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Abstract. Recently, structured data is getting more and more impor-
tant in database applications, such as molecular biology, image retrieval
or XML document retrieval. Attributed graphs are a natural model for
the structured data in those applications. For the clustering and clas-
sification of such structured data, a similarity measure for attributed
graphs is necessary. All known similarity measures for attributed graphs
are either limited to a special type of graph or computationally extremely
complex, i.e. NP-complete, and are, therefore, unsuitable for data mining
in large databases. In this paper, we present a new similarity measure
for attributed graphs, called matching distance. We demonstrate, how
the matching distance can be used for efficient similarity search in at-
tributed graphs. Furthermore, we propose a filter-refinement architecture
and an accompanying set of filter methods to reduce the number of nec-
essary distance calculations during similarity search. Our experiments
show that the matching distance is a meaningful similarity measure for
attributed graphs and that it enables efficient clustering of structured
data.

1 Introduction

Modern database applications, like molecular biology, image retrieval or XML
document retrieval, are mainly based on complex structured objects. Those ob-
jects have an internal structure that is usually modeled using graphs or trees,
which are then enriched with attribute information (cf. figure 1). In addition
to the data objects, those modern database applications can also be character-
ized by their most improtant operations, which are extracting new knowledge
from the database, or in other words data mining. The data mining tasks in
this context require some notion of similarity or dissimilarity of objects in the
database.

A common approach is to extract a vector of features from the database
objects and then use the Euclidean distance or some other Lp-norm between
those feature vectors as similarity measure. But often this results in very high-
dimensional feature vectors, which even index structures for high-dimensional
feature vectors like the X-tree [1], the IQ-tree [2] or the VA-file [3], can no longer
handle efficiently due to a number of effects usually described by the term ’curse
of dimensionality’.

Stefan Schönauer
Proc. 5th Int. Conf. on Data Warehousing and Knowledge Discovery (DaWaK'03), Prague, Czech Republic, 2003



� �
� �
� �
� �

� �
� �
� �
� �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

O O

O O

C

C

C

C

C C

C

C

C

H

H

H

Fig. 1. Examples of attributed graphs: an image together with its graph and
the graph of a molecule.

Especially for graph modeled data, the additional problem arises how to in-
clude the structural information into the feature vector. As the structure of a
graph cannot be modeled by a low-dimensional feature vector, the dimensional-
ity problem gets even worse. A way out of this dilemma is to define similarity
directly for attributed graphs. Consequently, there is a strong need for similarity
measures for attributed graphs. Several approaches to this problem have been
proposed in recent time. Unfortunately, all of them have certain drawbacks, like
being restricted to special graph types or having NP-complete time complexity,
which makes them unusable for data mining applications. Therefore, we present a
new similarity measure for attributed graphs, called the edge matching distance,
which is not restricted to special graph types and can be evaluated efficiently.
Additionally, we propose a filter-refinement architecture for efficient query pro-
cessing and provide a set of filter methods for the edge matching distance.

The paper is organized as follows: In the next section, we describe the existing
similarity measures for attributed graphs and discuss their strengths and weak-
nesses. The edge matching distance and its properties are presented in section 3,
before the query architecture and the filter methods are introduced in section 4.
In section 5, the effectiveness and efficiency of our methods is demonstrated in
experiments with real data from the domain of image retrieval, before we finish
with a short conclusion.

2 Related Work

As graphs are a very general object model, graph similarity has been studied
in many fields. Similarity measures for graphs have been used in systems for
shape retrieval [4], object recognition [5] or face recognition [6]. For all those
measures, graph features specific to the graphs in the application, are exploited
in order to define graph similarity. Examples of such features are a given one-
to-one mapping between the vertices of different graphs or the requirement that
all graphs are of the same order.

A very common similarity measure for graphs is the edit distance. It uses the
same principle as the well known edit distance for strings [7, 8]. The idea is to
determine the minimal number of insertion and deletions of vertices and edges



to make the compared graphs isomorphic. In [9] Sanfeliu and Fu extended this
principle to attributed graphs, by introducing vertex relabeling as a third basic
operation beside insertions and deletions. In [10] this measure is used for data
mining in a graph.

Unfortunately, the edit distance is a very time-complex measure. Zhang, Stat-
man and Shasha proved in [11] that the edit distance for unordered labeled trees
is NP-complete. Consequently, in [12] a restricted edit distance for connected
acyclic graphs, i.e. trees, was introduced.

Papadopoulos and Manulopoulos presented another similarity measure for
graphs in [13]. Their measure is based on histograms of the degree sequence of
graphs and can be computed in linear time, but does not take the attribute
information of vertices and edges into account.

In the field of image retrieval, similarity of attributed graphs is sometimes
described as an assignment problem [14], where the similarity distance between
two graphs is defined as the minimal cost for mapping the vertices of one graph
to those of another graph. With an appropriate cost function for the assignment
of vertices, this measure takes the vertex attributes into account and can be
evaluated in polynomial time. This asssignment measure, which we will call
vertex matching distance in the rest of the paper, obviously completely ignores
the structure of graphs, i.e. they are just treated as sets of vertices.

3 The Edge Matching Distance

As we just described, all the known similarity measures for attributed graphs
have certain drawbacks. Starting from the edit distance and the vertex matching
distance we propose a new method to measure the similarity of attributed graphs.
This method solves the problems mentioned above and is useful in the context
of large databases of structured objects.

3.1 Similarity of Structured Data

The similarity of attributed graphs has several major aspects. The first one
is the structural similarity of graphs and the second one is the similarity of
the attributes. Additionally, the weighting of the two just mentioned aspects
is significant, because it is highly application dependent, to what extent the
structural similarity determines the object similarity and to what extent the
attribute similarity has to be considered.

With the edit distance between attributed graphs there exists a similarity
measure that fulfills all those conditions. Unfortunately, the computational com-
plexity of this measure is too high to use it for clustering databases of arbitrary
size. The vertex matching distance on the other hand can be evaluated in polyno-
mial time, but this similarity measure does not take the structural relationships
between the vertices into account, which results in a too coarse model for the sim-
ilarity of attributed graph. For our similarity measure, called the edge matching
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Fig. 2. An example of an edge matching between the graphs G1 and G2.

distance, we also rely on the principle of graph matching. But instead of match-
ing the vertices of two graphs, we propose a cost function for the matching of
edges and then derive a minimal weight maximal matching between the edge
sets of two graphs. This way not only the attribute distribution, but also the
structural relationships of the vertices are taken into account. Figure 2 illustrates
the idea behind our measure, while the formal definition of the edge matching
distance is as follows:

Definition 1. (edge matching, edge matching distance)
Let G1(V1, E1) and G2(V2, E2) be two attributed graphs. Without loss of gen-
erality, we assume that |E1| ≥ |E2|. The complete bipartite graph Gem(Vem =
E1∪E2∪∆, E1× (E2∪∆)), where ∆ represents an empty dummy edge, is called
the edge matching graph of G1 and G2. An edge matching between G1 and G2

is defined as a maximal matching in Gem. Let there be a non-negative metric
cost function c : E1× (E2 ∪∆) → IR+

0 . We define the matching distance between
G1 and G2, denoted by dmatch(G1, G2), as the cost of the minimum-weight edge
matching between G1 and G2 with respect to the cost function c.

Through the use of an appropriate cost function, it is possible to adapt the
edge matching distance to the particular application needs. This implies how
individual attributes are weighted or how the structural similarity is weighted
relative to the attribute similarity.

3.2 Properties of the Edge Matching Distance

In order to use the edge matching distance for the clustering of attributed graphs,
we need to investigate a few of the properties of this measure. The time complex-
ity of the measure is of great importance for the applicability of the measure in
data mining applications. Additionally, the proof of the following theorem also
provides an algorithm how the matching distance can be computed efficiently.

Theorem 1. The matching distance can be calculated in O(n3) time in the worst
case.

Proof. To calculate the matching distance between two attributed graphs G1 and
G2, a minimum-weight edge matching between the two graphs has to be deter-
mined. This is equivalent to determining a minimum-weight maximal matching



in the edge matching graph of G1 and G2. To achieve this, the method of Kuhn
[15] and Munkres [16] can be used. This algorithm, also known as the Hungarian
method, has a worst case complexity of O(n3), where n is the number of edges
in the larger one of the two graphs. ut

Apart from the complexity of the edge matching distance itself, it is also im-
portant that there are efficient search algorithms and index structures to support
the use in large databases. In the context of similarity search two query types
are most important, which are range queries and (k)-nearest-neighbor queries.
Especially for k-nearest-neighbor search, Roussopoulos, Kelley and Vincent[17]
and Hjaltason and Samet [18] proposed efficient algorithms. Both of these re-
quire that the similarity measure is a metric. Additionally, those algorithms rely
on an index structure for the metric objects, such as the M-tree [19]. Therefore,
the following theorem is of great importance for the practical application of the
edge matching distance.

Theorem 2. The edge matching distance for attributed graphs is a metric.

Proof. To show that the edge matching distance is a metric, we have to prove
the three metric properties for this similarity measure.

1. dmatch(G1, G2) ≥ 0
The edge matching distance between two graphs is the sum of the cost for
each edge matching. As the cost function is non-negative, any sum of cost
values is also non-negative.

2. dmatch(G1, G2) = dmatch(G2, G1)
The minimum-weight maximal matching in a bipartite graph is symmetric,
if the edges in the bipartite graph are undirected. This is equivalent to the
cost function being symmetric. As the cost function is a metric, the cost for
matching two edges is symmetric. Therefore, the edge matching distance is
symmetric.

3. dmatch(G1, G3) ≤ dmatch(G1, G2) + dmatch(G2, G3)
As the cost function is a metric, the triangle inequality holds for each triple
of edges in G1, G2 and G3 and for those edges that are mapped to an empty
edge. The edge matching distance is the sum of the cost of the matching of
individual edges. Therefore, the triangle inequality also holds for the edge
matching distance.

ut

Definition 1 does not require that the two graphs are isomorphic in order to
have a matching distance of zero. But the matching of the edges together with an
appropriate cost function ensures that graphs with a matching distance of zero
have a very high structural similarity. But even if the application requires that
only isomorphic graphs are considered identical, the matching distance is still
of great use. The following lemma allows to use the matching distance between
two graphs as filter for the edit distance in a filter refinement architecture as
will be described in section 4.1. This way, the number of expensive edit distance
calculations during query processing can be greatly reduced.



Lemma 1. Given a cost function for the edge matching which is always less than
or equal to the cost for editing an edge, the matching distance between attributed
graphs is a lower bound for the edit distance between attributed graphs:

∀G1, G2 : dmatch(G1, G2) ≤ dED(G1, G2)

Proof. The edit distance between two graphs is the number of edit operations
which are necessary to make those graphs isomorphic. To be isomorphic, the
two graphs have to have identical edge sets. Additionally, the vertex sets have to
be identical, too. As the cost function for the edge matching distance is always
less than or equal to the cost to transform two edges into each other through
an edit operation, the edge matching distance is a lower bound for the number
of edit operations, which are necessary to make the two edge sets identical. As
the cost for making the vertex sets identical is not covered by the edge matching
distance, it follows that the edge matching distance is a lower bound for the edit
distance between attributed graphs. ut

4 Efficient Query Processing Using the Edge Matching
Distance

While the edge matching distance already has polynomial time complexity as
compared to the exponential time complexity of the edit distance, a matching
distance calculation is still a complex operation. Therefore, it makes sense to
try to reduce the number of distance calculations during query processing. This
goal can be achieved by using a filter-refinement architecture.

4.1 Multi-Step Query Processing

Query processing in a filter-refinement architecture is performed in two or more
steps, where the first steps are filter steps that return a number of candidate
objects from the database. For those candidate objects the exact similarity dis-
tance is determined in the refinement step and the objects fulfilling the query
predicate are reported. To reduce the overall search time, the filter steps have
to be easy to perform and a substantial part of the database objects has to be
filtered out.

Additionally, the completeness of the filter step is essential, i.e. there must
be no false drops during the filter steps. Available similarity search algorithms
guarantee completeness if the distance function in the filter step fulfills the lower-
bounding property. This means that the filter distance between two objects must
always be less than or equal to their exact distance.

Using a multi-step query architecture requires efficient algorithms which ac-
tually make use of the filter step. Agrawal, Faloutsos and Swami proposed such
an algorithm for range search [20]. In [21] and [22] multi-step algorithms for
k-nearest-neighbor search were presented, which are optimal in the number of
exact distance calculations neccessary during query processing. Therefore, we
employ the latter algorithms in our experiments.



4.2 A Filter for the Edge Matching Distance

To employ a filter-refinement architecture we need filters for the edge matching
distance, which cover the structural as well as the attribute properties of the
graphs in order to be effective.

A way to derive a filter for a similarity measure is to approximate the
database objects and then determine the similarity of those approximations. As
an approximation for the structure of a graph G we use the size of that graph,
denoted by s(G), i.e. the number of edges in the graph. We define the following
similarity measure for our structural approximation of attributed graphs:

dstruct(G1, G2) = |s(G1)− s(G2)| · wmismatch

Here wmismatch is the cost for matching an edge with the empty edge ∆. When
the edge matching distance between two graphs is determined, all edges of the
larger graph, which are not mapped onto an edge of the smaller graph, are
mapped onto an empty dummy edge ∆. Therefore, the above measure fulfills
the lower bounding property, i.e. ∀G1, G2 : dstruct(G1, G2) ≤ dmatch(G1, G2).

Our filters for the attribute part of graphs are based on the observation
that the difference between the attribute distributions of two graphs influences
their edge matching distance. This is due to the fact, that during the distance
calculation, edges of the two graphs are assigned to each other. Consequently,
the edge matching distance between two graphs is the smaller, the more edges
with the same attribute values the two graphs have, i.e. the more similar their
attribute value distributions are. Obviously, it is too complex to determine the
exact difference of the attribute distributions of two graphs in order to use this
as a filter and an approximation of those distributions is, therefore, needed.

We propose a filter for the attribute part of graphs, which exploits the fact
that |x− y| ≥ ||x| − |y||. For attributes which are associated with edges, we add
all the absolute values for an attribute in a graph. For two graphs G1 and G2

with s(G1) = s(G2), the difference between those sums, denoted by da(G1, G2),
is the minimum total difference between G1 and G2 for the respective attribute.
Weighted appropriately according to the cost function that is used, this is a
lower bound for the edge matching distance. For graphs of different size, this is
no longer true, as an edge causing the attribute difference could also be assigned
to an empty edge. Therefore, the difference in size of the graphs multiplied with
the maximum cost for this attribute has to be substracted from da(G1, G2) in
order to be lower bounding in all cases.

When considering attributes that are associated with vertices in the graphs,we
have to take into account that during the distance calculation a vertex v is com-
pared with several vertices of the second graph, namely exactly degree(v) many
vertices. To take care of this effect, the absolute attribute value for a vertex
attribute has to be multiplied with the degree of the vertex, which carries this
attribute value, before the attribute values are added in the same manner as for
edge attributes. Obviously, the appropriately weighted size difference has to be
substracted in order to achieve a lower bounding filter value for a node attribute.



Fig. 3. Result of a 10-nearest-neighbor query for the pictograph dataset. The
query object is shown on top, the result for the vertex matching distance
is in the middle row and the result for the edge matching distance is in the
bottom row.

