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Abstract

Physical activity is an important factor that is considered for the prevention of diseases like diabetes
or hypertension and for rehabilitation. For this purpose, patients are required to fulfill a certain,
regular pensum of activity which follow a training schedule that is integrated into daily life which
cannot be supervised. In order to obtain reliable statements about achieved physical activity within
a certain time period, accelerometers can act as tools that provide results which are superior to
questionnaires filled by the patients. State-of-the-art activity recognition systems already provide good
results, but the accuracy of classification algorithms including data preprocessing often depend on the
position of the sensors and the data. This paper proposes an activity recognition system designed
for accelerometers positioned at the ankle, which, in general, yields accurate and representative
acceleration time-series data. An extensive evaluation on real-world datasets shows that, performing
an additional reclassification step, excellent classification results outperforming recent work can be
achieved.

I. INTRODUCTION

Physical activity becomes more and more important in the modern society. Nowadays,
cardiovascular diseases cover a significant part of annually occurring affections, which is due to
the reduced amount of activity in the daily life [7]. The automation of working processes as well
as the availability of comfortable travel options may cause overweight [54], which may result in
lifestyle diseases, such as diabetes mellitus [31]. Warburton et al. [50] showed that prevention
and therapy of such diseases as well as the rehabilitation after affections or injuries can be
supported by continuous and balanced physical activity. For this purpose, patients are required
to fulfill a regular pensum of activity which follows a training schedule that is integrated into
the daily life, but which cannot be supervised. In order to obtain reliable statements about
achieved physical activity within a particular time period, accelerometers can act as tools that
provide accurate results, as filled questionnaires tend to be strongly subjective [2], [52]. This
statement is obvious, as, according to [14], the patients tend to overestimate their own abilities,
which leads to results that are likely to be biased. Furthermore, the evaluation of the results is
very complex and time-consuming. In order to improve the quality, i.e., the accuracy and the
objectivity of these results, accelerometers serve as suitable devices for medical monitoring.
The recordings of sensor observations allow the detection of any type of human motions
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Figure 1. A visualization of the classification process.

that are composed of cyclic patterns. Cycling is, for example, a typical activity where cyclic
movements repeatedly occur via pedaling; but periodic patterns can also be detected from other
activities, such as walking, running, swimming and even working.

This paper will present an algorithm for activity recognition, where time series data derived
from three-dimensional accelerometers is analyzed in order to classify the recorded patterns
w.r.t. different types of activities. Here, the three dimensions reflect the direction of physical
movement in each axis, i.e., forward/backward, left/right and up/down. The application scenario
was published in a medical context [45], [46] within the collaboration with the Sendsor GmbH1,
who also provided the accelerometers used to record the datasets that will be used for the
experimental evaluation of the approach that will be presented in this paper. These sensors
measure acceleration amplitudes of ±2g.

Diverse pieces of work have shown that the position of an accelerometer has a significant
influence on the results obtained while measuring physical activity [6], [38], [44]. The results of
this research leads to varying interpretations, as the set of activities that have to be classified
strongly depends on the problem definition. There is still no dedicated position where the
measurements of an accelerometer are able to provide globally best results that are independent
of the set of activities; however, it has been shown that accelerometers positioned at the ankle
achieve superior recordings compared to other body positions [44].

Basically, activity recognition requires several steps of preprocessing before the classifier
can separate different activities properly (cf. Section II). Avci et al. [4] provide a detailed
survey of these steps. An overview of the general processing chain is shown in Figure 1. The
main contributions of this paper, highlighted in Figure 1, consist of
• a reconstruction of the data peaks for the case that the measured acceleration values exceed

the amplitude range,
• the usage of additional features to represent the recorded physical activities,
• and a reclassification step that corrects classification errors.

The rest of this paper is organized as follows. First, an overview of related work in the context
of activity recognition is provided in Section II. The preprocessing steps performed on the time
series will be summarized in Section III. Section V will give details about the used features
for the classification. Applied techniques for dimensionality reduction of feature vectors will
be presented in Section VI. A postprocessing step that corrects classification errors will be
presented in Section VII. Section VIII will provide a broad experimental part containing the

1http://www.sendsor.de

http://www.sendsor.de
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Notation Description
X a one-dimensional time series
n the length (number of observations) of X
ti the ith time stamp of X
xi the observation of x occurring at time ti
Xti the subsequence of X starting at time ti
X̂ a reference sample of X
m̂ the length of X̂

∆opt the optimal pattern length
∆max the maximum pattern length
ρopt the correlation obtained with ∆opt

τρ the correlation threshold
S a segment (subsequence) of X
m the length of S

Smax the maximum amplitude value of S
τmin the required minimum amplitude for peaks
v a feature vector
dv the dimensionality of v

Table I
TABLE OF NOTATIONS FREQUENTLY USED IN THIS PAPER.

evaluation of the process chain against the recent approach. The experimental evaluation was
performed using the data mining framework Knowing (Knowledge Engineering) [8]. Finally,
Section IX will conclude this paper.

Table I provides an overview of the most frequent notations used in this paper.

II. RELATED WORK

In the context of activity recognition, a dedicated processing chain is performed, including
preprocessing steps and the classification. In the following, related work about this process
chain is summarized. A more detailed survey of these steps is given in [4].

A. Data Preprocessing
Recorded time series data from accelerometers often contains noise of high frequency, which

in many cases distorts the actual signal. Thus, sliding-window-based average [24] or median
filters [18] are applied in order to remove outliers. Furthermore, removing the effect of the
gravitational force is supposed to distinguish activity from non-activity phases. This is in
general obtained by applying a low-pass filter, as shown in [3], [18].

B. Segmentation
In order to separate periodic parts from nonperiodic parts, time series are divided into

subsequent segments. In the literature, there exist different techniques for segmenting time
series. Sliding-window-based methods [25], [39], [47], [48] are suitable for online processing
and provide pattern matching algorithms starting with a reference sample that is extended until
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the matching distance exceeds a particular threshold. Top-down approaches in the context of
time series processing [29], [30], [42] recursively split a time series into two subsequences
w.r.t. an approximation error threshold. Complementary approaches [20], [21], [22] work in
a bottom-up manner, starting with n

2
segments of size 2 (where n denotes the number of

observations) and combining adjacent subsequences until an upper cost bound is reached. A
combination of the advantages of sliding-window, which is most efficient, and bottom-up, which
provides superior segmentation quality, is provided within a survey on time series segmentation
by Keogh et al. [19]

Sliding-window-based methods are still most frequently used in the area of activity recogni-
tion [4]. Thus, the segmentation method used this paper is based on a sliding-window algorithm.

C. Feature Extraction
Periodic and nonperiodic segments of time series are commonly described by a combination

of features of different types.
• Time-domain features, such as mean, variance and standard deviation [28], [36], [51] or

the Root Mean Square (RMS) [15], [32] are directly derived from the time series. Further
prominent examples of this feature type are the average time between the peaks [28] and
the number and average value of the peaks [51].

• Many publications apply well-known dimensionality reduction techniques by transforming
the time series into the frequency domain. Frequency-domain features can be derived
by the Discrete Fourier Transform (DFT) [1] or the enhanced Fast Fourier Transform
(FFT) and are used in [6], [43]. Features like aggregated FFT coefficients or the entropy
of the frequency domain [6], that distinguish activities where similar energy values are
detected (e.g., running and cycling), or single FFT coefficients [27] are also used in
existing literature.

• A combination of domains w.r.t. time and frequency is given by wavelet features, de-
rived from the Discrete Fourier Transform (DFT) [1] and is used in the context of gait
classification [34]. The extraction of frequency-domain (or combined) features requires
additional computational effort for the time series transformation and will thus be omitted
in this paper.

• Heuristic features cannot be directly derived from the time series, but require mathematical
and statistical methods to be extracted from the three dimensions of accelerometrical time
series data simultaneously. A prominent example here is the Signal Magnitude Area (SMA),
which is defined by the sum of the absolute values of all axes within the current time
window and that is used in several works [3], [10], [18], [24], [55]. A further feature of
this class is given by the Inter-Axis Correlation, which is a suitable measure to distinguish
between movements measured at different body parts [6]. However, the authors of [36]
could prove that this feature performs inferior to the simple features like mean and standard
deviation, as also shown in this paper.

The adequate combination of features is an important task, since the classification of the time
series highly depends on a good representation.
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D. Feature Vector Dimensionality Reduction
In order to reduce the computational effort of the classification process, dimensionality

reduction is typically applied in order to remove redundant information; this decreases the
size of the feature vectors. In the context of accelerometer data, the literature distinguishes
between methods of feature selection and feature transformation, which can also be used in
combination.
• Feature selection methods include, for example, methods based on Support Vector Ma-

chines (SVMs [26], e.g., applied in [49]), or the forward-backward search technique [57]
(e.g., used in [36] and also in this paper.

• Feature transformation methods further support the separation of different classes. Com-
monly applied techniques here are the Principal Component Analysis (PCA [35], e.g.,
used in [55], [56]), the Independent Component Analysis (ICA [12], e.g., used in [33]) or
the Linear Discriminant Analysis (LDA [13], e.g., used in [15], [24]).

E. Classification
Regarding the classification step, many different approaches have been used in the literature

in the context of activity recognition. Several publications apply supervised classification
methods based on pattern recognition and training phases, e.g., decision trees [6], [17], [18],
Hidden Markov Models [51], Gaussian Mixture Models [3], k-NN classifiers [17], [36], Naı̈ve
Bayes classifiers [17], Support Vector Machines (SVMs) [26], or Neural Networks [24], [28].
Section VII will propose an additional step that improves the classification result. First, the
processing chain is started with data preprocessing in the following section.

III. PREPROCESSING STEPS

A. Outlier Removal
In order to remove outliers in the data that emerged from measurement or transmission

errors, an average filter is commonly applied [24]. Thus, further processing techniques that
are applied on the data are not influenced by noise, such as the time series segmentation
(cf. Section IV) and the feature extraction, in particular the computation of the Average Peak
Amplitude feature (cf. Section V).

B. