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Abstract. Both, the number and the size of spatial databases, such as geographic
or medical databases, are rapidly growing because of the large amount of data ob-
tained from satellite images, computer tomography or other scientific equipment.
Knowledge discovery in databases (KDD) is the process of discovering valid,
novel and potentially useful patterns from large databases. Typical tasks for
knowledge discovery in spatial databases include clustering, characterization and
trend detection. The major difference between knowledge discovery in relational
databases and in spatial databases is that attributes of the neighbors of some ob-
ject of interest may have an influence on the object itself. Therefore, spatial
knowledge discovery algorithms heavily depend on the efficient processing of
neighborhood relations since the neighbors of many objects have to be investi-
gated in a single run of a typical algorithm. Thus, providing general concepts for
neighborhood relations as well as an efficient implementation of these concepts
will allow a tight integeration of spatial knowledge discovery algorithms with a
spatial database management system. This will speed-up both, the development
and the execution of spatial KDD algorithms. For this purpose, we define a small
set of database primitives, and we demonstrate that typical spatial KDD algo-
rithms are well supported by the proposed database primitives. By implementing
the database primitives on top of a commercial database management system, we
show the effectiveness and efficiency of our approach, experimentally as well as
analytically. The paper concludes by outlining some interesting issues for future
research in the emerging field of knowledge discovery in spatial databases.

1 Introduction

Knowledge discovery in databases (KDD) has been defined as the process of d
covering valid, novel, and potentially useful patterns from data [9]. Spatial Database
Systems (SDBS) (see [10] for an overview) are database systems for the manageme
spatial data. To find implicit regularities, rules or patterns hidden in large spatial d
bases, e.g. for geo-marketing, traffic control or environmental studies, spatial data
ing algorithms are very important (see [12] for an overview). 

Most existing data mining algorithms run on separate and specially prepared 
but integrating them with a database management system (DBMS) has the following ad-
vantages. Redundant storage and potential inconsistencies can be avoided. F
more, commercial database systems offer various index structures to support dif
types of database queries. This functionality can be used without extra implemen
effort to speed-up the execution of data mining algorithms. Similar to the relati
standard query language SQL, the use of standard primitives will speed-up the d
opment of new data mining algorithms and will also make them more portable. 

In this paper, we introduce a set of database primitives for mining in spatial data
es. [1] follows a similar approach for mining in relational databases. Our database 



itives (section 2) are based on the concept of neighborhood relations. The proposed
primitives are sufficient to express most of the algorithms for spatial data mining from
the literature (section 3). We present techniques for efficiently supporting these primi-
tives by a DBMS (section 4). Section 5 summarizes the contributions and discusses sev-
eral issues for future research. 

2 Database Primitives for Spatial Data Mining

The major difference between mining in relational databases and mining in spatial
databases is that attributes of the neighbors of some object of interest may have an in-
fluence on the object itself. Therefore, our database primitives (see [7] for a first sketch)
are based on the concept of spatial neighborhood relations.

2.1 Neighborhood Relations
The mutual influence between two objects
depends on factors such as the topology,
the distance or the direction between the
objects. For instance, a new industrial plant
may pollute its neighborhood depending
on the distance and on the major direction
of the wind. Figure 1 depicts a map used in
the assessment of a possible location for a
new industrial plant. The map shows three
regions with different degrees of pollution
(indicated by the different colors) caused
by the planned industrial plant. Further-
more, the influenced objects such as com-

munities and forests are depicted.
We introduce three basic types of binary spatial relations: topological, distance and

direction relations. Spatial objects may be either points or spatially extended objects
such as lines, polygons or polyhedrons. Spatially extended objects may be represented
by a set of points at its surface, e.g. by the edges of a polygon (vector representation) or
by the points contained in the object, e.g. the pixels of an object in a raster image (raster
representation). Therefore, we use sets of points as a generic representation of spatial
objects. In general, the points p = (p1, p2, . . ., pd) are elements of a d-dimensional Eu-
clidean vector space called Points. In the following, however, we restrict the presenta-
tion to the 2-dimensional case, although, all of the introduced notions can easily be
applied to higher dimensions d. Spatial objects O are represented by a set of points, i.e.
O ∈ 2Points. For a point p = (px, py), px and py denote the coordinates of p in the x- and
the y-dimension.

Topological relations are relations which are invariant under topological transfor-
mations, i.e. they are preserved if both objects are rotated, translated or scaled simulta-
neously. 

Fig. 1. Regions of pollution around a planned 
industrial plant [3]



Definition 1: (topological relations) The topological relations between two objects A
and B are derived from the nine intersections of the interiors, the boundaries and the
complements of A and B with each other. The relations are: A disjoint B, A meets B, A
overlaps B, A equals B, A covers B, A covered-by B, A contains B, A inside B. A formal
definintion can be found in [5].

Distance relations are those relations comparing the distance of two objects with a
given constant using one of the arithmetic operators. 

Definition 2: (distance relations) Let dist be a distance function, let σ be one of the
arithmetic predicates <, > or = , let c be a real number and let A and B be spatial objects,

i.e. A, B ∈2Points. Then a distance relation A distanceσ c B holds iff dist(A, B) σ c.

In the following, we define 2-dimensional direction relations and we will use their
geographic names. We define the direction relation of two spatially extended objects us-
ing one representative point rep(A) of the source object A and all points of the destina-
tion object B. The representative point of a source object is used as the origin of a virtual
coordinate system and its quadrants define the directions. 

Definition 3: (direction relations) Let rep(A) be the representative of a source object A.
- B northeast A holds, iff ∀ b ∈ B: bx ≥ rep(A)x ∧ by ≥ rep(A)y 

southeast, southwest and northwest are defined analogously.
- B north A holds, iff ∀ b ∈ B: by ≥ rep(A)y . south, west, east are defined analogously. 

- B any_direction A is defined to be TRUE for all A, B.
Obviously, for each pair of spatial objects at least one of the direction relations holds

but the direction relation between two objects may not be unique. Only the special re-
lations northwest, northeast, southwest and southeast are mutually exclusive. However,
if considering only these special directions there may be pairs of objects for which none
of these direction relations hold, e.g. if some points of B are northeast of A and some
points of B are northwest of A. On the other hand, all the direction relations are partially
ordered by a specialization relation (simply given by set inclusion) such that the small-
est direction relation for two objects A and B is uniquely determined. We call this small-
est direction relation for two objects A and B the exact direction relation of A and B. 

Topological, distance and direction relations may be combined by the logical oper-
ators ∧ (and) as well as ∨ (or) to express a complex neighborhood relation. 

Definition 4: (complex neighborhood relations) If r1 and r2 are neighborhood rela-

tions, then r1 ∧ r2 and r1 ∨ r2 are also (complex) neighborhood relations.

2.2 Neighborhood Graphs and Their Operations

Based on the neighborhood relations, we introduce the concepts of neighborhood
graphs and neighborhood paths and some basic operations for their manipulation.

Definition 5: (neighborhood graphs and paths) Let neighbor be a neighborhood rela-

tion and DB ⊆ 2Points be a database of spatial objects.

a) A neighborhood graph  is a graph where the set of nodes N cor-

responds to the set of objects . The set of edges  contains the
pair of nodes (n1, n2) iff neighbor(n1,n2) holds. Let n denote the cardinality of N and

GDB
neighbor N E,( )=

o DB∈ E N N×⊆
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let e denote the cardinality of E. Then, f:= e / n denotes the average number of edges
of a node, i.e. f is called the “fan out” of the graph.

b) A neighborhood path is a sequence of nodes [n1, n2, . . ., nk], where neighbor(ni, ni+1)

holds for all . The number k of nodes is called the length of the neigh-

borhood path.
Lemma 1: The expected number of neighborhood paths of length k starting from a

given node is f k -1 and the expected number of all neighborhood paths of length k is then

n*f k -1.
Obviously, the number of neighborhood paths may become very large. For the

pose of KDD, however, we are mostly interested in a certain class of paths, i.e. 
which are “leading away” from the starting object in a straightforward sense. Therefo
the operations on neighborhood paths will provide parameters (filters) to further re
the number of paths actually created.

