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ABSTRACT
Fast query processing of complex objects, e.g. spatial or
uncertain objects, depends on efficient spatial pruning of
the objects’ approximations, which are typically minimum
bounding rectangles (MBRs). In this paper, we propose a
novel effective and efficient criterion to determine the spatial
topology between multi-dimensional rectangles. Given three
rectangles R, A, and B in a multi-dimensional space, the
task is to determine whether A is definitely closer to R than
B. This domination relation is used in many applications to
perform spatial pruning. Traditional techniques apply spa-
tial pruning based on minimal and maximal distance. These
techniques however show significant deficiencies in terms of
effectivity. We prove that our decision criterion is correct,
complete, and efficient to compute even for high dimensional
databases. In addition, we tackle the problem of computing
the number of objects dominating an object o. The challenge
here is to incorporate objects that only partially dominate
o. In this work we will show how to detect such partial dom-
ination topology by using a modified version of our decision
criterion. We propose strategies for conservatively and pro-
gressively estimating the total number of objects dominating
an object. Our experiments show that the new pruning crite-
rion, albeit very general and widely applicable, significantly
outperforms current state-of-the-art pruning criteria.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval

General Terms
Performance

1. INTRODUCTION
Speeding-up queries using minimal bounding rectangles

(MBRs) as object approximations is a common technique
used in many different ways. For example, rectangles are
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Figure 1: Spatial pruning on MBRs.

used for data sets with spatially extended objects such as
polygons or CAD models because operations on the exact
object representation are usually much more expensive than
on the object approximations. Furthermore, MBRs are used
as spatial key for spatial access methods, e.g. the most
prominent ones including the R-Tree [15], R*-Tree [3], X-
Tree [4] as well as specialized adaptations like the TPR tree
[25] and the U-Tree [22] among many others. In the last
decade, MBR approximations have also become very pop-
ular for uncertain databases [5, 7, 8, 9, 20] in order to ap-
proximate all possible locations of an uncertain vector object
such as a GPS signal.

Rectangular approximations are commonly integrated into
spatial pruning methods in order to speed-up spatial queries
such as distance-range (ε-range) queries and k-nearest neigh-
bor queries. Generally, current spatial pruning methods uti-
lize the boundaries of regions, in particular of axis-aligned
rectangles, in order to facilitate the pruning, i.e. to filter out
true drops that do not match the query predicate. In this
context, spatial pruning techniques are used for numerous
application fields including searching in multi-dimensional
vector spaces [14, 18, 21], similarity search in time series
databases [19], query processing on spatio-temporal data
[16, 24] and probabilistic query processing on uncertain data
[5, 10, 22].

Most types of spatial/similarity queries used for the above
mentioned applications, including k-nearest neighbor (kNN)
queries, reverse k-nearest neighbor (RkNN) queries, and rank-
ing queries, commonly require the following information.
Given three point sets A, B, and R in a multi-dimensional
space Rd, e.g. representing MBRs, the task is to determine
whether object A is definitely closer to R than B w.r.t. a
distance function defined on the objects in Rd. If this is the
case, we say A dominates B w.r.t. R. An example of such
a situation is depicted in Figure 1. In fact, we will focus on
point sets that represent rectangles, e.g. minimum bounding
rectangles (MBRs), because rectangles are the most preva-



lent form of approximations for sets of points represent-
ing more complex objects as mentioned above. However,
it should be noted that the concepts presented here can
be easily extended to general point sets representing e.g.
pixels of pictures, multi-represented objects, spatial objects
[6], etc. The concept of domination is a central problem
for most types of similarity queries including the ones men-
tioned above in order to identify true hits and true drops
(pruning). For example, in case of a 1NN query around R,
we can prune B if it is dominated by A w.r.t. R and for an
R1NN query around R, we can prune B if A dominates R
w.r.t. B.

The domination problem is trivial for point objects. How-
ever, applied to rectangles, the domination problem is much
more difficult to solve. The problem is that the distance be-
tween two objects approximated by rectangles is no longer a
single value but is represented by an interval. If two such dis-
tance intervals overlap, we cannot definitely detect whether
one distance is smaller than the other. Traditionally, the
minimal distance and maximal distance between rectangles
are used to decide which object is closer to another object.
For example, in a nearest-neighbor query we can prune all
objects whose minimal distance to the query object exceeds
the maximal distance between at least one other object and
the query object. In fact, the traditional distance approx-
imations based on minimal and maximal distance are not
always suitable to determine the distance relationship be-
tween objects. An example is depicted in Figure 1 showing
three objects A, B and R each approximated by rectangles.
In order to decide whether object A is closer to R than
object B, we cannot apply the minimal/maximal distances
because the minimal distance between B and R is smaller
than the maximal distance between A and R. Here, the
problem is that when comparing the maximal distance be-
tween A and R with the minimal distance between B and R
we take two different positions of the object R into account.
For the maximal distance between A and R, we assume that
the object R is located at the upper left corner of its rect-
angle approximation. For the minimum distance between B
and R we assume that the object R is located at the lower
right corner of its rectangle approximation. However, since
an object approximated by a rectangle cannot be located at
different positions at the same time, the two distances be-
tween A and R and between B and R depend on each other.
To the best of our knowledge, none of the existing work, ex-
cept approaches for reverse k-NN queries [23, 12], take this
dependency into account. In our example, in fact, it can be
detected that object A is closer to R than to object B when
taking the above mentioned conditions into account.

For many spatial query applications, it even does not suf-
fice to determine whether an object is dominated by another
object. For example, in order to detect whether an object
A approximated by a rectangle belongs to the kNNs of a
query object Q (k > 1), we have to determine the number
of objects that dominate A w.r.t. Q. In such a case, we have
to tackle the general problem of computing the number of
objects dominating a given object A w.r.t. a given object R
which we call domination count of A w.r.t. R. The challenge
here is to incorporate also sets of objects where each of the
elements does not dominate A if considered separately, but
the entire set dominates A if considered as a compound ob-
ject. We say that the single objects of such a set dominate A

only partially, while the set dominates A in the same sense
discussed above for single objects.

In this paper, we propose a new decision criterion for the
domination problem that can be used in all of the above
sketched applications and in any algorithm designed for the
above mentioned query types. In addition, it is the basis for
our novel method to determine conservative and progressive
bounds for the domination count of an object efficiently. In
particular, we claim the following contributions.

• We discuss current state-of-the-art decision criteria for
the domination problem among rectangles focussing on
their correctness, completeness, and efficiency.

• We propose a novel decision criterion for the domina-
tion problem among rectangles that is correct, com-
plete, and can be efficiently computed.

• We propose a number of heuristics that can be used
to estimate the domination count in consideration of
partial domination.

• We show how our domination decision criterion and
our heuristics to determine the domination count can
be used to improve spatial pruning strategies for a va-
riety of spatial query processing methods.

• We present extensive experiments to evaluate our new
pruning criteria in comparison to state-of-the-art ap-
proaches.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces our novel domination decision criterion.
An effective estimation of the domination count is proposed
in Section 3. The applicability of our concepts for spatial
query problems are discussed in Section 4. Section 5 presents
experimental results and Section 6 finally concludes the pa-
per.

2. DETERMINING DOMINATION

2.1 The Problem of Domination Decision
Let D ⊆ Rd be a database of d-dimensional points and

dist be a distance function on objects in Rd. In this pa-
per we will focus on the Lp norms as the most commonly
used family of distance functions in the area of similarity
search. Intuitively, our problem is the following. Given the
point sets A, B, R ⊆ D, we want to decide if A “is definitely
closer to” R than B to R w.r.t. the distance function dist .
If this is the case, we say A dominates B w.r.t. R. In fact,
we will focus on points sets that represent rectangles, e.g.
minimum bounding rectangles (MBRs) because rectangles
are the most prevalent form of approximations for sets of
points representing more complex objects like page regions
of directory nodes in spatial index structures, polygons, time
series, uncertain objects, etc. (see above).

Definition 1 (Domination). Let A, B, R ⊆ Rd be rect-
angles. The rectangle A dominates B w.r.t. R iff for all
points r ∈ R it holds that every point a ∈ A is closer to r
than any point b ∈ B, i.e.

Dom(A, B, R) ⇔
∀r ∈ R, ∀a ∈ A, ∀b ∈ B : dist(a, r) < dist(b, r) (1)
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Figure 2: MBR pruning example

To determine Dom(A, B, R), Equation 1 is not very help-
ful because a rectangle contains an infinite number of points
in Rd and it is simply not computable to test all triples
a ∈ A, b ∈ B and r ∈ R. Rather, a domination decision
criterion DDC(A, B, R) for the single domination relation
is required, which should fulfill the following properties:

• Correctness: if DDC(A, B, R) returns true then A
dominates B w.r.t. R, i.e.

DDC(A, B, R) ⇒ Dom(A, B, R).

• Completeness: if DDC(A, B, R) returns false then
A does not dominate B w.r.t. R, i.e.

¬DDC(A, B, R) ⇒ ¬Dom(A, B, R).

• Efficiency: DDC(A, B, R) can be evaluated efficiently.

2.2 Existing Domination Decision Criteria
In the following, Xi = [Xmin

i , Xmax
i ] represents the inter-

val of the rectangle X in dimension i, Xmid
i = 1/2 · (Xmin

i +
Xmax

i ) is the mean of interval Xi, and xi denotes the value
of point x in dimension i (1 ≤ i ≤ d).
The Min-/MaxDist decision criterion. Probably the
most well-known decision criterion for the domination prob-
lem among rectangles used in many database applications is
based on two well known metrics defined on rectangles [21].
The minimum distance MinDist(A, B) between two rectan-
gles A and B always underestimates the distance of point
pairs (a, b) ∈ A×B and is defined as

MinDist(A, B) = p

vuuut dX
i=1

8<: |Amin
i −Bmax

i |p, if Amin
i > Bmax

i

|Bmin
i −Amax

i |p, if Bmin
i > Amax

i

0 , else

(2)
The maximum distance MaxDist(A, B) between two rectan-
gles A and B always overestimates the distances of all point
pairs (a, b) ∈ A×B and is defined as:

MaxDist(A, B) = p

vuut dX
i=1


|Amax

i −Bmin
i |p, ifAmid

i ≥ Bmid
i

|Bmax
i −Amin

i |p, ifBmid
i > Amid

i

(3)

Definition 2 (Min-/MaxDist criterion). Let A, B,
R ∈ Rd be rectangles. The Min-/MaxDist domination deci-
sion criterion is defined as

DDCMinMax(A, B, R) ⇔ MaxDist(A, R) < MinDist(B, R).

Lemma 1. The Min-/MaxDist decision criterion is cor-
rect, i.e. DDCMinMax(A, B, R) ⇒ Dom(A, B, R).
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Figure 3: Voronoi-based decision criterion on MBRs

Proof. The following holds due to the conservative prop-
erties of MinDist and MaxDist:
DDCMinMax(A, B, R) ⇔ MaxDist(A, R) < MinDist(B, R)
⇒ ∀a ∈ A, ∀r ∈ R, ∀b ∈ B : dist(a, r) ≤ MaxDist(A, R) <
MinDist(B, R) ≤ dist(b, r) ⇔ Dom(A, B, R).

Lemma 2. The Min-/MaxDist decision criterion is not
complete, i.e. ¬DDCMinMax(A, B, R) 6⇒ ¬Dom(A, B, R).

Proof. Figure 2 shows an example for the 2D space where
DDCMinMax(A, B, R) is false although Dom(A, B, R) holds.
In the examples, A = a and B = b are rectangles with zero
extension, i.e. points. Clearly, MaxDist(a, R) < MinDist(b, R)
is not satisfied, i.e. DDCMinMax(a, b, R) is false. The Voronoi
line Hab between a and b, i.e. the line containing all points
that have equal distance to a and b, which is the dashed
line in Figure 2 divides the 2D space into two half spaces.
It is obvious that all points above that line (located in the
half space containing a) have a distance to a that is smaller
than the distance to b. Thus, according to Definition 2.1,
a dominates b w.r.t. all objects which lie completely above
Hab. As a consequence, Dom(a, b, R) holds.

Let us note that the Min-/MaxDist domination decision
criterion is complete for two arbitrary rectangles A and B if
R is a point, i.e. R has no extension in all dimensions. In ad-
dition, the Min-/MaxDist domination decision criterion can
be computed efficiently in O(d) time since the calculation of
MinDist and MaxDist is linear in d.

Voronoi-based decision criterion. The Voronoi plane
Hab between two points a and b that has been used in the
proof of Lemma 2 is used in [23] as a different decision cri-
terion for points. In a d-dimensional space Hab = {x ∈
Rd | dist(a, x) = dist(b, x)} is a (d − 1)-dimensional hyper-
plane containing all points having equal distance to a and to
b. It divides the space into two half-spaces Hab(a) containing
a and Hab(b) containing b. If a rectangle R lies completely
within one of these half-spaces, then R is closer to the re-
spective point in the same half-space. In the example of
Figure 2, R is in the half-space Hab(a), thus all r ∈ R are
closer to a than to b. A Voronoi hyperplane between a point
and a rectangle has been proposed in [12]. For the general
case of two rectangles, we need to construct the Voronoi
plane HAB between two rectangles A and B which is the
intersection of all Voronoi half-spaces between all pairs of
points of the corresponding rectangles and can be defined
as HAB = {x ∈ Rd |MinDist(x, B) = MaxDist(x, A)}, see
[11]. An example of a Voronoi plane between two rectan-
gles A and B is HAB , depicted in Figure 3. This Voronoi



plane is piecewise linear and curvilinear (cf. [11] for more
details on the Voronoi plane between two rectangles). If
a rectangle lies completely within the half-space HAB(A),
then R is definitely closer to A. However, to determine
the half-space containing all points that are definitely closer
to B than to A, HAB(B) cannot be used and the Voronoi
plane HBA has to be computed. The reason is that unlike
in the case of points, there exist points p for which nei-
ther Dom(A, p, R) nor Dom(B, p, R) is true. Intuitively,
the Voronoi-based domination decision criterion states that
A dominates B w.r.t. R if R is completely contained in the
half-space HAB(A).

Definition 3 (Voronoi-based criterion). Let A, B,
R ∈ Rd be rectangles. The Voronoi-based decision criterion
is defined as

DDCVoronoi(A, B, R) ⇔ R ⊆ HAB(A).

Lemma 3. The Voronoi-based decision criterion is cor-
rect and complete, i.e. DDCVoronoi(A, B, R) ⇔ Dom(A, B, R).

Proof. By definition of HAB the statement holds:
DDCVoronoi(A, B, R) ⇔ R ⊆ HAB(A) ⇔ ∀a ∈ A, b ∈ B:
R ⊆ Hab(a). ⇔ ∀a ∈ A, ∀b ∈ B, ∀r ∈ R : dist(a, r) <
dist(b, r) ⇔ Dom(A, B, R).

Computing any Voronoi plane between any a ∈ A and
b ∈ B to obtain the curvilinear plane as depicted in Figure
3 is rather complex. To the best of our knowledge, there
exists no efficient solution for this problem. However, it is
clear that any such algorithm must scale exponentially in
the dimensions, since even for the simple case where b is a
point, the number of different pieces of the plane is equal to
the number of corners of A which is in O(2d) (cf. [12] for a
discussion on the computation of such Voronoi planes).

Corner-based decision criterion. The corner-based de-
cision has recently been proposed as a pruning criterion for
RkNN search of spatial objects in R2 [11]. This approach
exploits the property that the side HAB(A) of HAB that is
responsible for pruning is convex for RkNN queries. Thus, if
a rectangle R is not fully contained in HAB(A) (i.e. R cannot
be pruned), then at least one corner of R must be contained
in HAB(B). Therefore, it is sufficient to consider only cor-
ners of MBRs. The Min-/MaxDist decision criterion, that
is correct and complete in the case where only points are
considered, is then applied to the corners. For more details
on this decision criterion, refer to [11]. However, since this
criterion requires to consider all 2d corners of MBRs, the
complexity must scale in O(2d).

Summary. Table 1 summarizes the discussion of existing
decision criteria for the domination problem. It can be ob-
served, that none of these approaches meets all the desired
properties, i.e. either is not complete or suffers from expo-
nential runtime. The fourth approach in Table 1 called “Op-
timal” is our new decision criterion which is described in the
next section.

2.3 A Correct, Complete, and Linear-Time
Domination Decision Criterion

We will derive a new decision criterion that is correct,
complete, and can be computed in O(d) time. Our novel
domination decision criterion can be derived from the origi-
nal definition of domination in Definition 1 by applying the
following six equivalences.

Table 1: Overview decision criteria
Criterion Correct Complete Efficient
DDCMinMax YES NO YES: O(d)

DDCVoronoi YES YES NO: O(2d)

DDCCorner YES YES NO: O(2d)
DDCOptimal YES YES YES: O(d)

Equivalence 1.
∀a ∈ A, b ∈ B, r ∈ R : dist(a, r) < dist(b, r) ⇔

∀r ∈ R : MaxDist(A, r) < MinDist(B, r)

Proof.
(1) “⇒”
If the left-hand side holds for each r ∈ R then it also holds
for that a ∈ A and b ∈ B that maximize and minimize the
distance to r, respectively. These points a ∈ A and b ∈ B
obviously determine the values of MaxDist and MinDist, re-
spectively.

(2) “⇐”
If the right-hand side holds for each r ∈ R as well as for that
a ∈ A and b ∈ B that maximizes and minimizes the distance
to r, i.e. determines the value of MaxDist and MinDist, re-
spectively, then it also holds for any a ∈ A and any b ∈
B.

Equivalence 2.
∀r ∈ R : MaxDist(A, r) < MinDist(B, r) ⇔
∀r ∈ R : p

qPd
i=1 MaxDist(Ai, ri)

p < p

qPd
i=1 MinDist(Bi, ri)

p

Proof. Follows directly from the definition of MaxDist
and MinDist for Lp norms (see above).

Equivalence 3.

∀r ∈ R : p

qPd
i=1 MaxDist(Ai, ri)

p < p

qPd
i=1 MinDist(Bi, ri)

p

⇔ ∀r ∈ R :
Pd

i=1 (MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Proof.

∀r ∈ R : p

qPd
i=1 MaxDist(Ai, ri)

p < p

qPd
i=1 MinDist(Bi, ri)

p

⇔∀r ∈ R :
Pd

i=1 MaxDist(Ai, ri)
p <

Pd
i=1 MinDist(Bi, ri)

p

⇔∀r ∈ R :
Pd

i=1 MaxDist(Ai, ri)
p−

Pd
i=1 MinDist(Bi, ri)

p < 0

⇔∀r ∈ R :
Pd

i=1(MaxDist(Ai, ri)
p−MinDist(Bi, ri)

p) < 0

Equivalence 4.
∀r ∈ R :

Pd
i=1 (MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p) < 0 ⇔

maxr∈R(
Pd

i=1(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p)) < 0

Proof. Instead of considering all possible r ∈ R, it is
sufficient to consider only that point r′ ∈ R which maximizes
the left-hand side of the inequality. If the inequality holds
for this point r′, then it obviously holds for all possible r ∈ R
and vice versa.

The next equivalence requires the following lemma:

Lemma 4. Let F : Rd → R be a function that is summed
by treating each dimension independently, i.e. there exists a
function f : R → R such that

F (o) =
dX

i=1

f(oi)

Also, let A ⊆ Rd be a rectangle and

σ := argmaxa∈A(F (a))



be the object in A that maximizes F . Then, the following
holds:

max
a∈A

(

dX
i=1

f(ai)) =

dX
i=1

max
ai∈Ai

(f(ai))

Proof.

max
a∈A

(

dX
i=1

f(ai))
Def F (a)

= max
a∈A

(F (a))
Def σ
= F (σ)

Def F (a)
=

dX
i=1

f(σi)
Def σ
=

dX
i=1

max
ai∈Ai

(f(ai))

Equivalence 5.
max
r∈R

(
Pd

i=1 MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0 ⇔Pd
i=1 max

ri∈Ri

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Proof. This follows from lemma 4 by substituting

F (r) = MaxDist(A, r)−MinDist(B, r)

The final equivalence (equivalence 6) makes the equation
computable. It is based on the assumption that for finding
the maximum ri in dimension i, it is sufficient to consider
the boundary points (Rmin

i and Rmax
i ) of the interval Ri.

This assumption is proven in the following two lemmas.

Lemma 5. Let A and B be intervals. The function f :
R → R defined as f(x) = MaxDist(A, x)p −MinDist(B, x)p

has no local maximum.

Proof. A formal proof for this lemma can be found in
the appendix of the extended version of this paper [13].

Lemma 6. Let f : R → R be a function that has no local
maximum and I = [Imin, Imax] ⊂ R be an arbitrary finite
interval. The value that maximizes f in the interval I must
be either Imin or Imax, i.e.

argmax
i∈I

(f(i)) ∈ {Imin, Imax}

Proof. Let p ∈ [Istart, Iend] be the value that maximizes
f in I, i.e. p = argmaxi∈I(f(a)). Then, ∀i ∈ I : f(i) ≤
f(p), in particular, f(Imin) ≤ f(p) and f(Imax) ≤ f(p).
Note that f(Imin) < p and f(Imax) < p cannot both be
true, because this would be a contradiction to the assump-
tion that f(x) has no local maximum. Thus it must either
hold that f(Istart) = f(p) or f(Iend) = f(p), i.e. Imin =
argmaxi∈I(f(x)) or Imax = argmaxi∈I(f(x)).

Now we can derive the final equivalence.

Equivalence 6.Pd
i=1 maxri∈Ri(MaxDist(Ai, ri)

p−MinDist(Bi, ri)
p) < 0 ⇔

dP
i=1

max
ri∈{Rmin

i ,Rmax
i }

(MaxDist(Ai, ri)
p−MinDist(Bi, ri)

p) < 0

Proof. Follows from lemma 5 and 6.

Definition 4 (optimal decision criterion). Our novel
optimal domination decision criterion is defined as

DDCOptimal(A, B, R) ⇔
dX

i=1

max
ri∈{Rmin

i ,Rmax
i }

(MaxDist(Ai, ri)
p−MinDist(Bi, ri)

p) < 0

Lemma 7. The novel optimal domination decision crite-
rion is correct and complete.

Proof. Correctness and completeness follow directly from
equivalences 1 to 6.

Obviously, the novel optimal domination decision criterion
can be computed in O(d) time and, thus, fulfills all three
desired properties mentioned in Section 2.1.

3. DOMINATION COUNT COMPUTING
In most applications, testing the single domination re-

lation of only two rectangles (w.r.t. a reference rectangle)
is too basic. Rather, in the context of a set of rectangles
O ⊆ Rd, the number of rectangles Ai ∈ O that dominate a
given rectangle B w.r.t. R (referred to as domination count)
is required. For example, a kNN query algorithm can use
the information that at least k rectangles of O dominate
rectangle B ∈ O w.r.t. a query rectangle R to identify B
as true drop that can be pruned. The number of rectangles
that dominate a given rectangle can analogously be used e.g.
for RkNN queries and inverse ranking queries.

Definition 5 (domination count). Let B, R ⊆ Rd

be rectangles and O be a set of rectangles. The domination
count of B w.r.t. R is defined by:

DC(O, B, R) = min
r∈R

{|Ai ∈ O :MaxDist(Ai, r)<MinDist(B, r)|}

Intuitively, if the domination count of B w.r.t. R is k, then
for each point r ∈ R there exist at least k rectangles Ai ∈ O
which are closer to r than B.

Let us note that the domination count of B w.r.t. R can-
not be computed by simply counting the number of rect-
angles that dominate B w.r.t. R by means of Definition 1
because this does not involve groups of rectangles that domi-
nate R collectively, but not individually. An example of such
a group of rectangles is shown in Figure 4. Neither rectangle
A1 nor rectangle A2 dominates B w.r.t. R. However, B is
dominated partially by A1 and partially by A2, respectively,
i.e. it is dominated by A1 and A2 w.r.t. specific subregions
of R.

However, when considering any point r ∈ R, rectangle B is
dominated by at least one of the two rectangles A1, A2 w.r.t.
r and, thus, B is dominated by the group A = {A1, A2}
according to Definition 1.

In general, the problem of finding the subregion with the
minimal domination count is hard. First, the computation
of the intersection of a half-space and a hyper-polyhedron
becomes increasingly complex [23] for increasing dimension-
ality. Secondly, the number of subregions grows very fast.
To give a brief intuition of the possible number of subre-
gions generated by a total of n objects, consider the case
of axis parallel pruning regions. If n ≤ d, then each object
may split R in a different dimension, resulting in a total of
2n subregions. For n > d, balanced splitting of dimensions
results in at least (1 + bn

d
cd) subregions. If d is assumed



to be constant, then (1 + bn
d
cd) ∈ O(nd). Thirdly, the re-

sulting subregions can be complex d-dimensional polygons,
particularly the subregions could have not only straight sides
but also parabolic sides which makes computations involving
these polygons very complex.

Though we are not able to compute the exact domination
count of a given rectangle efficiently, we can try to find ef-
ficient solutions for approximating the domination count of
a rectangle. In principal, in order to determine the domina-
tion count of B w.r.t. R we need to take the two constituting
types of dominations into account: The first part is to count
all objects A for which Dom(A, B, R) holds. This number
is called basic domination count. This can be done using
e.g. DDCOptimal. The second and more challenging part is
to detect all minimal groups A that dominate B as a group
but do not contain an element that already dominates B
separately, i.e. each Ai ∈ A only partially dominate B. The
consideration of this type of domination requires the concept
of partial domination which will be introduced later on.

A simple lower bound of the domination count can be
achieved by computing the basic domination count. Intu-
itively, the basic domination count simply counts the num-
ber of rectangles that (completely) dominate the rectangle
B w.r.t. rectangle R, i.e. neglects groups of rectangles that
only partially dominate B separately but completely domi-
nate B as a group.

Definition 6 (Basic Domination Count). Let O =
{A1, ..., AN} be a set of d-dimensional rectangles and let
B, R ⊆ Rd be two rectangles. The basic domination count
of B w.r.t. R is the number of objects in O that dominate
B w.r.t. R, formally:

DCbasic(O, B, R) = |{Ai ∈ O |Dom(Ai, B, R)}|.

Using our novel domination decision criterion DDCOptimal,
the basic domination count DCbasic can be computed in
O(N · d). This is worth noting since existing decision cri-
teria only allow either to compute the exact DCbasic value
in exponential time or to compute an approximation of the
DCbasic value in linear time. In the latter case, we would ob-
tain a lower bound of DCbasic which makes the lower bound-
ing estimation of the domination count even more loose.

As discussed above, the domination count also takes into
account all sets of rectangles that increase the domination
count of a rectangle as a group and that do not contain any
element that does so separately. Therefore, we need the con-
cept of partial domination. In the remainder of this section,
we will first formalize the concept of partial domination. In
particular we will discuss how our novel domination decision
criterion DDCOptimal can be used for (i) detecting partial
domination and (ii) deriving a conservative approximation
of the domination count.

3.1 Partial Domination
The concept of partial domination (cf. Figure 4) was first

introduced in [12] (the authors used the term “partial prun-
ing”) for boosting RkNN queries in the 2D space. It can be
applied to any other similarity query type analogously.

Definition 7 (partial domination). Let A, B, R ⊆
Rd be rectangles. A dominates B partially w.r.t. R, de-
noted by PDom(A, B, R) if A dominates B for some, but
not all r ∈ R, i.e.

A1HA1B

B
R

A2HA2B

Figure 4: Partial Domination example for an RNN-
query

PDom(A, B, R) ⇔

¬(∀a ∈ A, b ∈ B, r ∈ R : dist(b, r) > dist(a, r)) (4)V
∃r ∈ R : ∀a ∈ A, b ∈ B : dist(b, r) > dist(a, r) (5)

Inequality 4 holds if A does not dominate B w.r.t. all
points r ∈ R. Note that Inequality 4 is simply the negation
of Dom(A, B, R) and can also be computed in O(d) using
our novel decision criterion DCCOptimal. Inequality 5 is only
satisfied if there exists an r ∈ R for which B is dominated
by A.

Obviously, the sets of objects that dominate B as a group
can only contain rectangles Ai that partially dominate B,
i.e. for which PDom(Ai, B, R) holds. In other words, for the
computation of the second part of the domination count of a
rectangle B, we could use the detection of partial domination
as a first step because only those rectangles Ai for which
PDom(Ai, B, R) holds could be the elements of those set of
rectangles that dominate B as a group.

Partial domination can efficiently be detected by applying
the following six equivalences analogously to Section 2.3. We
start with inequality 5.

Equivalence 7.
∃r ∈ R : ∀a ∈ A, b ∈ B : dist(b, r) > dist(a, r)

⇔ ∃r ∈ R : MaxDist(A, r) < MinDist(B, r)

Proof. This proof is analogous to the proof of Equiv-
alence 1, i.e. it exploits that the DDCMinMax, decision
criterion is optimal in the case where R is a point.

Equivalence 8.
∃r ∈ R : MaxDist(A, r) < MinDist(B, r) ⇔
∃r ∈ R : p

qPd
i=1 MaxDist(Ai, ri)

p < p

qPd
i=1 MinDist(Bi, ri)

p

Proof. Follows directly from the definition of MaxDist
and MinDist for Lp norms.

Equivalence 9.

∃r ∈ R : p

qPd
i=1 MaxDist(Ai, ri)

p < p

qPd
i=1 MinDist(Bi, ri)

p

⇔ ∃r ∈ R :
Pd

i=1 MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p < 0

Proof.

∃r ∈ R : p

qPd
i=1 MaxDist(Ai, ri)

p < p

qPd
i=1 MinDist(Bi, ri)

p

⇔∃r ∈ R :
Pd

i=1 MaxDist(Ai, ri)
p <

Pd
i=1 MinDist(Bi, ri)

p

⇔∃r ∈ R :
Pd

i=1 MaxDist(Ai, ri)
p−

Pd
i=1 MinDist(Bi, ri)

p < 0

⇔∃r ∈ R :
Pd

i=1 MaxDist(Ai, ri)
p−MinDist(Bi, ri)

p < 0



Equivalence 10.
∃r ∈ R :

Pd
i=1 MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p < 0 ⇔

MINr∈R(
Pd

i=1 MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Proof. The rationale for equivalence 10 is that if there
exists an r ∈ R for which the left-hand side returns less than
0, then this also holds for the r which minimizes the term
on the right-hand side and vice versa.

Equivalence 11.
minr∈R(

Pd
i=1 MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p) < 0 ⇔Pd

i=1 minri∈Ri(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Proof. This proof is analogous to the proof of Equation
5 using minimization instead of maximization.

Analogously to Equivalence 6, the last equivalence below
makes the equation computable. Again, we need two lem-
mas.

Lemma 8. Let D be a one dimensional vector database
using Lp-Norm. Let A and B be intervals. The function
f : R → R:

f(x) = maxDist(A, x)p −minDist(B, x)p

may have a local minimum only at A.mean.

Proof. This proof is contained in the formal proof of
lemma 5 in the appendix of the extended version [13].

Lemma 9. Let f : R → R be a function that has at most
one local minimum at x. For any finite interval I ⊂ R =
[Istart, Iend] the following holds:

argmin
i∈I

(f(i)) ∈ {Istart, Iend, x}

That is, the point of the interval I that minimizes f(x)
must be either the lower or the upper bound of I, or the local
minimum x.

Proof. The proof is similar to the proof of Lemma 6 and
thus omitted here.

In consideration of the above lemmas we now derive the
final equivalence:

Equivalence 12.Pd
i=1 minri∈Ri(MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p) < 0 ⇔Pd

i=1 minri(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0,

where ri ∈ {Rmin
i , Rmax

i , Amid
i }

Proof. Directly follows from Lemma 8 and Lemma 9.

Thus, using the formula in Equivalence 12 we can effi-
ciently detect all partial dominations. However, as indicated
above, this is only the first step towards computing the dom-
ination count. In fact, we need to determine that subregion
of the reference rectangle R, for which the domination count
is minimal. Since we cannot test all possible points r ∈ R
(see also the discussion above), we propose three heuristics
to conservatively approximate the domination count of a
rectangle.

A

HAB

B R

Figure 5: Partial domination using grid partitioning

3.2 Domination Count Estimation
Using the techniques proposed in Sections 2 and 3.1 we

can check if an MBR A dominates B completely or partially
w.r.t. R. These tests are generally applicable as long as the
involved objects are MBRs. For calculating the domination
count of B it is therefore possible to split R into smaller
MBRs and then calculate the domination count for each
cell individually. The following three heuristics use different
approaches for splitting R to estimate the domination count.

