by probabilistic density function pdf(vji ).
To efficiently compute the probabilistic sum of the sensor network Sn = {s1, ..., sn},

consider the following generating function.

GF (Sn) =
n∏
i=1

|Vi|∑
j=1

pdf(vji )x
vj

i (2)

The following lemma allows us to compute the probabilistic sum of Sn

Technical Report



IX

Lemma 3. Let GF (Sn) =
∑
j cjx

j be the expansion of the right-hand-side of Equa-
tion 2. Each coefficient cj corresponds to the probability, that the sum of all sensors Sn
equals j.

Proof. Let n = 1, then GF (S1) =
∑|V1|
j=1 pdf(vj1)x

vj
1 . Here, each coefficient cj equals

pdf(v1
j ). Thus, Lemma 3 states that pdf(vj1) corresponds to the probability that the

probabilistic sum of S1 equals j. Trivially, this is correct since for n = 1 the probabilis-
tic sum of S1 equals the distribution of s1.

Now let n = k + 1 and assume that Lemma 3 applies for n = k.

GF (Sk+1) =
k+1∏
i=1

|Vi|∑
j=1

pdf(vji )x
vj

i = (
k∏
i=1

|Vi|∑
j=1

pdf(vji )x
vj

i )×
|Vk+1|∑
j=1

pdf(vjk+1)x
vj

k+1 =

GF (Sk)×
|Vk+1|∑
j=1

pdf(vjk+1)x
vj

k+1 =

Expansion of the left side of the product yields

∑
j

cjx
j ×

|Vk+1|∑
j=1

pdf(vjk+1)x
vj

k+1

According to the induction hypothesis, each coefficient cj of
∑
j cjx

j corresponds to
the probability that the sum of sensors Sk equals j. Further expansion yields∑

j,m

cj × pdf(vmk+1)× xj+v
m
k+1

Due to assumption of independent sensor errors, the event of having a sum of j in
sensors Sk is independent of the sensor value of sensor sk+1. Thus, the probability that
the sum of sensors in Sk equals j can be multiplied with the probability of sk+1 having
a value of vmk+1 in order to obtain the probability of the event that the sum of Sk equals
j and sk+1 has value vmk+1. This multiplication is performed in the above term, for each
combination of possible sums of Sk and each value of sk+1, and the respective sum of
Sk+1 is the respective exponent of x.

Now, Corollary 1 allows us to combine worlds having the same sum, into a single
world, such that we get∑

j,m

cj × pdf(vmk+1)x
j+vm

k+1 =
∑
j′

cj′x
j′

where j′ iterates over all possible values of the probabilistic sum of sensors Sk+1.

Lemma 3 allows us to translate the semantic of the probability P (sum(Sn) = j)
of the random event that the sum of all sensors in Sn equals j, to the syntactical repre-
sentation cjxj , i.e., cj = P (sum(Sn) = j). In this representation, a single monomial
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cjx
j can be interpreted as a equivalent class of possible worlds. The coefficient cj cor-

responds to the total probability of this class of worlds, i.e. it corresponds to the sum of
probabilities of all possible worlds in this class. The exponent j of the anonymous vari-
able x can be interpreted as the sum of sensor values in Sn in this class of worlds. This
representation allows for efficient computation, as we will see next, and also allows for
translation back into semantic meaning.

To compute GF (Sn) efficiently, we iteratively compute GF (Sk+1) from GF (Sk)
(0 < k < n) by rewriting Equation 3 as

GF (Sk+1) = GF (Sk)×
|Vk+1|∑
j=1

pdf(vjk+1)x
vj

k (3)

and exploiting that the sum of an empty sensor network is always zero, i.e. GF (S0) =
1 × x0 = 1. In each iteration, we can now apply Lemmas 1 and 2 to prune terms
(corresponding to worlds) that cannot have any influence on the probabilistic sum query
with threshold τ .

To illustrate the proposed technique, consider the following example:

Example 1. Assume a set of sensors S in Table 1 measuring the (directed) traffic at
three different road segments, e.g., the measured traffic densities in terms of number
of vehicles per minute for each sensor. All these road segments lead to one highway,
with a maximum capacity of 40 vehicles per minute. If the probability that this capacity
is exceeded with a probability of at least 50%, we want to flash traffic warning sig-
nals. To predict the probability that this maximum capacity is exceeded, we perform a
probabilistic τ sum query on S with τ = 40.

Using Equation 2 for S1 = {s1} we obtain its generating polynomial:

GF (S1) = 0.3x12 + 0.6x13 + 0.1x14

Lemma 3 states that the (value, probability) pairs of the sum of all sensors in S1 corre-
sponds to the (coefficient, exponent) pairs of the generating function, which is trivial to
confirm in this case4. Using GF (S1) we can compute GF (S2) using Equation 3:

GF (S2) = (0.3x12 + 0.6x13 + 0.1x14)× (0.7x7, 0.3x8)

Which, after expansion, yields:

GF (S2) = 0.21x19 + 0.09x20 + 0.42x20 + 0.18x21 + 0.07x21 + 0.03x22

Here, each monomial corresponds to exactly one possible world; one world for each
possible combination of sensor values in S2 = {s1, s2}. Due to Lemma 3, the coeffi-
cient of the monomial corresponds to the probability of the respective world, and the
exponent corresponds to the sum of that world. Unifying monomials having the same
exponent yields

GF (S2) = 0.21x19 + 0.51x20 + 0.25x21 + 0.03x22

4 Since s1 is the only sensor, the distribution of the sum equals to the distribution of s1, e.g. the
sum equals 12 with a probability of 0.3, etc.
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Now, each monomial corresponds to a class of worlds with an equivalent sum value.
For example, the probability of all worlds of S2 having a sum of 20 equals 0.51.

Next, Lemma 1 allows us to compute S3 using Equation 3:

GF (S3) = (0.21x19+0.51x20+0.25x21+0.03x22)×(0.1x18+0.3x19+0.4x20+0.2x21) =

GF (S) = 0.021x37+0.114x38+0.262x39+0.324x40+0.211x41+0.062x42+0.006x43

Again, Lemma 3 allows us to interpret (coefficient,exponent) pairs as (sum,probability)
pairs of the probabilistic sum of S, i.e., the probability that the sum of S3 equals 37 is
2.1%, etc. Thus, the probability of having a sum of more than 40 can now be aggregated
to 0.211 + 0.062 + 0.006 = 0.218 = 21.8% < 50%. That is, the probability of a
potential traffic jam, i.e., more than 40 incoming vehicles at the highway would would
not warrant the issue of any warning.

If further sensors, such as s4 are considered, then we only need to consider mono-
mials having an exponent of less than 40 using Corollary 2, since these worlds already
satisfy the predicate of sum > 40 and due to non-negative sensor values, this predicate
cannot change in these worlds.

If we assume that the possible values of each sensor are integers, then due to Lemma
2, we note that at each iterations of the algorithm, the length of each polynomial cannot
exceed τ . Then, at each iteration of the algorithm, the current polynomial is multiplied
with the generating polynomial of one sensor, which can also be cut using Lemma 2 to
a maximum size of τ monomials. In this case, the total runtime of the algorithm equals
O(n × τ2). However, if sensor values can be real-valued, then each polynomial may
have infinite length, since the number of real values of at most τ is infinite. Still, this
approach will work well if the number of possible real values is finite (e.g., rounded to a
precision of 0.01). If the possible number of real values is too large, in addition to large
polynomials, the probability of being able to combine sets of possible worlds becomes
very small, since it becomes unlikely that two different worlds have the same sum.

For the above cases, where the real number of possible sensor values becomes very
large, or even infinite for the case of continuous distributions, we propose an approxi-
mate solution in the next Section. This approach, while not generally able to return the
exact probability that the sum of Sn exceeds τ , will return a probability interval, with
a guarantee that the exact probability (according to possible world semantics) must be
in this interval. Therefore, we propose a solution which discretizes the possibly large
(infinite) space of possible values of a sensor into a (smaller) set of value intervals.
We will show how correct bounds of the probabilistic sum can be computed, and how
probabilistic sum queries can be answered efficiently and effectively.

4.2 Probabilistic Sensors with Continuous Distributions

In the following, we assume that each sensor measures a large, or infinite number of
possible values. For instance, sensors measuring traffic per minute on a large road seg-
ment, may yield a non-zero probability for rather large range of number of vehicles.
Models for the impact of precipitation on water-level of a river may return continuous
distributions, i.e. a continuous distribution over any real value in some interval [8]. In
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the later case, the distribution may be very complex and not representable in a para-
metric form. We propose to approximate both cases by a probabilistic histogram, i.e.
the pdf of a sensor si is partitioned into a (finite and relatively small) set of value

intervals Vi = {v1
i , ..., v

|Vi|
i }. and each interval vji is associated with the probability

pdf(vji ) = cdf(ub(vji ))− cdf(lb(vji )), where cdf(a) =
∫ a
−∞ pdf(x)dx and ub(vji ) and

lb(vji ) correspond to the upper and lower bound of interval vji , respectively.
In summary, a sensor node is now assumed to be characterized by a set of value

intervals, each associated with the probability that the actual value falls into the corre-
sponding interval. While information is absent regarding the probabilistic distribution
of the sensor within the interval, we aim at bounding, efficiently, the result of a proba-
bilistic SUM query based on these intervals.

To achieve this, consider the following generating function:

GF (Sn) =
n∏
i=1

|Vi|∑
j=1

pdf(vji )x
lb(vj

i
)yub(v

j
i
)−lb(vj

i
) =

∑
i,j

ci,jx
iyj (4)

Analogously to Section 4.1, each monomial represents a class of possible worlds, hav-
ing a total probability of ci,j and a sum of at least i. Additionally, the exponent j of
y corresponds to a possible additional value of j, which may or may not exist in the
worlds corresponding to ci,j , leading to the following lemma:

Lemma 4. Let Sn = {s1, ..., sn} be a set of probabilistic sensors. Each coefficient ci,j
of the expansion of GF (Sn) corresponds to the probability of all worlds, in which the
sum of all sensors Sn must be between i and i+ j.

Proof. For n = 1, we obtain S1 =
∑|V1|
j=1 pdf(vj1)x

lb(vj
1)yub(v

j
1)−lb(vj

1). By definition
of Equation 4, the exponent of x corresponds to the lower bound of the value of s1, and
the sum of exponents of x and y corresponds to the upper bound of the value of s1.
Since for s1 the probabilistic sum of Sn equals the pdf of s1, these bounds also apply
for the sum of Sn.

Let n = k + 1, and assume that Lemma 4 holds for k. Expansion of the first k
factors of Equation 4 yields

∑
i,j

ci,jx
iyj ·

|Vk+1|∑
j=1

pdf(vjk+1)x
lb(vj

k+1)yub(v
j
k+1)−lb(v

j
k+1)

According to the induction hypothesis, each monomial ci,jxiyj corresponds to one
equivalent class of worlds of Sk in which it holds that the sum is at least i and at
most i+ j. Expansion yields∑

i,j,x

ci,j · pdf(vxk+1)x
i+lb(vx

k+1)yj+ub(v
x
k+1)

which consists of exactly one monomial for each combination of equivalent classes of
worlds in Sk and each possible value interval of sk+1. Since we assume independent
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sensor errors, the probabilities of pairs of such events can be multiplied, which is per-
formed here. The result is the probability of the equivalent class of worlds of Sk+1,
where the lower bound sum of Sk is i, and the lower bound value of sk+1 is lb(vmk+1).
The total lower bound of Sk+1 thus is i+ lb(vmk+1) which is equal to the exponent of x.
Analogously, the exponent of y corresponds to the sum of upper bounds j + ub(vmk+1).

Now, Corollary 1 allows to combine resulting worlds having identical lower and
upper bound sums, resulting in∑

i,j,x

ci,j · pdf(vmk+1)x
i+lb(vm

k+1)yj+ub(v
m
k+1) =

∑
i′,j′

ci′,j′x
i′yj

′

where i′, j′ iterate over all possible combination of possible lower and upper bounds of
the sum of Sk.

Lemma 4 allows us to compute a lower bound of the probability that the sum of Sn
exceeds τ by adding up the probabilities ci,j of all worlds where the lower bound i (i.e.,
the exponent of x) exceeds τ , as

LB(PSQ(W, τ)) =
∑
i≥τ,j

ci,j (5)

and the corresponding upper bound can be computed by

UB(PSQ(W, τ)) =
∑
i+j≥τ

ci,j (6)

To allow pruning similar to Lemma 2, we can use the following observation: if the
sum of Sn is greater than or equal to τ with a probability of at least (at most) p, then
the probability that the sum is less than τ can be at most (must be at least) 1 − p. This
permits to rewrite Equations 5 and 6 as:

UB(PSQ(W, τ)) = 1−
∑
i+j<τ

ci,j (7)

LB(PSQ(W, τ)) = 1−
∑
i<τ,j

ci,j (8)

Now, we note that in this representation, for any monomial ci,jxiyj it holds that
where i ≤ τ . This directly leads to the following corollary

Corollary 1. Any monomial ci,jxiyj where i > τ can be pruned without loss of infor-
mation.

Furthermore, we can combine monomials ci,jxi, yj , cm,nxm, yn where i = m,
i+j > τ andm+nτ . The rationale of this is, that for both classes of worlds represented
by ci,jxi, yj and cm,nxm, yn the only difference is a different upper bound sum, since
the lower bounds i and n are identical. Since both upper bounds i + j and m + n are
greater than τ , we can treat these worlds equivalently, since we do not care how much τ
can be exceeded, all we need to know is whether τ can be exceeded at all in the possible
worlds. Thus This leads to the following corollary.

Technical Report



XIV

Corollary 2. Any two monomial ci,jxi, yj , cm,nxm, yn where i = m, i+ j > τ repre-
sent worlds of an equivalent class of worlds. We represent this class of possible worlds
by the monomial ci+m,∞xi+my∞

Proof. In Equation 8, the aggregation is independent of j, thus for this equation we
may aggregate any monomials having the same i-value. In Equation 7, the aggregation
selects all monomials having i + j ≤ τ , thus this computation is independent of the
above aggregation.

In the iterative computation of Sn, 1 ≤ n ≤ |S|, Corollaries 1 allows to prune, in
each iteration, monomials of GF (Sn) which cannot have influence on the sum of S.
Furthermore, Corollary 2 allows to combine multiple monomials ofGF (Sn) into a sin-
gle one. Both these pruning criteria reduce the number of monomials, thus decreasing
the cost of computing Sn+1.

We note that the generating function in Equation 2 in Section 4.1 is a special case of
Equation 4, where for all coefficients ci,jxiyj is holds that y = 0. Thus, using Equation
4 we can handle both cases of discrete and continuous data.

Example 2. Assume a set of sensors S that estimate the expected influx of water to
a common river. Let us assume that if this influx exceeds a value of τ = 40 with a
probability of at least 10%, a flood warning should be issued. Each sensor si computes
a continuous probabilistic density function of the water influx, using appropriate water-
flow and precipitation models (e.g. [8]). Discretization of these continuous functions
yields the value ranges illustrated in the table 2, associated with respective probabilities
that the true water influx is within the interval5.

Applying Equation 4 yields the following polynomial:

G(S1) = 0.5x0y0 + 0.3x0y10 + 0.2x10y10

By definition, each monomial pxiyj corresponds to a world having a probability of p
and having a sum that is lower bounded by i, and upper bounded by i + j. For S2 we
obtain:

G(S2) = G(S1)× (0.2x0y20 + 0.4x20y10 + 0.3x30y10 + 0.1x40y20)

Here, monomials inG(S1) correspond to all possible worlds of S1, while the remaining
monomials correspond to worlds of S2. Due to the observation that the sum of two
values between [lb1, ub1] and [lb2, ub2] must be in the interval [lb1 + lb2, ub1 + ub2],
we now expand the above term to get all possible intervals of the sum of S1 and S2:

G(S2) = 0.1x0y20+0.2x20y10+0.15x30y10+0.05x40y20+0.06x0y30+0.12x20y20+

0.09x30y20 + 0.03x40y30 + 0.04x10y30 + 0.08x30y20 + 0.06x40y20 + 0.02x50y30

Each coefficient p of each monomial pxixj and is the product of the probabilities of
two sensor values. Due to the assumption of independent sensor errors, this product is

5 For illustration purpose we use a very coarse discretization. In practice, a much larger set of
value ranges per sensor could be used.
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the probability of observing both values. Exploiting Lemma 1, we can combine worlds
of S2 having the same lower and upper bounds

G(S2) = 0.1x0y20 + 0.06x0y30 + 0.04x10y30 + 0.2x20y10 + 0.12x20y20+

0.15x30y10 + 0.17x30y20 + 0.11x40y20 + 0.03x40y30 + 0.0250y30

Now, recall that ultimately, we want to compute the probability that P (sum(S)) >
40, which equals 1− P (sum(S) ≤ 40). To compute the latter probability, we can now
prune any monomial having an x-exponent of i > 40, since for the equivalent class of
worlds represented by this monomial, we can already conclude that the sum cannot be
less than 40 –and due to non-negative sensor values, considering further sensors cannot
change this conclusion. We obtain:

G(S2) = 0.1x0y20 + 0.06x0y30 + 0.04x10y30 + 0.2x20y10+

0.12x20y20 + 0.15x30y10 + 0.17x30y20

which will then be used in the computation of G(S3). Furthermore, we can combine
monomials ci,jxi, yj , cm,nxm, yn where i = m, i + j > τ and m + nτ as discussed
above, yielding:

G(S2) = 0.1x0y20 + 0.06x0y30 + 0.04x10y30 + 0.2x20y10+

0.12x20y20 + 0.15x30y10 + 0.17x30y∞

Due to space limitations, let us now assume that there is only two sensors, i.e. that
S = S2. Now, in order to lower (upper) bound the probability that the sum of S is at
most 40, we simply sum up all worlds where the sum must be (can be) lower than 40.
Clearly, a world must have a sum of at most 40, if its corresponding upper bound is at
most 40, i.e. if for the corresponding monomial pxiyj it holds that i + j is at most 40.
Thus we obtain∑

i+j<τ=40

ci,j = 0.1 + 0.06 + 0.04 + 0.2 + 0.12 + 0.15 = 0.67

A world can have a sum of 40 or less, if its corresponding lower bound is 40 or less,
independent of its upper bound, i.e. if for the corresponding monomial pxiyj it holds
that i ≤ 40∑

i<τ=40

ci,j = 0.1 + 0.06 + 0.04 + 0.2 + 0.12 + 0.15 + 0.17 = 0.84

Note, that this sum equals the sum of coefficients of all remaining monomials, since
any monomial which cannot have a sum of 40 or less has already been pruned.

Using Equations 7 and 8, we can now bound the probability that the sum of S
exceeds τ :

UB(PSQ(W, τ)) = 1−
∑
i+j<τ

ci,j = 1− 0.67 = 0.33
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and
LB(PSQ(W, τ)) = 1−

∑
i<τ

ci,j = 1− 0.84 = 0.16

Thus we can conclude that the event that the water influx exceeds 40 must have a proba-
bility of at least 16%, and in particular must be greater than 10%, thus we will broadcast
a flood warning. Note that we were able to answer this query despite a very coarse ap-
proximation of the sensor pdfs. In the general case, the probability threshold p may be
between the lower and the upper bound of PSQ(W, τ). In this case we cannot say for
certain whether the probability is greater than p or not. However, we may re-initiate the
whole query, asking each sensor for a pdf having a more refined granularity. This will
reduce the uncertainty of the query result but will come at an additional network traffic,
since for the new query, sensors will be forced to send a much more refined pdf, which
corresponds to more information, which corresponds to more data.

This filter refinement approach can be iterated until a definite answer can be given,
or until the resulting approximation is good enough. In the example, an approximation
that the probability of a flood must be between 9% and 11% may be good enough to
decide whether to broadcast a warning or not.

5 Energy Efficient Computation of Probabilistic Sum Queries

As mentioned in Section 1, it is crucial for applications on WSNs to reduce energy
cost, and this is mainly achieved through reducing CPU cost and communication. In
the previous section we showed how to reduce the CPU cost for computing the count
distribution. In this section, we focus on reducing the communication costs. For that
purpose, we must consider the typical underlying characteristics of WSNs such as net-
work topology, routing and scheduling. We will propose two algorithms which solve the
problem of answering continuous count queries in a WSN. Thus, we now take the local
distribution of data into consideration. We assume that the nodes in S are connected
together via a logical tree where the sink node (or base-station) is the tree’s root. The
choice of the tree’s topology does matter, but is outside the scope of this paper. For the
sake of simplicity, we assume it to be a hop-based shortest path tree commonly used in
other works, e.g., [20].

In the previous Section 4, we assumed that for each sensor si ∈ S, the distribution
pdf(si) is readily available at the sink node. This requires each pdf(si) to be iteratively
propagated along the branch of the logical tree to the root. However, we can benefit from
computing intermediate results at intermediate nodes, in order to send these condensed
results to their parent node. In this Section, we will show how an intermediate node can
compute the partial probabilistic sum of all nodes of its subtree, based on the partial
probabilistic sum of its individual child nodes. On the one hand, we can decrease the
number of messages sent. On the other hand, intermediate results could be used to query
subtrees or apply early stopping conditions if a subtree satisfies the query [13].

Without loss of generality, we assume that sensors send intervals as proposed in
Section 4. The case of sending discrete values can be seen as a special case where the
lower bound of each interval equals its upper bound - and thus the exponents of all y
variables are zero.
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Lemma 5. Let s0 be a sensor node having (direct) children s1, ..., sn. Let Sc denote
the set of sensors in the subtree rooted at sc, including sc itself. Then

GF (S0) = GF (s0) ·
n∏
c=1

GF (Sc) (9)

Proof. Follows directly from the associative property of polynomial multiplications.

Now, at each intermediate node, pruning of monomials as proposed by Corollaries 1
and 2 can be performed, to reduce the amount of information that s is required to send
to its parent node.

Our in-network algorithm now works as follows: Each leaf node sleaf of the log-
ical connection tree sends its sensor readings6 to its parent node after using Corollary 1
to remove worlds of sleaf which are not required to compute PSQ(WSN, τ). Interme-
diate nodes sdir, upon receiving data from their children, compute the probabilistic sum
of their respective subtree using Lemma 9 using polynomial multipliction. To facilitate
the expansion of two possibly large polynomials, we propose to use FFT (Fast-Fourier-
Transformation). It is well known that the multiplication of two polynomials of degree
O(n) can be done in O(n log n) time using FFT. Furthermore, the approach by [19],
using divide-and-conquer and Fast Fourier Transformation allows us to further reduce
this time complexity to O(n log2 n). Unless sdir is the root, sdir uses Corollaries 1 and
2 to reduce the size of its polynomial, and sends the resulting polynomial to its parent
node. If sdir is the root, then PSQ(S, τ) is bounded using Equations 7 and Equation 8.
This bound is returned and the algorithm terminates.

For sensor networks where in-network computation is not viable, and for compari-
son, we furthermore propose a central algorithm, which simply propagates all sensor
readings to the root node, where all the computation is performed using FFT.

6 Incremental Sum Queries

The solutions proposed in Section 4 work well for the snapshot case, that is the case
where the state of the wireless sensor network only matters at a single point of time t. In
most practical applications however, we are interested in a monitoring of the sum value
of the network. Thus, we want to have the current sum at any point of time.

Definition 2 (Continuous Probabilistic Sum Query). Let WSN be a wireless sensor
network consisting of a set of probabilistic sensors S and τ be a real value. Let T =
{t1, t2, ...} be a discrete set of points of time, so called rounds and let pdft∈T (s) denote
the probability distribution of sensor s at time t.

A continuous probabilistic sum query (cPSQ) returns the probabilistic sum ofWSN
at each point of time t ∈ T .

cPSQ(WSN, τ, t) =
∑

w∈Wt,sum(Sw)≥τ

P (w), (10)

6 Sensor readings can be (value, probability) pairs (c.f. Section 4.1), (interval, probability) pairs
(c.f. Section 4.2) or a mix of both.
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whereWt denotes the set of possible worlds at time t.

Naively, we can apply the solutions of Section 4 for each individual point of time.
This works well if the probability distributions pdf(s) of all sensors s change frequently
from one round t to the next round t+1. However, in practice, only a small set of sensors
will update their pdf in one round, since changes may not happen too frequently, and
many sensors may be sleeping to preserve energy, and will only send a new pdf once in
a while.

Clearly, at the initial point of time t = 0 we must use the techniques of Section 4. In
the following, we propose how cPSQ(WSN, τ, t+1) can be computed incrementally,
based on the result of cPSQ(WSN, τ, t).

Therefore, we propose to adapt the two-phase approach for incremental algorithms
proposed in [12]. For each sensor s that changes its pdf at time t + 1 we proceed as
follows:

– (Phase 1) The effect of pdft(s) is removed from sum(S) to derive sum(S \ {s})
– (Phase 2) The effect of pdft+1(s) is then incorporated into sum(S \ {s})

For phase 1, recall that the probabilistic sum of Sn = {s1, ..., sn} can be computed
using the product of generating functions of each sensor:

GF (Sn) = GF (Sn−1) ·GF ({sn}) =
∏

1≤i≤n

GF ({si})

Due to the associativity of polynomial multiplication, this can be rewritten to

GF (Sn) = GF ({sk}) ·
∏

1≤i6=k≤n

GF ({si}),

where sk ∈ S is the sensor whose effect we want to remove from GF (S). To remove
the effect of one sensor sk ∈ S, we can now perform a polynomial division of GF (sk).

GF (S \ {sk}) = GF (S) : GF ({sk})

However, this approach of polynomial division is not viable, since in the polynomial
GF (S), many monomials ci,jxiyj have already been pruned (cf. Section ) and are
no longer available, e.g. polynomials having i > τ . Yet, these monomials of GF (S)
having i > τ , may have an influence on monomials of GF (S \ {sk}) having i < τ .
Semantically, this means that we no longer have any access to any worlds of S, where
the sum certainly exceeds k. However, in some of these worlds, the sum of sensors
S \ {sk} may still be less than τ . These worlds (and their corresponding probabilities)
would be missing in the interpretation ofGF (S\{sk}), thus the result may be incorrect.

Yet, we can compute GF (S \ {sk}) correctly, in a different way. For simplicity,
now assume that each sensor measures discrete values as proposed in Section 4.1, i.e.
that for each monomial ci,jxiyj , it holds that y = 0. The following technique can be
extended to y > 0 in a straightforward way.

Rather than performing polynomial division, we first consider each monomial cixi

in GF (S), and invert the step of combining coefficients having the same exponent,
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which has been performed during the expansion of GF (S). We recall, that ci is the
probability of all worlds of S having a total sum of i. This is equivalent to the probability
of all worlds in GF (S \ {sk}) having a sum of zero, multiplied with the probability of
sk having a value of i, plus the probability of all worlds in GF (S \ {sk}) having a
sum of one, multiplied with the probability of sk having a value of i − 1, and so on.
Formally:

P (sum(S) = i) =
∑

j=0,...,i

P (sum(S \ {sk}) = j) · P (pdf(vi−jk ))

Writing this in terms of P (sum(S \ {sk}) = i) yields

P (sum(S\{sk}) = i) =
P (sum(S) = i)−

∑i−1
j=0 P (sum(S \ {sk}) = j) · P (pdf(vi−jk ))

pdf(v0
k)

(11)
In this formula, we note that in order to compute the value P (sum(S \ {sk}) = i), we
only require the probability P (sum(S) = i), which is not affected by the pruning of
monomials, since if the monomial cixi had been pruned, then we had i > τ , and then
we would not need to compute P (sum(S \ {sk}) = i) in the first place. Furthermore,
we need all P (sum(S \ {sk}) = j), for j < i. For i = 0 this is the empty set, thus
no more information is required. Then, for i = a, we inductively obtain the required
values from previous computations of i < a.

Example 3. Assume a set of sensors S = {s1, s2}. Assume that sensor s1 has a value
of two with a probability of 0.5, a value of one with a probability of 0.4, and a value
of zero with a probability of 0.1. Further assume that s2 has a value of one with a
probability of 0.8 and a probability of zero with a probability of 0.2, i.e.

GF ({s1}) = (0.5x2 + 0.4x+ 0.1), GF ({s2}) = 0.8x+ 0.2

According to Section 4.1 we obtain the following generating function:

GF (S) = (0.5x2 + 0.4x+ 0.1) · (0.8x+ 0.2) = 0.4x3 + 0.42x2 + 0.16x+ 0.02

Now, assume that s2 changes its value. And we want to remove the effect of s2 onG(S).
Clearly, this can be performed by dividing of GF (S) by the generating polynomial of
s2. And the correct result will be the generating polynomial of s1. However, we now
assume that τ = 1, so that we have already pruned monomials cixi where i > 1 and
get

GF (S) = 0.16x+ 0.02

Due to the missing monomials, polynomial division can no longer be applied. However,
using Equation 11, we get:

P (sum({s1}) = 0) =

P (sum(S) = 0)−
∑−1
j=0 P (sum({s1}) = j) · P (pdf(v0−j

2 ))
pdf(v0

2)
=

0.02
0.2

= 0.1
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based on this we can compute

P (sum({s1}) = 1) =

P (sum(S) = 1)−
∑0
j=0 P (sum({s1}) = j) · P (pdf(v1−j

2 ))
pdf(v1

2)
=

0.16− (0.1 · 0.8)
0.2

= 0.4

now, we have completely reconstructedGF (S\{s2}) = 0.4x+0.1, which, as expected,
corresponds to GF ({s1}). Note that we cannot reconstruct any value P (sum({s1}) =
i) where i > 1, since the values P (sum(S) = i) required for the computation have
been pruned. Gladly, we do are not required to compute these probabilities, since we
could prune them anyways, since i > τ .

For phase 2, we can simply use polynomial multiplication to incorporate the new
value of sensor sk

GF (S′) = GF (S \ {sk}) ·GF (s′k),

where s′k corresponds to the sensor sk having its new pdft+1, and S′ corresponds to the
new sensor network where the value of sk has been updated.

7 Performance Evaluation

For the experimental evaluations we used the following setup: We used a simulation of
a wireless sensor network containing between 100 and 2500 sensors. The locations of
the sensors were randomly chosen within a 100m × 100m area and each sensor node
was assumed to have a fixed wireless radio range of 30m. All generated sensor instances
of the WSNs used a hop-wise shortest-path tree as the routing topology. We assume in
all experiments that messages are delivered using a multi-hop setup. Since the query is
only sent once from the root to all child nodes and will be amortized over time, we only
measure nodes-to-root messages.

The uncertain sensor values are simulated as follows: The values of probabilis-
tic sensors with discrete distributions consists of a probability distribution with three
possible values randomly selected from the interval [0,50]. The corresponding proba-
bilities assigned to these values are randomly selected such that they sum up to 1. A
similar value generator has been used for the probabilistic sensors with continuous dis-
tributions whereas intervals instead of single values are randomly selected within the
interval [0,50].

The experimental results are based on an average of 10 simulation runs whereas
each run consists of a series of 100 measurements per sensor. Thereby, the result of
the probabilistic sum query is updated after each measurement. The performance of the
methods proposed in this paper are evaluated by taking the average of the number of
messages that have been sent for each update of the query result. Here we compare four
different approaches: central sends all sensor signals to the central node and performs
the query centrally at that node, in net performs in-network query processing as de-
scribed in Sec. 5, inc central performs incremental query processing as described in
Sec. 6 at the central node, and inc in net combines the in-network query processing
approach with the incremental query processing approach.
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Table 4. Parameter Values Used in the Performance Evaluation (Default Values Printed in Bold
Type)

Parameter Values
n (Number of Sensors) 100, 500, 1000, 2500

δ (Probability of Changing Values) 0%, 50%, 75%, 100%
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(b) Continuous Distributions

Fig. 1. Scalability experiments.

In the experiments we vary the following parameters: the number of sensors within
the network (n) and the percentage of changing measurements of a sensor, i.e. where
the new value (value distribution) differs from the previous one (δ).If the size of the
information that has to be sent from one node to another node exceeds m, then the
information has to be distributed to multiple messages. The setting of these parameters
are summarized in Table 4, where default values are marked bold. In every experiment
all parameters but the one in focus are fixed to their default values.

7.1 Scalability Experiments

In the first experiment, we evaluate the performance of the four approaches by vary-
ing the size of the network. The results are shown in Figure 1 for sensor values with
discrete and continuous distributions. As expected, the number of messages increases
with the number n sensors in the network. It is more interesting to see that the commu-
nication cost grow super linear to the number of sensors for all four approaches. The
reason is, that the number of sensors not only influences the number of nodes that have
to send messages, but also the number of messages that have to be transmitted through
the network. Both approaches, the incremental approach and the in-network approach,
each improves significantly the communication cost compared to the simple centralized
approach. However, the incremental in-network query processing approach is the over-
all best solution saving up to 50% of the communication cost compared to the simple
centralized approach.
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Fig. 2. Probability of Change.

7.2 Experiments on Various Dataset Parameters

In the next experiment we evaluate the fraction of sensors that change their values per
measurement round. The results are shown in Figure 2. As we can see, the two non-
incremental approaches are not affected by the number of changing sensor values, while
the two incremental approaches degrades with increasing number of changing sensor
values. The incremental central approach even exceeds the cost of the basic central
approach if all sensors values changes at each round. This is due to the fact that the
incremental approach requires to send two sensor values instead of one if the sensor
value changes, the old one and the new one. Furthermore, it is interesting to see that the
in-network processing approach mitigates significantly this effect.

8 Conclusions

Summarizing this work we introduced the first solution to efficiently answer probabilis-
tic count queries on discrete uncertain data. The naive approach to compute the result
to such a query would have exponential runtime. We showed how to utilize the concept
of generating functions to build a polynomial algorithm. Afterwards we extended such
that also continuous distributions can be handled. We adapted our solutions to wireless
sensor networks which have the additional constraint of limited energy. For this pur-
pose we proposed an in-network algorithm which distributes the computation over all
network nodes and thus results in much lower cpu and communication cost. As future
work, we plan to develop an approach which is able to incrementally update the re-
sult of a probabilistic sum query when a small subset of the sensors changes, without
recomputing the result from scratch.
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