With the above methods it is ensured that the sum of the structural filter
distance plus all attribute filter distances is still a lower bound for the edge
matching distance between two graphs. Furthermore, it is possible to precompute
the structural and all attribute filter values and store them in a single vector.
This supports efficient filtering during query processing.

5 Experimental Evaluation

To evaluate our new methods, we chose an image retrieval application and ran
tests on a number of real world data sets:

– 705 black-and-white pictographs
– 9818 full-color TV images

To extract graphs from the images, they were segmented with a region grow-
ing technique and neighboring segments were connected by edges to represent
the neighborhood relationship. Each segment was assigned four attribute values,
which are the size, the height and width of the bounding box and the color of
the segment. The values of the first three attributes were expressed as a percent-
age relative to the image size, height and width in order to make the measure
invariant to scaling. We implemented all methods in Java 1.4 and performed our
tests on a workstation with a 2.4GHz Xeon processor and 4GB RAM.

To calculate the cost for matching two edges, we add the difference between
the values of the attributes of the corresponding terminal vertices of the two
edges divided by the maximal possible difference for the respective attribute.
This way, relatively small differences in the attribute values of the vertices result
in a small matching cost for the compared edges. The cost for matching an edge
with an empty edge is equal to the maximal cost for matching two edges. This
results in a cost function, which fulfills the metric properties.



Fig. 4. A cluster of portraits in the TV-images.

Figure 3 shows a comparison between the results of a 10-nearest-neighbor
query in the pictograph dataset with the edge matching distance and the vertex
matching distance. As one can see, the result obtained with the edge matching
distance contains less false positives due to the fact that the structural properties
of the images are considered more using this measure. It is important to note that
this better result was obtained, even though the runtime of the query processing
increases by as little as 5%.

To demonstrate the usefullness of the edge matching distance for data mining
tasks, we determined clusterings of the TV-images by using the density-based
clustering algorithm DBSCAN [23]. In figure 4 one cluster found with the edge
matching distance is depicted. Although, the cluster contains some other objects,
it clearly consist mainly of portraits. When clustering with the vertex matching
distance, we found no comparable cluster, i.e. this cluster could only be found
with the edge matching distance as similarity measure.

To measure the selectivity of our filter method, we implemented a filter re-
finement architecture as described in [21]. For each of our datasets, we measured
the average filter selectivity for 100 queries which retrieved various fractions of
the database. The results for the experiment when using the full-color TV-images
are depicted in figure 5(a). It shows that the selectivity of our filter is very good,
as e.g. for a query result which is 5% of the database size, more than 87% of
the database objects are filtered out. The results for the pictograph dataset, as
shown in figure 5(b), underline the good selectivity of the filter method. Even
for a quite large result size of 10%, more than 82% of the database objects are
removed by the filter. As the calculation of the edge matching distance is far
more complex than that of the filter distance, it is not surprising that the re-
duction in runtime resulting from filter use was proportional to the number of
database objects, which were filtered out.

6 Conclusions

In this paper, we presented a new similarity measure for data modeled as at-
tributed graphs. Starting from the vertex matching distance, well known from the
field of image retrieval, we developed the so called edge matching distance, which



(a) (b)

Fig. 5. Average filter selectivity for the TV-image dataset (a) and the pic-
tograph dataset (b).

is based on minimum-weight maximum matching of the edge sets of graphs.
This measure takes the structural and the attribute properties of the attributed
graphs into account and can be calculated in O(n3) time in the worst case, which
allows to use it in data mining applications, unlike the common edit distance.
In our experiments, we demonstrate that the edge matching distance reflects
the similarity of graph modeled objects better than the similar vertex matching
distance, while having an almost identical runtime. Furthermore, we devised a
filter refinement architecture and a filter method for the edge matching distance.
Our experiments show that this architecture reduces the number of necessary
distance calculations during query processing between 87% and 93%.

In our future work, we will investigate different cost functions for the edge
matching distance as well as their usefullness for different applications. This
includes especially, the field of molecular biology, where we plan to apply our
methods to the problem of similarity search in protein databases.
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