3.2.1 Domination Count Estimation based on grid
partitioning

A straight forward approach for splitting R is performed
by using a grid with a fixed number m of partitions in each
dimension. Considering the example in Figure 5, we can
(using the decision criteria for domination and partial dom-
ination) assert that A dominates B w.r.t. all dark gray cells
and partially dominates B w.r.t. all light gray cells of R. For
the rest of the cells (white) A does not dominate B. Using
this grid partitioning, the domination count (DC(O, B, R))
can be estimated by the minimum domination count of all
cells ci ∈ R, that is:

DCgrid(O, B, R) = mini(DCbasic(O, B, ci))

This estimation is valid as we know that B is dominated
by at least this amount of Ai ⊂ O w.r.t. each cell ci ∈ R.

An example for the grid based partial pruning is given
in Figure 6. Here an MBR R is partitioned into 16 cells.
In addition two Voronoi hyperplanes HA1B and HA2B are
shown. The objects O = {A1, A2} and B generating the
hyperplanes are ommited here. For the area on the right-
hand side of HA1B , object B is dominated by object A1 and
for the left-hand side of HA2B , B is dominated by A2. It
is clear that neither A1 nor A2 (fully-) dominate B with re-
spect to the whole MBR R. For each cell the conservative
domination count DCbasic(O, B, ci) is shown. With respect
to dark cells, A1 and A2 dominate B and thus the cells have
a value of 2. With respect to light cells, only one of the
two objects dominates B, therefore they get marked with a
value of 1. By taking the minimum value of all cells ci ∈ R
we obtain DCgrid(O, B, R) = 1. The advantage of this ap-
proach is, that it returns a very accurate estimation of the
domination count while avoiding expensive materialization
of the Voronoi hyperplanes. The accuracy can be boosted
by increasing the number of splits per dimension. In re-
turn increasing m will highly increase the runtime of the
algorithm, as the number of cells ci ∈ R is md. This implies
that this approach is not applicable for high dimensions. For
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Figure 6: Domination Count estimation using grid
partitioning.

each cell ci, DCbasic(O, B, ci) can be computed in a single
scan of the objects for which PDom(Ai, B, R) holds using
the DDCOptimal (c.f. Definition 4). Thus the total time
complexity is in O(d · |O| ·md).

3.2.2 Domination Count Estimation based on slices
In order to reduce the runtime of the domination count es-

timation, we propose a second algorithm, which is not based
on a grid partitioning. Instead of cells, this approach consid-
ers slices. Therefore an MBR R is split into m slices sdim

i in
each of the d-dimensions (1 ≤ dim ≤ d). This results in d·m
overlapping slices. The domination count DC(O, B, R) can
then be approximated by computing, for each dimension, the
minimal domination count of all slices and using the result
of the dimension maximizing this estimation.

DCslice(O, B, R) = maxdim(mini(DCBasic(O, B, sdim
i )))

For example, the domination count DC(O, B, si) for each
slice si (i.e. each row and each column) and each cell ci is
shown in Figure 6 for a 2 dimensional MBR R. The min-
imal domination count considering all rows is 0, while the
minimal domination count w.r.t. all columns is 1. Thus
DCslice(O, B, si) = 1 in this example. The complexity of
this algorithm is in O(m · d). However, this approach yields
much worse results than the grid-based approach for an iden-
tical m parameter. Details can be found in our experiments
(Section 5).

3.2.3 Domination Count Estimation based on bisec-
tions

We next propose a bisection based approach that yields
much better efficacy, while still being linear in d. This ap-
proach works iteratively. During each iteration, one sec-
tion of R is chosen to be split evenly (mean split) in one
dimension. After m splits, this results in m + 1 sections
s0 ∪ s1 ∪ . . . ∪ sm = R and it holds that:

DCbisect(O, B, R) = mini(DCbasic(O, B, si))

The challenge here is to wisely choose the split section of R
and the dimension to split in each iteration.

We propose to split the section s ⊂ R with the lowest
domination count estimation. This decision is optimal, be-
cause the estimation of DC(O, B, R) is determined by the
section which results in the lowest domination count. Thus,
in order to increase the domination count approximation, s
must be split. If the decision for s is ambiguous, then one of
the candidates of s is chosen arbitrarily. To determine the

H HHA1B HA2B

0

(a) initial setting

H HHA1B HA2B

1 0

(b) after 1st split

H HHA1B HA2B

1
1

0

(c) after 2nd split

H HHA1B HA2B

1
1

1 1

(d) after 3rd split

Figure 7: Example for computing DCbisect

split axis, the heuristic tests each dimension, and greedily
uses the dimension that yields the highest domination count
DCbisect(O, B, R) considering the two resulting bisections
of s. In the case of ties the axis is chosen which maximizes
the sum

Pm
i=0 DCbasic(O, B, si). An example is shown in

Figure 7. Considering Figure 7(a) it is clear that none of
the two objects A1, A2 ∈ O that are responsible for the
Voronoi hyperplanes HA1B and HA2B dominates B w.r.t.
R. Beginning with the y-axis as split axis would result in
two equi-sized MBRs both of which result in a domination
count DCbisect(O, B, R) of 0 and therefore the approxima-
tion of DC(O, B, R) does not increase. Choosing the x-axis
as split axis would result in two equi-sized MBRs shown in
Figure 7(b) yielding the same domination count approxima-
tion but a higher sum (

Pm
i=0 DCbasic(O, B, si) = 1). In the

next iteration, the right MBR is chosen to be split, since it is
responsible for the lowest domination count approximation.
Both possible split axes are equal according to our heuristic.
In the example, the y-axis is chosen arbitrarily (c.f. Figure
7(c)). The third (see Figure 7(d)) split of the lower-right
MBR increases DCbisect(O, B, R) to 1.

The bisection-based Domination Count Estimation algo-
rithm uses m iterations. In each iteration i there exist ex-
actly i sections of which the section with the lowest con-
servative domination count has to be found. This yields a
complexity of O(m2) but can be reduced to O(m · log(m)))
by using a Priority Queue to find the section with the lowest
conservative domination count. For the greedy heuristic, in
each iteration, each dimension has to be tested to determine
the best split axis in O(m ·d). Thus we get a total complex-
ity of O(m · log(m) + m · d) = O(m ·max(log(m), d)), where
m is the number of iterations.

4. BOOSTING SIMILARITY QUERIES
In this section, we will show how the concepts of domina-

tion and domination count can be used to boost the pruning
power of similarity search algorithms.
Nearest-Neighbor Search. For a kNN query with query
object Q, any object O ∈ D can be pruned if DC(D, O, Q) ≥
k. Note, that for a kNN query, the query object corresponds
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to the reference object R in Definition 4. Thus, DDCOptimal

has an advantage over DDCMinMax in the general case but
is equivalent in the special case where Q is a point, because
then DDCMinMax is optimal. However, as discussed above,
there are many applications in which the query object is a
rectangle.
Reverse Nearest Neighbor Search. For a general RkNN
query with query object Q, any object O ∈ DB can be cer-
tainly pruned if DC(D, Q, O) ≥ k. For RkNN queries, the
query object corresponds to the object B in Definition 4.
Thus DDCOptimal is superior to DDCMinMax also in the
special case where the query object is given as a point.
True hit detection. Our decision criterion DDCOptimal

can be used to prune potential result candidates by being
able to decide that they must not be part of the result set.
A problem very similar to pruning is the detection of true
hits, i.e. to quickly decide that a potential result candidate
must be part of the result set. For example, in the case
of kNN queries, an object B is a true hit, if there may be
at most k objects that can be closer to R than B. In other
words, B is a true hit, if it dominates at least |D|−k objects.
Thus, for a kNN query, an object B is a true hit if |{A ∈
D|dom(B, A, Q)}| > |D| − k. For a RkNN query, an object
B is a true hit if |{A ∈ D|dom(Q, A, B)}| ≥ |D| − k. The
concept of partial domination can be applied to true hit
detection as well.
Inverse Similarity Ranking. The problem of inverse
ranking is to determine for a given query object Q the num-
ber of objects that are closer to a given reference object
R. Such queries are useful e.g. to determine the finan-
cial standing of bank customers in relation to existing cus-
tomers. In this scenario, the attributes of customers are
often uncertain (e.g. income of 40k−50k) and thus mod-
eled by uncertain regions, i.e. rectangles. Lower and up-
per bounds for the rank of Q are DC(D, Q, R) + 1 and
|D| − |{A ∈ D|dom(Q, A, R)}|+ 1, respectively.

5. EXPERIMENTAL EVALUATION
This section evaluates the effectiveness and efficiency of

our novel domination decision criterion in comparison to
the prevalent DDCMinMax decision criterion. After that we
evaluate the performance of our domination-count-detection
approach which is based on the concept of partial domina-
tion. Finally, we exemplarily will show how our new meth-
ods influences the performance of existing similarity search
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methods designed for kNN and RkNN queries. For all ex-
periments the underlying distance function is the euclidian
norm.

5.1 Single Object Domination
We first evaluate the effectiveness gain of DDCOptimal

compared to DDCMinMax in consideration of the decision
power. In order to measure the decision power, we take for a
given pair of rectangles R and A the region into account con-
taining all points that cannot be detected to be dominated
by A w.r.t. R. In the reminder we call this region refine-
ment area, since all objects intersecting this area might be
refined in order to detect the domination relation. It should
be clear that the smaller this area, the higher the corre-
sponding domination power. Figure 8 exemplarily shows
the refinement areas for the 2-dimensional MBRs A and R
w.r.t. both criteria DDCMinMax and DDCOptimal, respec-
tively. In this example, object B is detected to be dominated
by A only if we apply DDCOptimal instead of DDCMinMax.
The refinement areas depend on several conditions such as
position, shape, distance and extension of the MBRs spec-
ifying the refinement area as well as the dimensionality of
the space. For our experiment evaluating the domination
power, pairs of MBRs R and A are positioned in [0, 1]d

with a fixed MinDist of 0.5 and equal distances in each di-
mension. The length of each side of the two MBRs was
scaled from 0.1 to 0.5 and dimension screened from 1 to 10.
The gain of the domination power is measured by the ratio
of the volumes of the refinement area w.r.t. DDCOptimal

and the refinement area w.r.t. DDCMinMax by means of
Monte-Carlo-Sampling. The results in Figure 9 show that
DDCOptimal leads to a much higher decision power. The
effect becomes more evident as the number of dimensions
and the extension of the MBRs increase. As expected, in-
creasing the extension of the MBRs leads to diminishing
completeness of the DDCMinMax decision criterion. It is
notable, that the DDCMinMax criterion suffers consider-
ably from an increasing dimensionality. Note that we used
MBRs of equal side length as we observed that this setting
favors the decisions power based on DDCMinMax in order
to make a fair comparison. In fact, the advantage of the gain
of the decision power based on DDCOptimal will increase
even further for non-quadratic rectangles.

In addition to the above experiment which is more from a
theoretical point of view, we compared the number of dom-
ination relations detected by applying DDCOptimal and
DDCMinMax . Therefore we randomly generated one mil-



10000

100000

1000000

10000000

MinMax

Optimal

de
ci
si
on

s

1

10

100

1000

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

extent

po
si
ti
ve

d

(a) Positive decisions made

8

10

12

14

dimension=2

dimension=3

dimension=4

dimension=5

ac
to
r

0

2

4

6

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5

ga
in
 fa

extent

(b) Factor of positive decisions
made more by the optimal criterion

Figure 10: Comparison of MinMax- and optimal-
criterion on synthetic data

lion triples of rectangles (A, B, R) with a fixed extent (i.e.
the sum of side lengths) in the [0, 1]2 space. For each triple
we tested if the decision criterion is able to determine whether
Dom(A, B, R) holds. Finally we aggregated the number of
positive decisions for different extents of the MBRs. The
results are illustrated in Figure 10(a). Note that an ex-
tent of zero yields points instead of rectangles such that
both criteria perform equal. However, we can observe that
with increasing extent, the percentage of positive decisions of
DDCOptimal compared to DDCMinMax increases consider-
ably. The gain of the decision power based on DDCOptimal over
DDCMinMax is illustrated in Figure 10(b) showing the fac-
tor of positive domination decisions using DDCOptimal in
comparison of that using DDCMinMax. We varied the di-
mensionality of the rectangle space up to 5 dimensions. Here
we can observe that the gain increases with increasing ex-
tent. In contrast, when increasing the dimensionality, the
gain of the decision power decreases. The reason is that
in this setting, the extent of the MBRs is fixed for all di-
mensionality settings such that the average side length per
dimension decreases and MBRs converge to points for high
dimensionality.