We assume the standard operations from relational algebra such as selection, union,
intersection and difference to be available for sets of objects and for sets of paths. F
thermore, we define a small set of basic operations on neighborhood graphs and
as database primitives for spatial data mining. In this paper, we introduce only the
most important of these operations: 

neighbors: NGraphs x Objects x Predicates --> 2Objects

extensions: NGraphs x 2NPaths x Integer x Predicates -> 2NPaths

The operation neighbors(graph,object,pred) returns the set of all objects
connected to object via some edge of graph satisfying the conditions expresse
by the predicate pred. The additional selection condition pred is used if we want to
restrict the investigation explicitly to certain types of neighbors. The definition of 
predicate pred may use spatial as well as non-spatial attributes of the objects.

The operation extensions(graph,paths,max,pred) returns the set of all
paths extending one of the elements of paths by at most max nodes of graph. All
the extended paths must satisfy the predicate pred. Therefore, the predicate pred in
the operation extensions acts as a filter to restrict the number of paths created us
domain knowledge about the relevant paths. 

2.3 Filter Predicates for Neighborhood Paths
Neighborhood graphs will in general contain many paths which are irrelevant i

“misleading” for spatial data mining algorithms. The task of spatial trend analysis
finding patterns of systematic change of some non-spatial attributes in the neig
hood of certain database objects, can be considered as a typical example. Detectin
trends would be impossible if we do not restrict the pattern space in a way that 
changing direction in arbitrary ways or containing cycles are eliminated. In the foll
ing, we discuss one possible filter predicate, i.e. starlike. Other filters may be useful de-
pending on the application. 

Definition 6: (filter starlike) Let p = [n1,n2,...,nk] be a neighborhood path and let reli be

the exact direction for ni and ni+1, i.e. ni+1 reli ni holds. The predicates starlike and var-

iable-starlike for paths p are defined as follows: 
starlike(p) :⇔ (∃ j < k: ∀ i > j: ni+1 reli ni ⇔ reli ⊆ relj), if k > 1; TRUE, if k=1. 

ni N 1 i k<≤,∈
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The filter starlike requires that, when extending a
path p, the exact “final” direction relj of p cannot be
generalized. For instance, a path with “final” directio
northeast can only be extended by a node of an ed
with exact direction northeast but not by an edge with
exact direction north.
Under the following assumptions, we can calcula

the number of all starlike neighborhood paths of a certain length l for a given fanout f
of the neighborhood graph. 
Lemma 2: Let A be a spatial object and let l be an integer. Let intersects be chosen as
the neighborhood relation. If the representative points of all spatial objects are
formly distributed and if they have the same extension in both x and y direction, 
the number of all starlike neighborhood paths with source A having a length of at most

l is O(2l) for f = 12 and O(l) for f = 6. (see [6] for a proof)
The assumptions of this lemma may seem to be too restrictive for real applica

Note, however, that intersects is a very natural neighborhood relation for spatially e
tended objects. To evaluate the assumptions of uniform distribution of the repres
tive points of the spatial objects and of the same size of these objects, we condu
set of experiments to compare the expected numbers of neighborhood paths with t
tual number of paths created from a real geographic database on Bavaria. The da
contains the ATKIS 500 data [2] and the Bavarian part of the statistical data obta
by the German census of 1987. 

We find that for f = 6 the number of all neighborhood paths (starting from the sam
source) with a length of at most max-length is O(6max-length) and the number of the star-
like neighborhood paths only grows approximately linear with increasing max-length -
as stated by lemma 2. For f = 12 the number of all neighborhood paths with a length o
at most max-length is O(12max-length) as we can expect from the lemma. However, t
number of the starlike neighborhood paths is significantly less than O(2max-length). This
effect can be explained as follows. The lemma assumes equal size of the spatial o
However, small destination objects are more likely to fulfil the filter starlike than la
destination objects implying that the size of objects on starlike neighborhood p
tends to decrease. Note that lemma 2 nevertheless yields an upper bound for the n
of starlike neighborhood paths created.

3 Algorithms for Spatial Data Mining

To support our claim that the expressivity of our spatial data mining primitive
adequate, we demonstrate how typical spatial data mining algorithms can be exp
by the database primitives introduced in section 2. 

3.1 Spatial Clustering
Clustering is the task of grouping the objects of a database into meaningful subc

es (that is, clusters) so that the members of a cluster are as similar as possible w
the members of different clusters differ as much as possible from each other. Ap
tions of clustering in spatial databases are, e.g., the detection of seismic faults by g

Fig. 2. Illustration of two 
different filter predicates

starlike
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ing the entries of an earthquake catalog or the creation of thematic maps in geographic
information systems by clustering feature spaces. 

Different types of spatial clustering algorithms have been proposed. The basic idea
of a single scan algorithm is to group neighboring objects of the database into clusters
based on a local cluster condition performing only one scan through the database. Sin-
gle scan clustering algorithms are efficient if the retrieval of the neighborhood of an ob-
ject can be efficiently performed by the SDBS. Note that local cluster conditions are
well supported by the neighbors operation on an appropriate neighborhood graph.
The algorithmic schema of single scan clustering is depicted in figure 3. 

Different cluster conditions yield different notions of a cluster and different cluster-
ing algorithms. For example, GDBSCAN [16] relies on a density-based notion of clus-
ters. The key idea of a density-based cluster is that for each point of a cluster its ε-
neighborhood has to contain at least a minimum number of points. This idea of “d
ty-based clusters” can be generalized in two important ways. First, any notion
neighborhood can be used instead of an ε-neighborhood if the definition of the neigh-
borhood is based on a binary predicate which is symmetric and reflexive. Secon
stead of simply counting the objects in a neighborhood of an object other measu
define the “cardinality” of that neighborhood can be used as well. Whereas a dist
based neighborhood is a natural notion of a neighborhood for point objects, it ma
more appropriate to use topological relations such as intersects or meets to cluster spa-
tially extended objects such as a set of polygons of largely differing sizes. 

3.2 Spatial Characterization

The task of characterization is to find a compact description for a selected sub
(the target set) of the database. A spatial characterization [8] is a description of the spa-
tial and non-spatial properties which are typical for the target objects but not fo
whole database. The relative frequencies of the non-spatial attribute values and th
ative frequencies of the different object types are used as the interesting propertie

SingleScanClustering(Database db; NRelation rel)
set Graph to create_NGraph(db,rel);
initialize a set CurrentObjects as empty;
for each node O in Graph do

if O is not yet member of some cluster then
create a new cluster C;
insert O into CurrentObjects;
while CurrentObjects not empty do

remove the first element of CurrentObjects as O;
set Neighbors to neighbors(Graph, O, TRUE);
if Neighbors satisfy the cluster condition do

add O to cluster C;
add Neighbors to CurrentObjects;

end SingleScanClustering;
Fig. 3. Schema of single scan clustering algorithms
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instance, different object types in a geographic database are communities, mountains,
lakes, highways, railroads etc. To obtain a spatial characterization, not only the proper-
ties of the target objects, but also the properties of their neighbors (up to a given maxi-
mum number of edges in the relevant neighborhood graph) are considered. 

A spatial characterization rule of the form target ⇒ p1 (n1, freq-fac1) ∧ ... ∧ pk (nk,
freq- fack) means that for the set of all targets extended by ni neighbors, the property pi
is freq-faci times more (or less) frequent than in the whole database. The characteriza-
tion algorithm usually starts with a small set of target objects, selected for instance by
a condition on some non-spatial attribute(s) such as “rate of retired people = HI
(see figure 4, left). Then, the algorithm expands regions around the target objec
multaneously selecting those attributes of the regions for which the distribution of
ues differs significantly from the distribution in the whole database (figure 4, right)

In the last step of the algorithm, the following characterization rule is generated
scribing the target regions. Note that this rule lists not only some non-spatial attri
but also the neighborhood of mountains (after three extensions) as significant fo
characterization of the target regions:

community has high rate of retired people ⇒ 
apartments per building = very low (0, 9.1) ∧ 
rate of foreigners = very low (0, 8.9) ∧ 
. . . ∧ 
object type = mountain (3, 4.1)

3.3 Spatial Trend Detection

A spatial trend [8] is as a regular change of one or more non-spatial attributes w
moving away from a given start object o . Neighborhood paths starting from o are used
to model the movement and a regression analysis is performed on the respect
tribute values for the objects of a neighborhood path to describe the regulari
change. For the regression, the distance from o is the independent variable and the di
ference of the attribute values are the dependent variable(s) for the regression. Th
relation of the observed attribute values with the values predicted by the regre
function yields a measure of confidence for the discovered trend. 

Fig. 4. Characterizing wrt. high rate of retired people [8]

maximally expanded regionstarget objects
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Algorithm global-trends detects global trends around a start object o. The existence
of a global trend for a start object o indicates that if considering all objects on all paths
starting from o the values for the specified attribute(s) in general tend to increase (de-
crease) with increasing distance. Figure 5 (left) depicts the result of algorithm global-
trends for the trend attribute “average rent” and a start object representing the ci
Regensburg. 

Algorithm local-trends detects single paths starting from an object o and having a
certain trend. The paths starting from o may show different pattern of change, for ex
ample, some trends may be positive while the others may be negative. Figure 5 (
illustrates this case again for the trend attribute “average rent” and the start objec
resenting the city of Regensburg.

4 Efficient DBMS Support Based on Neighborhood Indices

Typically, spatial index structures, e.g. R-trees [11], are used in an SDBMS to s
up the processing of queries such as region queries or nearest neighbor querie
Therefore, our default implementation of the neighbors operations uses an R-tree. I
the spatial objects are fairly complex, however, retrieving the neighbors of some o
this way is still very time consuming due to the complexity of the evaluation of ne
borhood relations on such objects. Furthermore, when creating all neighborhood 
with a given source object, a very large number of neighbors operations has to be
performed. Finally, many SDBS are rather static since there are not many updat
objects such as geographic maps or proteins. Therefore, materializing the rel
neighborhood graphs and avoiding to access the spatial objects themselves m
worthwhile. This is the idea of the neighborhood indices. 

4.1 Neighborhood Indices

Our concept of neighborhood indices is related to the work of [15] and [13]. [15]
introduced the concept of spatial join indices as a materialization of a spatial join with
the goal of speeding up spatial query processing. This paper, however, does no
with the questions of efficient implementation of such indices. [13] extends spatial
indices by associating each pair of objects with their distance. In its basic form, th
dex requires O(n2) space because it needs one entry not only for pairs of neighbo
objects but for each pair of objects. Therefore, in [13] a hierarchical version of dist

Fig. 5. Trends of the“average rent” starting from the city of Regensburg

Global trend Local trends

direction of decreasing attribute values
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associated join indices is proposed. In general, however, we cannot rely on such hierar-
chies for the purpose of supporting spatial data mining. Our approach, called neighbor-
hood indices, extends distance associated join indices with the following new
contributions:
• A specified maximum distance restricts the pairs of objects represented in a n

borhood index.
• For each of the different types of neighborhood relations (that is distance, direc

and topological relations), the concrete relation of the pair of objects is stored.

Definition 7: (neighborhood index) Let DB be a set of spatial objects and let max and
dist be real numbers. Let D be a direction relation and T be a topological relation. Then

the neighborhood index for DB with maximum distance max, denoted by , is de-

fined as follows:  = {(O1,O2,dist,D,T) | 
O1, O2  ∈ DB ∧  O1 distance=dist O2 ∧  dist ≤ max ∧  O2 D O1 ∧  O1 T O2}.

A simple implementation of a neighborhood index using a B+-tree on the key at-
tribute Object-ID is illustrated in figure 6.

A neighborhood index supports not only one but a set of neighborhood graphs
call a neighborhood index applicable for a given neighborhood graph if the index con
tains an entry for each of the edges of the graph. To find the neighborhood indice
plicable for some neighborhood graph, we introduce the notion of the critical dist
of a neighborhood relation. Intuitively, the critical distance of a neighborhood relation
r is the maximum possible distance for a pair of objects O1 and O2 satisfying O1 r O2. 

Definition 8: (applicable neighborhood index) Let  be a neighborhood graph and

let  be a neighborhood index.  is applicable for  iff

Definition 9: (critical distance of a neighborhood relation) Let r be a neighborhood
relation. The critical distance of r, denoted by c-distance(r), is defined as follows:

A neighborhood index with a maximum distance of max is applicable for a neigh-
borhood graph with relation r if the critical distance of r is not larger than max.

Imax
DB

Imax
DB

Object-ID Neighbor Distance Direction Topology

o1 o2 2.7 southwest disjoint

o1 o3 0 northwest overlap

. . . . . . . . . . . . . . .

B+-
tree

Fig. 6. Sample Neighborhood Index
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O1 DB∈ O2 DB∈,( )O1rO2∀ O1 O2 dist D T, , , ,( ) Imax
DB∈⇒

c-distance(r)

0

c

∞
min cdis ce r1( ) cdis ce r2( )tan,tan( )
max cdis ce r1( ) cdis ce r2( )tan,tan( )









=

if r is a topological relation except disjoint
if r is the relation distance<c or distance=c
if r is a direction relation, the relation distance>c, or disjoint

if r = r1 ∧ r2 

if r = r1 ∨ r2



Lemma 3: Let  be a neighborhood graph and let  be a neighborhood index. 

If max ≥ c-distance(r), then  is applicable for .

Obviously, if two neighborhood indices and  with c1 < c2 are available and
applicable, using  is more efficient because in general it has less entries than .
The smallest applicable neighborhood index for some neighborhood graph is the appli-
cable neighborhood index with the smallest critical distance.

In figure 7, we sketch the algorithm for processing the neighbors operation
which makes use of the smallest applicable neighborhood index. If there is no applica-
ble neighborhood index, then the standard approach that uses an R-tree is followed. 

The first step of algorithm neighbors, the index selection, selects a neighborhood in-
dex. The filter step returns a set of candidate objects (which may satisfy the specified
neighborhood relation) with a cardinality significantly smaller than the database size.
In the last step, the refinement step, for all these candidates the neighborhood relation
as well as the additional predicate pred are evaluated and all objects passing this test are
returned as the resulting neighbors. The extensions operation can obviously be im-
plemented by iteratively performing neighbors operations. Therefore, it is obvious
that the performance of the neighbors operation is very important for the efficiency
of our approach.

To create a neighborhood index , a spatial join on DB with respect to the neigh-
borhood relation  is performed. A spatial join can
be efficiently processed by using a spatial index structure, see e.g. [4]. For each pair of
objects returned by the spatial join, we then have to determine the exact distance, the
direction relation and the topological relation. The resulting tuples of the form

 are stored in a relation which is indexed
by a B+-tree on the attribute O1.

Updates of a database, i.e. insertions or deletions, require updates of the derived
neighborhood indices. Fortunately, the update of a neighborhood index  is restrict-
ed to the neighborhood of the respective object defined by the neighborhood relation A
distance< max B. This neighborhood can be efficiently retrieved by using either a neigh-
borhood index (in case of a deletion) or by using a spatial index structure (in case of an
insertion).

GDB
r Imax

DB

Imax
DB

GDB
r

Ic1
DB

Ic2
DB

Ic1
DB

Ic2
DB

neighbors (graph , object o, predicate pred)
select as I the smallest applicable neighborhood index for ; // Index Selection
if such I exists then  // Filter Step

use the neighborhood index I to retrieve as candidates the set of objects c 
having an entry (o,c,dist, D, T) in I

else use the R-tree to retrieve as candidates the set of objects c satisfying o r c;
initialize an empty set of neighbors; // Refinement Step
for each c in candidates do

if o r c and pred(c) then add c to neighbors
return neighbors;

GDB

r GDB

r

Fig. 7. Algorithm neighbors
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4.2 Cost Model
We developed a cost model to predict the cost of performing a neighbors opera-

tion with and without a neighborhood index. We use tpage, i.e. the execution time of a
page access, and tfloat, i.e. the execution time of a floating point comparison, as the units
for I/O time and CPU time, respectively. 

In table 1, we define the parameters of the cost model and list typical values for each
of them. The system overhead s includes client-server communication and the overhead
induced by several SQL queries for retrieving the relevant neighborhood index and the
minimum bounding box of a polygon (necessary for the access of the R-tree). pindex and
pdata denote the probability that a requested index page and data page, respectively,
have to be read from disk according to the buffering strategy.

Table 2 shows the cost for the three steps of processing a neighbors operation
with and without a neighborhood index. In the R-tree, there is one entry for each of the
n nodes of the neighborhood graph whereas the B+-tree stores one entry for each of the
f * n edges. We assume that the number of R-tree paths to be followed is proportional
to the number of neighboring objects, i.e. proportional to f. A spatial object with v ver-
tices requires v/cv data pages. We assume a distance relation as neighborhood relation
requiring v2 floating point comparisons. When using a neighborhood index, the filter
step returns ff * f candidates. The refinement step has to access their index entries but
does not have to access the vertices of the candidates since the refinement test can be
directly performed by using the attributes Distance, Direction and Topology of the index
entries. This test involves a constant (i.e. independent of v) number of floating point
comparisons and requires no page accesses implying that its cost can be neglected.

