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Abstract. In this paper, we propose a new technique for multidimensional query
processing which can be widely applied in database systems. Our new technique,
called tree striping, generalizes the well-known inverted lists and multidimension-
al indexing approaches. A theoretical analysis of our generalized technique shows
that both, inverted lists and multidimensional indexing approaches, are far from
being optimal. A consequence of our analysis is that the use of a set of multidimen-
sional indexes provides considerable improvements over one d-dimensional index
(multidimensional indexing) or d one-dimensional indexes (inverted lists). The
basic idea of tree striping is to use the optimal number k of lower-dimensional
indexes determined by our theoretical analysis for efficient query processing. We
confirm our theoretical results by an experimental evaluation on large amounts of
real and synthetic data. The results show a speed-up of up to 310% over the multi-
dimensional indexing approach and a speed-up factor of up to 123 (12,300%) over
the inverted-lists approach. 

1.  Introduction
The problem of retrieving all objects satisfying a query which involves multiple at-
tributes is a standard query processing problem prevalent in any database system. The
problem especially occurs in the context of feature-based retrieval in multimedia data-
bases [3], but also in relational query processing, e.g. in a data warehouse. The most
widely used method to support multi-attribute retrieval is based on indexing the data
which means organizing the objects of the database into pages on secondary storage.
There is a variety of index structures which have been proposed for this purpose. One of
the most popular techniques in commercial databases systems is the inverted-lists ap-
proach. The basic idea of the inverted-lists approach is to use a one-dimensional index
such as a B-tree [4] or one of its variants for each attribute. In order to answer a given
range query with s attributes specified, it is necessary to access s one-dimensional index-
es and to perform a costly merge of the partial results obtained from the one-dimensional
indexes. For queries involving multiple attributes, however, the merging step is prohib-
itively expensive and is the major drawback of the inverted-lists approach. Multidimen-
sional index structures have been developed as an efficient alternative approach for
multidimensional query processing. The basic idea of multidimensional index structures
such as space-filling curves [14, 8], grid-file based methods [13, 5], and R-tree-based
methods [7, 2], is to use one multi-attribute index which provides efficient access to an
arbitrary combination of attributes. 
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It is well-known that multidimensional index structures are very efficient for databas-
es with a small number of attributes and outperform inverted lists if the query involves
multiple attributes [11]. In many real-life database applications, however, we have to
handle databases with a large number of attributes. For databases with a larger number
of attributes, the performance of traditional multidimensional index structures rapidly
deteriorates. Therefore, specific index structures for high-dimensional data have been
proposed. Examples include the TV-tree [12], SS-tree [19], and X-tree [1]. For high
dimensions (larger than 12), however, even the performance of specialized high-dimen-
sional index structures decreases. 

In this paper, we propose a new approach, called tree striping, for an efficient multi-
attribute retrieval. The basic idea of tree striping is to divide the data space into disjoint
subspaces of lower dimensionality such that the cross-product of the subspaces is the
original data space. The subspaces are organized using an arbitrary multidimensional in-
dex structure. Tree striping is a generalization of the inverted lists and multidimensional
indexing approaches, which may both be seen as the extreme cases of tree striping. 

The rest of this paper is organized as follows: Section 2 introduces the basic idea of
tree striping including the algorithm necessary for processing queries. In Section 3, we
then provide a theoretical analysis of our technique and show that optimal query pro-
cessing is obtained for tree striping. We also show that optimal tree striping outperforms
the traditional inverted lists and multidimensional indexing methods. In Section 4, we
then discuss the more elaborate query processing algorithms which make use of the
specific advantages of “striped” trees and therefore further improve the performance.
Section 5 provides the details of our experimental evaluation which includes compari-
sons of tree striping to inverted lists and two multidimensional index structures, namely
the R-tree and the X-tree. The results of our experimental analysis confirm the theoreti-
cal results and show substantial speed-ups over the multidimensional indexing and the
inverted-lists approaches.

2.  Tree Striping
Our new idea presented in this paper is to use the benefits of both the inverted lists and high-
dimensional indexing approaches in order to achieve an optimal multidimensional query
processing. Our approach, called tree-striping, generalizes both previous approaches. 

2.1  Basic Idea
The basic idea of tree-striping is to divide the data space into disjoint subspaces of lower
dimensionality such that the cross-product of the subspaces is the original data space1.
This means that each subspace contains a number of attributes (dimensions) and each
object of the database occurs in all subspaces. For example, the three-dimensional data
space (customer_no, discount, turnover) may be divided into the one-dimensional sub-
space (customer_no) and the two-dimensional subspace (discount, turnover). Obvious-
ly, the dimensionality of the subspaces is smaller than the dimensionality of the data
space, and hence, we are able to index the subspaces more efficiently using any multidi-
mensional index structure. 

To insert an object, we divide the object into subobjects according to the division of
the data space. Then, we insert the subobjects in the multidimensional index structure
managing the corresponding subspace. To process a query, we divide the query accord-

1. Note that a division of the data space into disjoint subspaces is different from a partitioning
of the data space where the partitions have the same dimensionality as the original data
space whereas subspaces have a lower dimensionality. 



ing to the division of the data space and issue the subqueries to the relevant multidimen-
sional indexes. In a second step, we merge the results which have been produced by the
indexes using an external sorting algorithm such as merge sort. The general idea and
query processing strategy of tree striping is presented in Figure 1. 

Note that, in contrast to inverted lists, in general, the selectivity of subspace indexes is
relatively high because each index manages information about more than one attribute.
Therefore, the amount of partial results produced in the first step is rather small which
means that the cost for the merging step are not significant. Our formal model, which
will be presented in Section 3, confirms this fact. 

It is clear that the number and
dimensionality of the data
space divisions are important
parameters for the perfor-
mance of our technique. The
optimal division mainly de-
pends on the dimension, the
number of data items, and the
data distribution. The parame-
ters have to be chosen ade-
quately to achieve an optimal
performance. For a uniform
data distribution, the parame-
ters for an optimal division
into subspaces can be obtained
easily from the theoretical
analysis (cf. Section 3). 

2.2  Definition of Tree Striping
In this Section, we formally define the tree striping technique. In the following, we
consider objects as vectors in a vector space and attributes as components of the vectors.
Given is a data space of dimension d and extension [0..1]d, N vectors v having compo-
nents v0 ... vd-1 and an arbitrary multidimensional index structure MIS supporting the
relevant query types. First, we need a mapping which assigns the dimensions to the
different subtrees.

Definition 1: (Dimension Assignment):

The dimension assignment DA is a mapping  of a d-dimen-
sional vector v to a vector of k dl-dimensional vectors wl, , such that the follow-
ing conditions hold:

1. 2. 

3. 

Note that  denotes the i-th component in the l-th index. To clarify the definition of
dimension assignment, we provide a simple example: Given a 5-dimensional data space
(d=5). We may define a dimension assignment DAodd_even such that k = 2, d0 = 3, and d1

Fig. 1: Tree Striping

a0 a1 … ad 1–, , ,( )

b0 b1 … bd0 1–, , , 
  c0 c1 … cdk 1– 1–, , , 

 

a0 a1 … ad 1–, , ,( )

query

subquery

Merge of Results 

Index0 Indexk-1

R
d

R
d0 … R

dk 1–, ,( )→
0 l k<≤

dl

l 0=

k 1–

∑ d= j  0 j d  l  ∃ 0 l k  i 0 i dl<≤∃ :  vj wi
l

=,<≤,<≤  ∀

l  0 l k  ,<≤ i∀   0 i dl  j∃,<≤  0 j d:  wi
l

vj=<≤∀

wi
l



= 2, i.e. DAodd_even divides the data space into two subspaces of dimensionality 3 and 2.
Explicitly, DAodd_even maps even dimensions to the first subspace and odd dimensions
to the second subspace, more formally, DAodd_even(v) = (w0, w1), w0 = (v0, v2, v4), w1 =
(v1, v3). Thus a vector v= (0, 4, 6, 5, 1) is mapped to DAodd_even((0, 4, 6, 5, 1)) = ((0, 6,
1), (4, 5)). Obviously, DAodd_even meets the conditions specified in Definition 1 because
all dimensions of the data space have been mapped to a subspace and vice versa.

Using the definition of dimension assignment, we are now able to formally define
tree-striping:

Definition 2: (Tree Striping): 

Given a database DB of N d-dimensional vectors and a dimension assignment DA.
Then, a tree-striping TS is defined as a vector of k dl-dimensional indexes 

, , with , .

Tree striping as defined in Definition 2 is a generalization of the previous approaches.
For the special case of k = d, tree striping corresponds to inverted lists because the
dimension assignment produces d one-dimensional data objects; and for the special case
of k = 1, tree striping corresponds to the traditional multidimensional indexing approach
because we have one d-dimensional index. The most important question is whether
there exists a tree striping which provides better results than the extremes (the well-
known inverted lists and multidimensional indexing approaches). In particular, we have
to determine whether there exists a k (1 < k < d) such that tree striping outperforms the
other approaches. In the next Section, we introduce a theoretical model showing that an
optimal k exists. Our experimental analysis presented in Section 5 confirms the results
of our theoretical model and shows performance improvements of up to a factor of 120
times over the inverted lists and up to 280% over the multidimensional indexing ap-
proach. A second open question is how the attributes (dimensions) are assigned to the
different trees such that the performance improvement is optimal. In Section 4, we dis-
cuss the implications of different dimension assignments and also introduce optimized
algorithms for query processing using striped trees.

Note that tree striping as defined so far
is independent of the multidimensional
index structure used. Any multidimen-
sional index structure such as the R-tree
[7] and its variants (R+-tree [17], R*-
tree [2], P-tree [9]), Buddy-tree [16],
linear quadtrees [6], z-ordering [14] or
other space-filling curves [8], and grid-
file based methods [13, 5] may be used
for this purpose.
Before we describe our theoretical mod-
el, we first provide a simple algorithm
for processing queries using striped
trees. As the single indexes do not have
all information about an object, but only
about some attributes of the object, in
general, we have to query all indexes in
order to process a query. We therefore di-
vide the query specification qs into sub-
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Fig. 2: A First Query Processing Algorithm

SetOfObject query(TreeStrip ts, QuerySpec qs)
{

int i;
SetOfSubObject sst[ts.num];
SubQuerySpec sqs[ts.num];
SetOfObject st;

// for all indexes
for (i = 0; i < ts.num; i++)
{

// query i-th index with sub-query
sqs[i] = ts.opt_dim_assign(i, qs);
sst[i] = ts.index[i].query(sqs[i]);
// sort result by primary key
sst[i].sort();

}
// now merge single results
st = merge(sst, ts.num);
return st;

}



query specifications sqs[l] according to the dimension assignment. Then, we query each
single index with the sub-query specification sqs[l] and record the results. In a final step,
we have to merge the results by sorting the single results according to the primary key of
the objects or any object identificator. Figure 2 shows a first version of a query processing
algorithm. An optimized version for querying striped trees is provided in Section 4.

3.  Theoretical Model 

As already mentioned, most of the multidimensional indexing approaches efficiently
solve the multi-attribute retrieval problem on low-dimensional data. From our experience,
in real-life database projects, we have learned that even for relational database systems,
handling relatively high numbers of attributes (more than 10) occurs, for which the perfor-
mance of traditional index structures deteriorates. To process arbitrary queries (e.g., point,
range, and partial match queries) efficiently on those databases, we have to equally index
all the attributes which means that we have to deal with a high-dimensional data space.

Unfortunately, some mathematical problems arise in high-dimensional spaces which
are usually summarized by the term ‘curse of dimensionality.’ A basic effect in high-
dimensional space is the exponential growth of the volume: Let us assume a database of
1,000,000 uniformly distributed objects consisting of 20 numerical attributes in the
range [0...1]. Let us further assume that we are interested in a query which provides 10
result objects located around the midpoint of the data space (0.5, 0.5, 0.5, ..., 0.5). Which
range do we have to query in order to obtain 10 result objects? Obviously, we have to

assure that the volume of our query range equals to , as the vol-
ume of the data space equals to 1. This leads to a query range in each attribute of

. So we have to query the range (0.22-0.78, 0.22-0.78, ..., 0.22-0.78).

That means a query with a selectivity of 10-5 leads to a query range of 0.56 in each
attribute in a 20-dimensional data space. 

Considering these effects, we are able to provide a concise cost model of processing
range queries in a high-dimensional data space using the tree striping technique. For the
following, we assume a uniformly distributed set of N vectors in a d-dimensional space
of extension [0..1]d. Note that, although we assume a uniform distribution of the data,
our model can be applied to real data as well (cf. Section 5). We will use the cost model
to determine the optimal number of trees and accordingly the dimensions of the trees for
a given data set, i.e. the optimal dimension assignment.

Our cost model is divided into two parts: First, the cost arising from querying the
striped trees, and second, the cost for merging the results of the striped trees into one
final result. Both cost functions are highly influenced by the dimensions of the striped
trees. The index lookup cost is growing super-linearly with growing tree dimension.
However, the merging cost is growing super-linearly with the size of the result, which is,
in turn, falling with dimension of the trees. This fact implies the assumption that the total
cost could form a minimum where both costs are moderate. This minimum should be
located anywhere between the d-dimensional index and the inverted-lists approaches. 

Several cost models for queries on multidimensional index structures have been pub-
lished. The most suitable ones for our purposes are the model of Kamel and Faloutsos
[10] and the similar model of Pagel, et.al. [15]. We decided to use the model of Kamel
and Faloutsos as a basis for our considerations. We therefore assume that the multidi-
mensional index structure aggregates a fixed number of Ceff vectors into a data page
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such that the bounding box containing the vectors forms a square-shaped hyper-rectan-
gle with the (hyper-) volume 

. 

Thus, Ceff denotes the actual fan-out of the in-
dex. From that, the edge length σ of a typical
bounding box is 

. 

Next, we determine the probability that such a
data page is loaded when processing a square
range query with volume Vq. Analogously, we

compute the edge length q of Vq as . The probability can be determined using
the so-called Minkowski sum. Intuitively, the Minkowski sum of two areas a1 and a2 can
be constructed by painting a1 using a2 as a brush (cf. Figure 3). If both areas are multi-
dimensional rectangles, we have to add the side-lengths of a1 and a2 accordingly. Thus,
the Minkowski sum of query volume and the bounding box is

. 

The Minkowski sum  equals to the probability that a randomly lo-
cated bounding box and a randomly located query intersect. Thus, the expected number
of data pages intersecting Vq is  multiplied by the number of pages:

The number Ceff of data vectors in a data page also depends on the dimension d of the
vectors. Assuming that each coordinate value is stored as a 32-bit floating point value
and that there is an additional unique object identifier which also requires 32 bit, we
determine Ceff as:

The cost for combining the results of the multidimensional index accesses mostly depend
on the selectivities of the indexes. If |FRS| is the size of the final result set of query Q then
|IRSi| is the intermediate result set produced by the i-th index having dimension di. Thus:

Note that we have to sort each intermediate result set according to the object identifi-
ers in order to be able to merge them into the final result set. We have to apply an external
sorting algorithm since, for larger q or minor di, the result set will exceed the available
main memory. According to Ullman [18], the cost for performing multiway merge-sort
on a relation of B blocks is  where M is the number of cache pages avail-
able to the sorting process. We can store the object identifiers in a densely packed fash-
ion such that |IRSi| object identifiers require  pages. From that, the
cost for sorting the result set of a single index are:

Minkowski-

Fig. 3: The Minkowski Sum
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To determine the total cost, Psort and Pindex have to be summed up for all striped trees.
For merging the result sets, each of them has to be scanned once more. Total cost is:

In the following, we assume, that the d dimensions of our data space are striped into k divisions1

In this case, our cost function can be simplified to:

Figure 4 shows the total cost over k in a typical setting with a database of 1,000,000
uniformly distributed objects in a 15-dimensional data space. The selectivity of the que-
ry is 0.01%. There is a clear minimum between k=2 and k=3. 

Thus, we are able to determine an
optimal k by solving the follow-
ing equation:

(eq. 1).

The analytic evaluation of this
equation yields a rather large for-
mula which is omitted due to
space limitations. A MAPLE-
generated C function determin-
ing the derivative can be used to
calculate the optimum.
Unfortunately, the cost model
presented so far is accurate only

in the low-dimensional case. This is caused by the fact that in high-dimensional data
spaces the data pages cannot be split in each dimension. If we split a 20-dimensional
data space once per dimension, we obtain 220=1,000,000 data pages. Obviously, the
number of data objects would have to grow exponentially with the dimension in order to
allow one split per dimension. Therefore, we provide a special high-dimensional adap-
tation of our cost model. Our extension assumes that data pages are split only in the first
d’ dimensions where d’ is the logarithm of the number of data pages to the basis of two:

. 

The data pages have the average extension 1/2 in d’ dimensions and extension 1 in all
remaining dimensions (d-d’). When determining the Minkowski sum, we additionally

1. For d0, ...., dk-1, only whole numbers are meaningful. This effect is handled later, but is of
minor importance for our cost model.
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have to consider that only a part of the volume is located inside the data space because
in the dimensions which have not been split, the extension of the Minkowski-sum is still
1, rather than (1+q):

. 

Thus, the expected number of data pages accessed in the high-dimensional case is:

Adding the sort cost we obtain the following total cost for high-dimensional data spaces:

4.  Query processing
For optimal response times, we have to make two decision: We first have to choose an
adequate dimension assignment and second, we have to choose the right strategy for
processing queries.

As a result of the theoretical analysis presented in Section 3 there exists an optimal
number k of striped trees, which can be determined according to our cost model
(cf. equation 1). Since k is a real number, however, we cannot directly use k as a param-
eter for our query processor. Instead, we use the floor of k

 

and then determine the optimal dimensionality of our trees given by 

. 
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attributes to our trees. Thus, we obtain 
trees with dimensionality  and

 trees with dimensionality
. In the following, we have to distinguish

between two cases: The first case is that we
have additional information about the selec-
tivity of the attributes, which usually occurs
for relational databases. The second case is
that we have no additional information which
usually occurs in indexing multimedia data
using feature vectors. Let us first consider the
more general case that we do not have any ad-
ditional information and therefore assume

that all attributes have the same selectivity. In this case, the optimal dimensionality dopt
of our trees may be used to define the following Optimal Dimension Assignment.

Definition 3: (Optimal Dimension Assignment):
The dimension assignment DAopt is a dimension assignment according to Definition 1
such that:

,

where , , and .

Intuitively, the optimal dimension assignment assigns the i-th component of the orig-
inal vector v to a component of one of the vectors wl such that the first vector w0 receives
the first d0 components , the second vector w1 accommodates the compo-
nents  and so on.

Using the optimal dimension assignment according to Definition 3, we now are able
to present the insert algorithm of our tree striping technique, as depicted in Figure 6. In
order to insert an object t, we simply divide t into a set of kopt sub-objects st[l] (using the
optimal dimension assignment) and insert them into the according striped tree ts.in-
dex[l] .

A more complex algorithm is required for processing queries on striped trees. A rather
simple query processing algorithm has already been presented in Section 2. The algo-
rithm depicted in Figure 2, however, has a major drawback: Let us assume that we have
to process a partial range query PRQ which specifies attributes a, b and c:

.

Let us further assume that all these three attributes are located in the first of the striped
trees. Obviously, it does not make sense to query any tree other than the first tree because
all other trees do not have any selectivity. The algorithm presented in Figure 2, however,
executes queries on all trees ignoring the expected selectivity of the trees. In order to
process queries efficiently we have to take the selectivity of a tree into account and query
a tree only if the expected gain in selectivity is worth the cost of querying the tree. 

Another potential improvement of the query processing algorithm can be exemplified
by the following situation: Assume that the three specified attributes a, b and c in the

Fig. 6: Insertion Algorithm

void insert(TreeStrip ts, object t)
{ int l;

SubObject st[ts.num];
// for all indexes
for (l = 0; l < ts.num; l++)
{ // determine sub-objects

st[l] = ts.opt_dim_assign(l, t);
// insert sub-objects into l-th index
ts.index[l].insert(st[l]);

}
}
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above example are spread over two striped trees T0 managing attributes a and b, and T1
managing attribute c. After querying tree T0 we will typically receive a set of answers
(candidates) which may contain some false hits. This assumption holds because the
selectivity of T0 is much higher than the selectivity of T1. If we furthermore assume to
have meaningful queries, i.e. queries having a good selectivity on all attributes, in gen-
eral the set of candidates will be small. In this case, the cost for loading the candidate
objects from secondary storage and checking if the objects fulfill the query specification
may be lower than the cost of querying additional trees. 

Let us now consider the second case
where we do have some additional
information about the selectivity of
the attributes. A different selectivity
of the attributes may be induced by
the attributes of different data types
(e.g., a boolean attribute usually has a
selectivity of 50%) and by different
data distributions. We can use this in-
formation to adapt the optimal di-
mension assignment. If we are able to
query the tree containing the at-
tributes with the highest selectivity
first, the resulting set of candidates
will be rather small and will contain
only a few false hits. Therefore, que-
ry processing can be finished without
querying the other trees. This means
that, if we have information about the
selectivity of attributes, we should
sort the attributes according to their
selectivity before applying the di-
mension assignment1. Note that in
some cases, a non-uniform division
may lead to better results. For exam-
ple, let us assume that we have ob-
jects with 9 attributes (a, b, ... i), that
kopt equals to 3, and that the attributes
a to d have a high selectivity whereas
the selectivity of attributes e to i is
rather low. Then, it is beneficial to di-

vide the objects into sub-objects (a, b, c, d), (e, f), and (g, h, i) which would be a sub-
optimal division assuming no a-priori knowledge about the selectivity of attributes. 