5.2 Domination Count Estimation
The next experiments evaluate the accuracy of the domi-

nation count estimation of a rectangle B w.r.t. a rectan-
gle R for the approaches proposed in Section 3.2: Basic
Domination Count Estimation (DCbasic), grid partitioning
(DCgrid), slice partitioning (DCslice) and bisection based
partitioning (DCbisect). For these experiments, we gener-
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Figure 11: Heuristics for partial domination

ated one thousand three-dimensional MBRs with random
position. One MBR R was positioned in the center of the
data space. Then we computed the conservative domination
count w.r.t. R for each MBR using the four approaches men-
tioned above. We performed several runs for different para-
metric settings and averaged the results. Figure 11 shows
the performance of all four approaches in terms of estimated
domination count. First, we want to get a grasp of the rela-
tionship between accuracy of the domination count estima-
tion and the cost required for the domination count compu-
tation. Therefore, the cost is measured in terms of number of
calls of DDCOptimal. It should be clear that when increas-
ing the number of MBR partitions, and thus the required
number of DDCOptimal calls, the estimation accuracy of all
approaches improves, except for the basic approach since it
does not use any partitioning. Figure 11(a) shows the re-
sults for MBRs with an extent of 0.3. It can be seen that
all approaches show a significant improvement compared to
DCbasic when increasing the number of allowed DDCOptimal

calls. In particular, the accuracy increases very fast at the
beginning of the partitioning process but slows down later
on. We can also observe that DCbisect significantly out-
performs the other approaches when allowing more than 27
DDCOptimal calls per MBR, while DCgrid performs best for
8 or less DDCOptimal calls.

In the next experiment, as shown in Figure 11(b), we fixed
the number DDCOptimal calls per MBR to 64 and varied
their extent. We measured the gain of the domination count
over DCbasic. Here, again, DCbisect outperforms the other
approaches in particular for larger MBR sizes. Note that
for a given application, the optimal number of partitions
depends on the cost for evaluating a candidate object. The
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Figure 12: AKKRZ using different decision criteria.
Page accesses (left side) and distance calculations
(right side).

higher that cost, the more partitions can be used in order
to reduce the total runtime.

5.3 Impact on Standard Spatial Query
Processing Methods

In our last experiments, we evaluate the impact of our
approaches on the performance of standard query process-
ing methods. Here, we refer to Section 4, describing how
our methods can be plugged into state-of-the-art query pro-
cessing methods. In particular, we exemplarily consider the
most prominent query methods, the k-nearest neighbor (k-
NN) search and the reverse k-nearest neighbor (Rk-NN)
search. For this evaluation we use one synthetic dataset,
containing 100k uniformly distributed 5D points, and two
real world datasets TAC [26] consisting of 705099 2D points
and Forest [17] containing 581012 10D points.

First, we evaluate the impact of our two domination-count
estimation approaches DCbasic and DCbisect on a reverse
k-nearest neighbor search method. As a baseline, we use
the algorithm proposed in [2] (in the following referred to
AKKRZ ) for Rk-NN search on the Euclidean space using an
R∗-Tree1. The AKKRZ algorithm originally uses the Min-
/MaxDist decision criterion to conservatively prune candi-
dates. We evaluate the impact by comparing the query per-
formance of the original AKKRZ algorithm with the version
where we replace the domination count estimation with our

1We use the R∗-Tree provided in the Elki Framework [1]

methods. Note, that with except of the domination count
estimation method, both Rk-NN versions are identical. The
results illustrated in Figures 12(a), 12(c) and 12(e) show the
query performance of both Rk-NN versions in terms of av-
erage number of page accesses for varying parameter k and
different datasets. It is notable that the enhanced algorithm
requires less page access by almost a full order of magnitude
on all datasets. Using DCbisect to apply the paradigm of
partial pruning based on bisections (c.f. Section 3.2.3) with
a maximum number of ten splits per MBR, the number of
page accesses can be significantly dropped even further. The
large performance increase compared to the original version
of AKKRZ can be explained by the fact that our domination
decision criterion has a much higher pruning power on large
MBRs compared to the original version that is based on the
Min/MaxDist criterion. This allows us to prune candidates
already on a high directory level and, thus, to prune a large
number of candidate MBRs very early.

Beside the I/O cost, it is also important to consider the
cpu cost since the accuracy of our domination count esti-
mation methods is highly influenced by the cpu cost spent
for the estimation process, as shown in the previous sec-
tion. For this reason, in addition to the I/O cost evaluation
we evaluate the cpu cost measured by the number of dis-
tance calculations required for the competing techniques as
the cpu cost are mainly distance computation bounded. We
counted the total number of distance calculations. Calls of
DDCOptimal and DDCMinMax were penalized with two dis-
tance calculations2. The resulting numbers of total distance
calculations are shown in Figures 12(b), 12(d) and 12(f). It
can be observed that the enhanced AKKRZ algorithm us-
ing DCbasic significantly outperforms the basic AKKRZ by
close to two orders of magnitude. The rationale for this is
that the number of calculations increases quadratic in the
number of candidates. However, the high computational
cost required when applying partial pruning becomes evi-
dent here. Using DCbisect with a maximum of ten splits,
the number of distance calculations increases by a factor of
about five.

Finally, we evaluate the impact of DDCOptimal and par-
tial domination on k-NN queries among objects approxi-
mated by MBRs. These experiments are based on three
artificial datasets that rely on the three datasets used in the
foregoing experiments (TAC, Uniform, Forest). Each vec-
tor in a dataset defines the center of an MBR. For each of
the resulting datasets 100 MBRs were chosen randomly as
query MBR Q for a 10-NN query on the remaining dataset.
Here we did not apply any index structure. The perfor-
mance of the competing approaches were measured by the
average number of candidates that could neither be pruned
nor be reported as true hits. The results showing the perfor-
mance in terms of the number of remaining candidates are
depicted in Figure 13 for varying extent of the MBRs. It can
be observed, that DCbasic significantly reduces the number
of candidates compared to pruning based on DDCMinMax

on all datasets. The relative performance boost increases
for an increasing extent of the MBRs. We also found out
in our experiments, that the parameter k has no significant
influence on the relative performance boost. Figure 13 also
shows, that DCbisect is able to further boost the perfor-
mance, especially for large MBRs.

2in concordance with run-time experiments omitted here
due to space considerations
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Figure 13: Evaluation of the different decision criteria for 10 nearest neighbor queries.

6. CONCLUSIONS
The concept of domination is a very useful tool to perform

spatial pruning on rectangles in a wide field of applications.
Current state-of-the-art approaches are either incomplete or
scale exponentially in the number of dimensions. In this pa-
per we proposed a decision criterion that is complete and
efficiently computable in O(d). In addition, we discuss how
this decision criterion can be used to accurately estimate
the domination count of objects by incorporating informa-
tion about partial domination. While all current approaches
that use information about partial domination can only be
used on two dimensional data our solution can be applied
to data of arbitrary dimensionality. Our experimental eval-
uation shows that our novel decision criterion can be used
to vastly increase the pruning power of existing applications
by several orders of magnitude. For future work, we plan to
plug-in our novel decision criterion to more existing applica-
tions. In addition we will explore decision criteria for object
representations having non-rectangular shape.
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