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Abstract. Both, the number and the size of spatial databases, such as geographic
or medical databases, are rapidly growing because of the large amount of dataob-
tained from satellite images, computer tomography or other scientific equipment.
Knowledge discovery in databases (KDD) is the process of discovering vaid,
novel and potentially useful patterns from large databases. Typical tasks for
knowledge discovery in spatial databases include clustering, characterization and
trend detection. The mgor difference between knowledge discovery in relational
databases and in spatial databases is that attributes of the neighbors of some ob-
ject of interest may have an influence on the object itself. Therefore, spatial
knowledge discovery algorithms heavily depend on the efficient processing of
neighborhood relations since the neighbors of many objects have to be investi-
gated in asingle run of atypica agorithm. Thus, providing general concepts for
neighborhood relations as well as an efficient implementation of these concepts
will allow atight integeration of spatial knowledge discovery agorithms with a
spatial database management system. This will speed-up both, the development
and the execution of spatial KDD algorithms. For this purpose, we define asmall
set of database primitives, and we demonstrate that typical spatia KDD algo-
rithms are well supported by the proposed database primitives. By implementing
the database primitives on top of acommercial database management system, we
show the effectiveness and efficiency of our approach, experimentally aswell as
analytically. The paper concludes by outlining some interesting issues for future
research in the emerging field of knowledge discovery in spatial databases.

1 [Introduction

Knowledge discovery in databases (KDD) has been defined as the process of dis-
covering valid, novel, and potentially useful patterns from dataJ&itial Database
Systems (SDBS) (see [10] for an overview) are database systems for the management of
spatial data. To find implicit regularities, rules or patterns hidden in large spatial data-
bases, e.g. for geo-marketing, traffic control or environmental studies, spatial data min-
ing algorithms are very important (see [12] for an overview).

Most existing data mining algorithms run on separate and specially prepared files,
but integrating them with database management system (DBMS) has the following ad-
vantages. Redundant storage and potential inconsistencies can be avoided. Further-
more, commercial database systems offer various index structures to support different
types of database queries. This functionality can be used without extra implementation
effort to speed-up the execution of data mining algorithms. Similar to the relational
standard query language SQL, the use of standard primitives will speed-up the devel-
opment of new data mining algorithms and will also make them more portable.

In this paper, we introduce a set of database primitives for mining in spatial databas-
es. [1] follows a similar approach for mining in relational databases. Our database prim-



itives (section 2) are based on the concept of neighborhood relations. The proposed
primitives are sufficient to express most of the algorithms for spatial data mining from
the literature (section 3). We present techniques for efficiently supporting these primi-
tiveshy aDBMS (section 4). Section 5 summarizes the contributions and di scusses sev-
eral issues for future research.

2 Database Primitivesfor Spatial Data Mining

The mgjor difference between mining in relational databases and mining in spatial
databases is that attributes of the neighbors of some object of interest may have anin-
fluence on the object itself. Therefore, our database primitives (see[7] for afirst sketch)
are based on the concept of spatial neighborhood relations.

2.1 Neighborhood Relations

The mutual influence between two objects
depends on factors such as the topology,
the distance or the direction between the
objects. For instance, anew industrial plant
may pollute its neighborhood depending
on the distance and on the major direction
of thewind. Figure 1 depictsamap used in
the assessment of a possible location for a
new industrial plant. The map shows three
g : regions with different degrees of pollution
Fig. 1. Regions of pollution around a planned (indicated by th@f d'ffer_ent colors) caused

industrial plant [3] by the planned industrial plant. Further-
more, the influenced objects such as com-

munities and forests are depicted.

We introduce three basic types of binary spatial relations: topological, distance and
direction relations. Spatial objects may be either points or spatialy extended objects
such as lines, polygons or polyhedrons. Spatially extended objects may be represented
by a set of points at its surface, e.g. by the edges of a polygon (vector representation) or
by the points contained in the object, e.g. the pixels of an object in araster image (raster
representation). Therefore, we use sets of points as a generic representation of spatial
objects. In general, the pointsp = (py, P2, - - -, Pg) are elements of a d-dimensional Eu-
clidean vector space called Points. In the following, however, we restrict the presenta-
tion to the 2-dimensiona case, athough, all of the introduced notions can easily be
applied to higher dimensions d. Spatial objects O are represented by a set of points, i.e.
0 0 2™, For apoint p = (py, py), Py and py denote the coordinates of p in the x- and
the y-dimension.

Topological relations are relations which are invariant under topological transfor-
mations, i.e. they are preserved if both objects are rotated, translated or scaled simulta-
neously.



Definition 1. (topological relations) The topological relations between two objects A
and B are derived from the nine intersections of the interiors, the boundaries and the
complements of A and B with each other. The relations are: A digoint B, A meets B, A
overlaps B, A equals B, A covers B, A covered-by B, A contains B, Ainside B. A formal
definintion can be found in [5].

Distance relations are those relations comparing the distance of two objects with a
given constant using one of the arithmetic operators.

Definition 2: (distance relations) Let dist be a distance function, let o be one of the
arithmetic predicates <, > or =, let c be area number and let A and B be spatial objects,

i.e. A, B [02P9™S, Then adistance relation A distancey . B holdsiff dist(A, B) o c.

In the following, we define 2-dimensional direction relations and we will use their
geographic names. We definethe direction relation of two spatially extended objects us-
ing one representative point rep(A) of the source object A and all points of the destina-
tion object B. The representative point of asource object is used astheorigin of avirtual
coordinate system and its quadrants define the directions.

Definition 3: (direction relations) Let rep(A) be the representative of asource object A.
- B northeast A holds, iff U b B: by, = rep(A), U by = rep(A)y,

southeast, southwest and northwest are defined analogously.

- Bnorth Aholds, iff b [B: by = rep(A), . south, west, east are defined analogously.
- B any_direction A is defined to be TRUE for al A, B.

Obviously, for each pair of spatial objects at |east one of the direction relations holds
but the direction relation between two objects may not be unique. Only the special re-
| ations northwest, northeast, southwest and southeast are mutually exclusive. However,
if considering only these special directionsthere may be pairs of objectsfor which none
of these direction relations hold, e.g. if some points of B are northeast of A and some
points of B are northwest of A. Onthe other hand, all the direction relations are partially
ordered by a specialization relation (simply given by set inclusion) such that the small-
est direction relation for two objects A and B is uniquely determined. We call thissmall-
est direction relation for two objects A and B the exact direction relation of A and B.

Topologica, distance and direction relations may be combined by the logica oper-
ators (I (and) as well as [0 (or) to express a complex neighborhood relation.

Definition 4: (complex neighborhood relations) If r, and r, are neighborhood rela-
tions, thenr, Ory, andry Or, are also (complex) neighborhood relations.

2.2 Neighborhood Graphs and Their Operations

Based on the neighborhood relations, we introduce the concepts of neighborhood
graphs and neighborhood paths and some basic operations for their manipulation.
Definition 5: (neighborhood graphs and paths) Let neighbor be a neighborhood rela-

tion and DB 0 2P°MS he  database of spatial objects.

a) A neighborhood graph Gr?e?ghbor = (N, E) isagraph where the set of nodes N cor-

responds to the set of objects 0 [1 DB. The set of edges EO N x N contains the
pair of nodes (n4, ny) iff neighbor(n4,n,) holds. Let n denote the cardinality of N and



let e denote the cardinality of E. Then, f:= e/ n denotes the average number of edges
of anode, i.e. f is called the “fan out” of the graph.
b) A neighborhood path is a sequence of nodes [n,, . . ., n], whereneighbor (n;, n;.1)

holds foralln; O N, 1< i <k . The numbérof nodes is called tHength of the neigh-

borhood path.
Lemma 1. The expected number of neighborhood paths of lekgttarting from a

given node igk-Land the expected number of all neighborhood paths of l&rigthen
nefK-1,

Obviously, the number of neighborhood paths may become very large. For the pur-
pose of KDD, however, we are mostly interested in a certain class of paths, i.e. paths
which are “leading@way” from the starting object in a straightforward sense. Therefore,
the operations on neighborhood paths will provide parameters (filters) to further reduce
the number of paths actually created.

We assume the standard operations from relational algebra ssetéctien, union,
intersection anddifference to be available for sets of objects and for sets of paths. Fur-
thermore, we define a small set of basic operations on neighborhood graphs and paths
as database primitives for spatial data mining. In this paper, we introduce only the two
most important of these operations:

nei ghbors: NGraphs x Objects x Predicates -->

ext ensi ons: NG aphs x 2NPahs | nt eger x Predicates
The operatiomei ghbor s(gr aph, obj ect, pred) returns the set of all objects
connected tobj ect viasome edge of gr aph satisfying the conditions expressed
by the predicater ed. The additional selection conditiqr ed is used if we want to
restrict the investigation explicitly to certain types of neighbors. The definition of the
predicatepr ed may use spatial as well as non-spatial attributes of the objects.

The operatiorext ensi ons( gr aph, pat hs, nax, pred) returns the set of all
paths extending one of the elementpat hs by at mostmax nodes ofyr aph. All
the extended paths must satisfy the predipated. Therefore, the predicaper ed in
the operatioxt ensi ons acts as a filter to restrict the number of paths created using
domain knowledge about the relevant paths.

ZObjECTS
ES 2NPaths

2.3 Filter Predicatesfor Neighborhood Paths

Neighborhood graphs will in general contain many paths which are irrelevant if not
“misleading” for spatial data mining algorithms. The task of spatial trend analysis, i.e.
finding patterns of systematic change of some non-spatial attributes in the neighbor-
hood of certain database objects, can be considered as a typical example. Detecting such
trends would be impossible if we do not restrict the pattern space in a way that paths
changing direction in arbitrary ways or containing cycles are eliminated. In the follow-
ing, we discuss one possible filter predicate stalike. Other filters may be useful de-
pending on the application.

Definition 6: (filter starlike) Let p = [ny,n,,...,n] be a neighborhood path anddel be
the exact direction fam andn;, 1, i.e.n;, 1 rel; nj holds. The predicatesarlike andvar -

iable-starlike for pathsp are defined as follows:
starlike(p) : = (U] <k Oi>j:injyqrelin < rel; Orelp), if k>1; TRUE, ifk=1.



The filter starlike requires that, when extending a
garlike path p, the exact “final” directiomel; of p cannot be
generalized. For instance, a path with “final” direction
northeast can only be extended by a node of an edge
Fig. 2. Illustration of two with exact directiomortheast but not by an edge with
different filter predicates exact directiomorth.
Under the following assumptions, we can calculate
the number of altarlike neighborhood paths of a certain lengtbr a given fanout
of the neighborhood graph.
Lemma 2: Let A be a spatial object and lelbe an integer. Lentersects be chosen as
the neighborhood relation. If the representative points of all spatial objects are uni-
formly distributed and if they have the same extension in both x and y direction, then
the number of alftarlike neighborhood paths with sour&éaving a length of at most
lis O(2') for f = 12 andO(l) for f = 6. (see [6] for a proof)

The assumptions of this lemma may seem to be too restrictive for real applications.
Note, however, thantersects is a very natural neighborhood relation for spatially ex-
tended objects. To evaluate the assumptions of uniform distribution of the representa-
tive points of the spatial objects and of the same size of these objects, we conducted a
set of experiments to compare the expected numbers of neighborhood paths with the ac-
tual number of paths created from a real geographic database on Bavaria. The database
contains the ATKIS 500 data [2] and the Bavarian part of the statistical data obtained
by the German census of 1987.

We find that forf = 6 the number odll neighborhood paths (starting from the same
source) with a length of at maséx-length is O(6™1€9") and the number of tratar-
like neighborhood paths only grows approximately linear with increasaxg ength -
as stated by lemma 2. For f = 12 the numbealbheighborhood paths with a length of
at mostmax-length is O(12"™1€9t") 55 we can expect from the lemma. However, the
number of thestarlike neighborhood paths is significantly less than™®{289) This
effect can be explained as follows. The lemma assumes equal size of the spatial objects.
However, small destination objects are more likely to fulfil the filter starlike than large
destination objects implying that the size of objects on starlike neighborhood paths
tends to decrease. Note that lemma 2 nevertheless yields an upper bound for the number
of starlike neighborhood paths created.

3 Algorithmsfor Spatial Data Mining

To support our claim that the expressivity of our spatial data mining primitives is
adequate, we demonstrate how typical spatial data mining algorithms can be expressed
by the database primitives introduced in section 2.

3.1 Spatial Clustering

Clusteringis the task of grouping the objects of a database into meaningful subclass-
es (that is, clusters) so that the members of a cluster are as similar as possible whereas
the members of different clusters differ as much as possible from each other. Applica-
tions of clustering in spatial databases are, e.g., the detection of seismic faults by group-



ing the entries of an earthquake catalog or the creation of thematic maps in geographic
information systems by clustering feature spaces.

Different types of spatial clustering algorithms have been proposed. The basic idea
of asingle scan algorithmisto group neighboring objects of the database into clusters
based on alocal cluster condition performing only one scan through the database. Sin-
gle scan clustering algorithms are efficient if theretrieval of the neighborhood of an ob-
ject can be efficiently performed by the SDBS. Note that local cluster conditions are
well supported by the nei ghbor s operation on an appropriate neighborhood graph.
The agorithmic schema of single scan clustering is depicted in figure 3.

SingleScanClustering(Database db; NRelation rel)
setGraphtocr eat e_NG aph(db, rel);
initialize a seCurrentObjects as empty;
for each nodeO in Graph do
if Ois not yet member of some clustlen
create a new clusté€,
insertO into CurrentObjects;
while CurrentObjects not emptydo
remove the first element @urrentObjects asO;
setNeighborstonei ghbor s( Graph, O, TRUE) ;
if Neighbors satisfy the cluster conditiaho
addO to clustelC,;
addNeighborsto CurrentObjects;
end SingleScanClustering;
Fig. 3. Schema of single scan clustering a gorithms

Different cluster conditionsyield different notions of a cluster and different cluster-
ing agorithms. For example, GDBSCAN [16] relies on a density-based notion of clus-
ters. The key idea of a density-based cluster is that for each point of a cluster its ¢-
neighborhood has to contain at least a minimum number of points. This idea of “densi-
ty-based clusters” can be generalized in two important ways. First, any notion of a
neighborhood can be used instead of-aeighborhood if the definition of the neigh-
borhood is based on a binary predicate which is symmetric and reflexive. Second, in-
stead of simply counting the objects in a neighborhood of an object other measures to
define the “cardinality” of that neighborhood can be used as well. Whereas a distance-
based neighborhood is a natural notion of a neighborhood for point objects, it may be
more appropriate to use topological relations sudhtassects or meets to cluster spa-
tially extended objects such as a set of polygons of largely differing sizes.

3.2 Spatial Characterization

The task ofcharacterization is to find a compact description for a selected subset
(thetarget set) of the database. #patial characterization [8] is a description of the spa-
tial and non-spatial properties which are typical for the target objects but not for the
whole database. The relative frequencies of the non-spatial attribute values and the rel-
ative frequencies of the different object types are used as the interesting properties. For



instance, different object types in a geographic database are communities, mountains,
lakes, highways, railroads etc. To obtain aspatial characterization, not only the proper-
ties of the target objects, but a so the properties of their neighbors (up to a given maxi-
mum number of edgesin the relevant neighborhood graph) are considered.
A spatial characterization rule of the form target O p,q (ny, freg-facy) O... Opy (Ng,
freg- facy) meansthat for the set of all targets extended by n; neighbors, the property p;
is freg-fac; times more (or less) frequent than in the whole database. The characteriza-
tion algorithm usually starts with a small set of target objects, selected for instance by
a condition on some non-spatial attribute(s) such as “rate of retired people = HIGH”
(see figure 4, left). Then, the algorithm expands regions around the target objects, si-
multaneously selecting those attributes of the regions for which the distribution of val-
ues differs significantly from the distribution in the whole database (figure 4, right).

target objects maximally expanded regions

Fig. 4. Characterizing wrt. high rate of retired people [8]

In the last step of the algorithm, the following characterization rule is generated de-
scribing the target regions. Note that this rule lists not only some non-spatial attributes
but also the neighborhood of mountains (after three extensions) as significant for the
characterization of the target regions:

community has high rate of retired people O
apartnents per building = very low (0, 9.1) O
rate of foreigners = very low (0, 8.9)0
... O
obj ect type = mountain (3, 4.1)

3.3 Spatial Trend Detection

A spatial trend [8] is as a regular change of one or more non-spatial attributes when
moving away from a given start objext Neighborhood paths starting fravare used
to model the movement and a regression analysis is performed on the respective at-
tribute values for the objects of a neighborhood path to describe the regularity of
change. For the regression, the distance fsasthe independent variable and the dif-
ference of the attribute values are the dependent variable(s) for the regression. The cor-
relation of the observed attribute values with the values predicted by the regression
function yields a measure of confidence for the discovered trend.



Algorithm global-trends detects global trends around a start object 0. The existence
of aglobal trend for astart object o indicatesthat if considering all objects on al paths
starting from o the values for the specified attribute(s) in general tend to increase (de-
crease) with increasing distance. Figure 5 (Ieft) depicts the result of algorithm global-
trends for the trend attribute “average rent” and a start object representing the city of
Regensburg.

Algorithm local-trends detects single paths starting from an obgeand having a
certain trend. The paths starting franmay show different pattern of change, for ex-
ample, some trends may be positive while the others may be negative. Figure 5 (right)
illustrates this case again for the trend attribute “average rent” and the start object rep-
resenting the city of Regensburg.

Global trend L ocal trends

== direction of decreasing attribute values
Fig. 5. Trends of the*average rent” starting from the city of Regensburg

4 Efficient DBMS Support Based on Neighborhood I ndices

Typically, spatial index structures, e.g. R-trees [11], are used in an SDBMS to speed
up the processing of queries such as region queries or nearest neighbor queries [10].
Therefore, our default implementation of thei ghbor s operations uses an R-tree. If
the spatial objects are fairly complex, however, retrieving the neighbors of some object
this way is still very time consuming due to the complexity of the evaluation of neigh-
borhood relations on such objects. Furthermore, when creating all neighborhood paths
with a given source object, a very large numbeneif ghbor s operations has to be
performed. Finally, many SDBS are rather static since there are not many updates on
objects such as geographic maps or proteins. Therefore, materializing the relevant
neighborhood graphs and avoiding to access the spatial objects themselves may be
worthwhile. This is the idea of the neighborhood indices.

4.1 Neighborhood Indices

Our concept oheighborhood indices is related to the work of [15] and [13]. [15]
introduced the concept gpatial join indices as a materialization of a spatial join with
the goal of speeding up spatial query processing. This paper, however, does not deal
with the questions of efficient implementation of such indices. [13] extends spatial join
indices by associating each pair of objects with their distance. In its basic form, this in-
dex requires Q@) space because it needs one entry not only for pairs of neighboring
objects but for each pair of objects. Therefore, in [13] a hierarchical version of distance



associated join indicesis proposed. In general, however, we cannot rely on such hierar-
chiesfor the purpose of supporting spatial data mining. Our approach, called neighbor-
hood indices, extends distance associated join indices with the following new
contributions:

* A specified maximum distance restricts the pairs of objects represented in a neigh-
borhood index.

» For each of the different types of neighborhood relations (that is distance, direction,
and topological relations), the concrete relation of the pair of objects is stored.

Definition 7: (neighborhood index) Let DB be a set of spatial objects andreix and
dist be real numbers. L& be a direction relation ardbe a topological relation. Then
the neighborhood index for DB with maximum distancenax, denoted byl nfan , is de-
fined as followst e, = {0;,0,,dist,D,T) |
0., 0, 0DB O Oy distance. 44 O, O dist<smax 0 O,D O; 00 O TO,}.
A simple implementation of a neighborhood index using'drBe on the key at-
tribute Object-1D is illustrated in figure 6.

Object-1D Neighbor Distance Direction Topology
B*- 01 0y 2.7 southwest disjoint
tree 0, 03 0 northwest overlap

Fig. 6. Sample Neighborhood Index

A neighborhood index supports not only one but a set of neighborhood graphs. We
call a neighborhood indeapplicable for a given neighborhood graph if the index con-
tains an entry for each of the edges of the graph. To find the neighborhood indices ap-
plicable for some neighborhood graph, we introduce the notion of the critical distance
of a neighborhood relation. Intuitively, tiogitical distance of a neighborhood relation
r is the maximum possible distance for a pair of obj@gtandO, satisfyingO; r O,.

Definition 8: (applicable neighborhood index) Let GrDB be a neighborhood graph and
let | ;g be a neighborhood indeba,  aiplicable for GP® iff
0(0, 0 DB, 0,0 DB)0,r0, 0 (0, O, dist, D, T) O 1o

Definition 9: (critical distance of a neighborhood relation) Let r be a neighborhood
relation. Thecritical distance of r, denoted byc-distance(r), is defined as follows:

o if ris a topological relation excegisjoint
Oc if ris the relatiordistance. . or distance.
c-distance(r) = Eoo if r is a direction relation, the relatiaistance,, or digoint

O min(cdistance(r,), cdistance(r,)) if r=r, Or,
0 max(cdistance(r,), cdistance(r,)) if r=r, Or,

A neighborhood index with a maximum distancaraik is applicable for a neigh-
borhood graph with relationif the critical distance aof is not larger thamax.



Lemma3: Let GP® be aneighborhood graph and let | ne, be aneighborhood index.

If max > c-distance(r), then | o, is applicablefor GPB.

Obviously, if two neighborhood indices I ;" and 1> with ¢q < ¢, areavailable and
applicable, using ICDlB IS more efficient because in general it has|ess entries than ICDZB .
The smallest applicable neighborhood index for some neighborhood graph is the appli-
cable neighborhood index with the smallest critical distance.

In figure 7, we sketch the algorithm for processing the nei ghbor s operation
which makes use of the smallest applicable neighborhood index. If there is no applica-
ble neighborhood index, then the standard approach that uses an R-tree isfollowed.

neighbors (graph G°® , object o, predicate pred)
select as | the smdlest applicable neighborhood index for GPB ; I/ Index Selection
if such | existsthen "I/ Filter Sep
use the neighborhood index | to retrieve as candidates the set of objects ¢
having an entry (o,c,dist, D, T)in|
else use the R-tree to retrieve as candidates the set of objects ¢ satisfyingor ¢;
initialize an empty set of neighbors; /I Refinement Step
for each cin candidates do
if or cand pred(c) then add c to neighbors
return neighbors;

Fig. 7. Algorithm neighbors

Thefirst step of algorithm neighbors, theindex selection, selects aneighborhood in-
dex. The filter step returns a set of candidate objects (which may satisfy the specified
neighborhood relation) with a cardinality significantly smaller than the database size.
In the last step, the refinement step, for al these candidates the neighborhood relation
aswell asthe additional predicate pred are evaluated and all objects passing thistest are
returned as the resulting neighbors. Theext ensi ons operation can obviously beim-
plemented by iteratively performing nei ghbor s operations. Therefore, it is obvious
that the performance of the nei ghbor s operation isvery important for the efficiency
of our approach.

To create aneighborhood index | nfan , aspatia join on DB with respect to the neigh-
borhood relation (O, distance_ 0O, Odist < max) is performed. A spatia join can
be efficiently processed by using a spatial index structure, see e.g. [4]. For each pair of
objects returned by the spatia join, we then have to determine the exact distance, the
direction relation and the topological relation. The resulting tuples of the form
(0,4, O,, Distance, Direction, Topology) are stored in a relation which is indexed
by aB+-tree on the attribute O.

Updates of a database, i.e. insertions or deletions, require updates of the derived
neighborhood indices. Fortunately, the update of aneighborhood index InfaBX isrestrict-
ed to the neighborhood of the respective object defined by the neighborhood relation A
distance. 5« B. Thisneighborhood can beefficiently retrieved by using either aneigh-
borhood index (in case of a deletion) or by using a spatial index structure (in case of an
insertion).



4.2 Cost Modd

We developed a cost model to predict the cost of performing anei ghbor s opera-
tion with and without a neighborhood index. We use tp,qe i.€. the execution time of a
page access, and ty 4, i -€. the execution time of afloating point comparison, asthe units
for 1/0 time and CPU time, respectively.

Intable 1, we define the parameters of the cost model and list typical valuesfor each
of them. The system overhead sincludes client-server communication and the overhead
induced by several SQL queriesfor retrieving the relevant neighborhood index and the
minimum bounding box of a polygon (necessary for the access of the R-tree). pingex and
Pyata denote the probability that a requested index page and data page, respectively,
have to be read from disk according to the buffering strategy.

Table 1: Parameters of the cost mode

name meaning typical values
n number of nodes in the neighborhood graph [10°%..107]
f average number of edges per node in the graph (fan out) [1.. 102]
Y average number of vertices of a spatial object [1.. 103]
ff ratio of fanout of the index and fanout (f) of the graph [1..10]
Cindex | Capacity of apagein terms of index entries 128
Cy capacity of apage in terms of vertices 64
Pindex | Probability that agiven index page must be read from disk [0..1]
Pgata | Probability that a given data page must be read from disk [0..1]
thage | average execution time for a page access 1* 107 sec
thoat | €Xecution time for afloating point comparison 3* 10 sec
S system overhead dependson DBMS