Table 1: Parameters of the cost model

name meaning typical values

n number of nodes in the neighborhood graph [103 . . 105]

f average number of edges per node in the graph (fan out) [1 . . 102]

v average number of vertices of a spatial object [1 . . 103]

ff ratio of fanout of the index and fanout (f) of the graph [1 . . 10]

cindex capacity of a page in terms of index entries 128

cv capacity of a page in terms of vertices 64

pindex probability that a given index page must be read from disk [0..1]

pdata probability that a given data page must be read from disk [0..1]

tpage average execution time for a page access 1 * 10-2 sec

tfloat execution time for a floating point comparison  3 * 10-6 sec

s system overhead depends on DBMS



4.3 Experimental Results

We implemented the database primitives on top of the commercial DBMS Illustra
using its 2D spatial data blade which provides R-trees. A geographic database of Bavar-
ia was used for an experimental performance evaluation and validation of the cost mod-
el. This database represents the Bavarian communities with one spatial attribute
(polygon) and 52 non-spatial attributes (such as average rent or rate of unemployment).
All experiments were run on HP9000/715 (50MHz) workstations under HP-UX 10.10. 

The first set of experiments compared the performance predicted by our cost models
with the experimental performance when varying the parameters n, f and v. The results
show that our cost model is able to predict the performance reasonably well. For in-
stance, figure 8 depicts the results for n = 2,000, v = 35 and varying values for f. 

We used our cost model to compare the performance of the neighbors operation
with and without neighborhood index for combinations of parameter values which we
could not evaluate experimentally with our database. Figure 9 depicts the results (1) for
f = 10, v = 100 and varying n and (2) for n = 100,000, f = 10 and varying v. These results
demonstrate a significant speed-up for the neighbors operation with compared to
without neighborhood index. Furthermore, this speed-up grows strongly with increas-
ing number of vertices of the spatial objects. 

The next set of experiments analyzed the system overhead which is rather large.
This overhead, however, can be reduced when calling multiple correlated neighbors op-
erations issued by one extensions operation, since the client-server communication,

Table 2: Cost model for the neighbors operation

Step Cost without neighborhood index Cost with neighborhood index

Selec-
tion

s s

Filter

Refine-
ment

f logcindex
n pindex⋅ ⋅ tpage⋅ logcindex

f n⋅( ) pindex⋅ tpage⋅

1 f+( ) v cv⁄ pdata⋅ ⋅ tpage⋅ f v
2

tfloat⋅ ⋅+ ff f pdata⋅ ⋅ tpage⋅

Fig. 8. Comparison of cost model versus experimental results
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the retrieval of the relevant neighborhood index etc. is necessary only once for the
whole extensions operation and not for each of the neighbors operations. In our
experiments, we found that the system overhead was typically reduced by 50%, e.g.
from 211 ms to 100 ms, when calling multiple correlated neighbors operations.

5 Conclusions

In this paper, we defined neighborhood graphs and paths and a small set of database
primitives for spatial data mining. We showed that spatial data mining algorithms such
as spatial clustering, characterization, and trend detection are well supported by the pro-
posed operations. Furthermore, we discussed filters restricting the search to such neigh-
borhood paths “leading away” from a starting object. An analytical as well as a
experimental analysis demonstrated the effectiveness of the proposed filter. Final
introduced neighborhood indices to speed-up the processing of our database prim
Neighborhood indices can be easily created in a commercial DBMS by using stan
functionality, i.e. relational tables and index structures. We implemented the database
primitives on top of the object-relational DBMS Illustra. The efficiency of the neigh-
borhood indices was evaluated by using an analytical cost model and an extensive ex-
perimental study on a geographic database.

So far, the neighborhood relations between two objects depend only on the pr
ties of the two involved objects. In the future, we will extend our approach to neigh
hood relations such as “being among the k-nearest neighbors” which depend on mo
than the two related objects. The investigation of other filters for neighborhood p
with respect to their effectiveness and efficiency in different applications is a furthe
teresting issue. Finally, a tighter integration of the database primitives with the DB
should be investigated. 
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