Considering all these effects, we are now able to provide a more sophisticated algo-
rithm for the processing of queries on striped trees. The algorithm (cf. Figure 7) first
determines whether a linear search of the database is expected to be cheaper than a
search using trees which may be the case for very large queries. The algorithm then sorts
the striped trees according to their selectivity, i.e. the tree which probably provides the

1. Note that this operation involves not only the query-processing but also the dimension
assignment, since we have to ensure that the attributes with the best selectivity are assigned
to the first trees.

Fig. 7: Query Processing using Tree Striping

SetOfObject query(TreeStrip ts, QuerySpec qs)
{

int i, cost_index, cost_linear;
SetOfSubObject sst[ts.num];
SubQuerySpec sqs[ts.num];
SetOfObject st; // set of candidates
// sort indexes according to selectivity
ts.sort_index(qs);
// determine sub-queries
for (i = 0; i < ts.num; i++)

sqs[i] = ts.opt_dim_assign(i, qs);
i = 0;
// estimate cost
cost_index = cost_modell(sqs[0]);
cost_linear = cost_linear_scan(sqs[0]);
while (i < ts.num && 

 cost_index < cost_linear)
{ // query index

sst[i] = ts.index[i].query(sqs[i]);
// sorted merge of result
sst[i].sort();
merge(st, sst, ts.num);
// estimate cost
if (i < ts.num)
{ cost_index = cost_modell(st, sqs[i+1]);

cost_linear = cost_linear(st);
}

}

if (i < ts.num)
{ // load attributes

database.load(st);
remove_false_hits(st, qs);

}
return st;

}



smallest set of candidates is queried first. If the querying of the first tree leads to a small
set of candidates, we determine whether loading these candidates from secondary stor-
age is cheaper than querying the second tree. If this is the case, we load the attributes and
output all candidates fulfilling the query specification. Otherwise, we query the second
tree. This process iterates until all trees have been queried or the candidates are loaded
and processed.

As the implementation of multidimensional index structures is complex, the assign-
ment of different data types such as strings and floating numbers into one tree is not
practicable. The division of a object may therefore be induced not only by the expected
performance improvement but also by other considerations. Obviously, this can lead to
sub-optimal dimension assignments. Our practical experience, however, shows that a
slightly sub-optimal dimension assignment performs nearly as well as the optimal di-
mension assignment. 

5.  Experimental Analysis
To show the practical relevance of our method, we performed an extensive experimental
evaluation of tree striping and compared it to the inverted lists and the multidimensional
indexing approach. All experimental results have been computed on an HP9000/780
workstation with several GBytes of secondary storage. For the experiments, we used an
object-oriented implementation (C++) of the R*-tree [2] and the X-tree [1]. 

The test data used for the experiments are real data consisting of text data describing
substrings of a large database of texts, and synthetic data consisting of uniformly distrib-
uted points in high-dimensional space. The block size used for our experiments is
4 KByte, and all query processing techniques were allowed to use the same amount of
cache. For a realistic evaluation, we used very large amounts of data (up to 80 MBytes)
in our experiments. The total amount of disk space occupied by the created indexes
(inverted lists, multidimensional indexes and tree-striped indexes) is about 2 GBytes
and the CPU time for inserting the data adds up to about one week. 

In a first experiment, we confirmed
our theoretical result (cf. Section 3)
that the tree striping technique as a
generalization of the lists and multi-
dimensional indexing approaches
outperforms both other techniques.
For the experiment, we used
1,000,000 uniformly distributed
data objects of varying dimension-
ality (d = 2..16). We built the ac-
cording indexes (R*-tree) and que-
ried the indexes with a selectivity of
10-5 which corresponds to an ex-
pected result of about 10 hits. In or-
der to avoid statistical effects, we
used the average cost of 100 uni-

formly distributed query windows. The observed variance was rather small. We com-
pared different tree stripings (varying the value of k) and determined the optimal dimen-
sion assignment (optimal value of k). The tested dimension assignments for the 16-
dimensional data set are (16), (8, 8), (6, 5, 5), (4, 4, 4, 4), (2, 2, 2, 2, 2, 2, 2, 2), and
(1, 1, ..., 1, 1). The data sets of other dimensionality have been tested analogously. In

Fig. 8: Comparison of Measured Optimal Dimension 
Assignment and Model Estimation



Figure 8, we show the optimal dimensionality (dopt) of striped trees depending on di-
mensionality of the data. For d=2 and d=4, the optimal dimension assignment of tree
striping provides one d-dimensional index, i.e. it is identical to multidimensional index-
ing. As expected according to our theoretical analysis, for higher dimensions the optimal
dimension assignment of tree striping is between the extreme cases: For d=12, we obtain
two 6-dimensional indexes and for d=16, we obtain a division into 3 indexes with di-
mensionality (6, 5, 5). Note that in all experiments, the optimal dimension assignment
estimated by our cost model exactly matches the measured optimum. For our experi-
ments, we therefore use the optimal dimension assignment as determined by our cost
model. 

Another important criterion for the evaluation of indexing techniques is their scalability,
that is the behavior of the technique for an increasing size of the database. We therefore
performed an experiment using a fixed dimensionality (d=16) and a fixed query selectiv-
ity of 10-5 and varied the number of data items from 10,000 to 1,000,000. Again, we used
our cost model to determine the optimal dimension assignment. The speed-up over multi-
dimensional indexing starts with a moderate value of 107% for a small database but, as the
size of the database increases, the speed-up also increases to up-to 230% over multidi-
mensional indexing for the largest database of 1,000,000 objects (cf. Figure 9). The
speed-up over the inverted-lists approach starts with 228% and reaches its maximum of
2,000% (20 times faster) for the largest database of 1,000,000 objects (cf. Figure 9).

The intention of the experiment de-
picted in Figure 10 is to show that the
high speed-ups are independent from
the selectivity of the queries. We re-
peated the previous experiments for
different dimensionality (shown are
the experiment for d=12 and d=16) us-
ing selectivities between 10-3 and
10-5. Again, we obtained a speed-up
of 210% to 220% over the multidi-
mensional index and a speed-up factor
of 4 to 20 over the inverted lists. 
To show the practical relevance of our
technique, in a last series of experi-
ments, we evaluated the tree striping

technique using real data which consists of text data describing substrings of a large
database of texts. 

Fig. 9: Speed-Up of Tree Striping for an Increasing Number of Data Items

b. Speed-Up over Multidimensional Indexinga. Speed-Up over Inverted Lists

Fig. 10: Performance for Varying Selectivities



In Figure 11, we compare the measured performance for range queries with a selectivity
of 0.2% to the performance determined by our model (cf. Section 3). The minima of the
two curves correspond to the optimal dimension assignment (dopt). Note that the model
estimates the optimal dimension assignment correctly ( ) although it assumes a
uniform distribution of the data. The difference between model and measurements for
large dimensions (i.e. small k), however, may be explained by the non-uniform distribu-
tion of the real data. In Figure 12, we present the speed-up of tree striping over inverted
lists and multidimensional indexing for partial range queries with a varying number of
attributes specified (s=4..8). It is interesting that for a partial range query with 4 at-
tributes specified, tree striping degenerates to inverted lists. If more than 4 attributes are
specified, tree striping becomes better than both, inverted lists and multidimensional
indexing. Note that for s=6, inverted lists are better than multidimensional indexing,
whereas for s=8, multidimensional indexing is better than inverted lists. 

6.  Conclusions

In this paper, we propose a new technique for multidimensional query processing, called
tree striping. Tree striping is a generalization of the inverted-lists technique and the
multidimensional indexing approach. A theoretical analysis of our technique shows that
tree striping clearly outperforms both - the inverted lists and multidimensional indexing
approaches. An experimental evaluation of our technique confirms the results of our
theoretical analysis, unveiling significant speed-up factors of tree striping over inverted
lists and multidimensional indexing for different databases of varying size and dimen-
sionality, as well as for different query types. 

Our future work will include an application of tree striping to other multidimensional
index structures not handled in this paper and we expect a substantial performance im-
provement over the non-striped version. We further plan to develop a parallel version of
the tree striping technique. We expect a nearly linear speed-up for a parallel version
since the separate indexes can be queried independently, which should provide a linear
speed-up of the query processing time. 

Fig. 12: Performance of 
Partial Range Queries (Text Data)

Fig. 11: Optimal Dimension Assignment 
for Real Data (Text Data)

dopt 5≈
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