Table 2 shows the cost for the three steps of processing a nei ghbor s operation
with and without a neighborhood index. In the R-tree, there is one entry for each of the
n nodes of the neighborhood graph whereas the B+-tree stores one entry for each of the
f * n edges. We assume that the number of R-tree paths to be followed is proportional
to the number of neighboring objects, i.e. proportional to f. A spatia object with v ver-
tices requires v/c, data pages. We assume a distance relation as neighborhood relation
requiring V2 floating point comparisons. When using a neighborhood index, the filter
step returns ff * f candidates. The refinement step has to access their index entries but
does not have to access the vertices of the candidates since the refinement test can be
directly performed by using the attributes Distance, Direction and Topology of theindex
entries. This test involves a constant (i.e. independent of v) number of floating point
comparisons and requires no page accesses implying that its cost can be neglected.



Table 2: Cost model for the nei ghbor s operation

Sep Cost without neighborhood index Cost with neighborhood index
Selec-

. s S
tion
Filter f qlogcindexnw [Pindex tpage (Iogcindex(f Ehﬂ CPindex page
Refine- 2
ment (1+0) [ v/¢, ] Pyata Hpege * IV [tﬂoj 0 BPyata page

4.3 Experimental Results

We implemented the database primitives on top of the commercial DBMS Illustra
using its 2D spatia data blade which provides R-trees. A geographic database of Bavar-
iawas used for an experimental performance evaluation and validation of the cost mod-
el. This database represents the Bavarian communities with one spatia attribute
(polygon) and 52 non-spatial attributes (such as average rent or rate of unemployment).
All experiments were run on HP9000/715 (50MHZz) workstations under HP-UX 10.10.

Thefirst set of experiments compared the performance predicted by our cost models
with the experimental performance when varying the parameters n, f and v. The results
show that our cost model is able to predict the performance reasonably well. For in-
stance, figure 8 depicts the results for n = 2,000, v = 35 and varying values for f.

Comparison with index Comparison without index

725
——model ——model -’
— -experiments — - experiments|

costin ms
N
{2}
o
|

costin ms
(o2}
a
o
|

Fig. 8. Comparison of cost model versus experimental results

We used our cost model to compare the performance of thenei ghbor s operation
with and without neighborhood index for combinations of parameter values which we
could not eval uate experimentally with our database. Figure 9 depicts the results (1) for
f=10, v=100and varying nand (2) for n= 100,000, f = 10 and varying v. These results
demonstrate a significant speed-up for the nei ghbor s operation with compared to
without neighborhood index. Furthermore, this speed-up grows strongly with increas-
ing number of vertices of the spatial objects.

The next set of experiments analyzed the system overhead which is rather large.
Thisoverhead, however, can be reduced when calling multiple correlated neighbors op-
erationsissued by oneext ensi ons operation, sincethe client-server communication,
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the retrieva of the relevant neighborhood index etc. is necessary only once for the
wholeext ensi ons operation and not for each of thenei ghbor s operations. In our
experiments, we found that the system overhead was typically reduced by 50%, e.g.
from 211 msto 100 ms, when calling multiple correlated nei ghbor s operations.

5 Conclusions

In this paper, we defined neighborhood graphs and paths and asmall set of database
primitives for spatial data mining. We showed that spatial data mining algorithms such
asspatial clustering, characterization, and trend detection arewell supported by the pro-
posed operations. Furthermore, we discussed filters restricting the search to such neigh-
borhood paths “leadingway” from a starting object. An analytical as well as an
experimental analysis demonstrated the effectiveness of the proposed filter. Finally, we
introduced neighborhood indices to speed-up the processing of our database primitives.
Neighborhood indices can be easily created in a commercial DBMS by using standard
functionality, i.e. relational tables and index structuvs.implemented the database
primitives on top of the object-relational DBMS Illustra. The efficiency of the neigh-
borhood indices was evaluated by usingnalytical cost model and an extensive ex-
perimental study on a geographic database.

So far, the neighborhood relations between two objects depend only on the proper-
ties of the two involved objects. In the future, we will extend our approach to neighbor-
hood relations such as “being among kheearest neighbors” which depend on more
than the two related objects. The investigation of other filters for neighborhood paths
with respect to their effectiveness and efficiency in different applications is a further in-
teresting issue. Finally, a tighter integration of the database primitives with the DBMS
should be investigated.
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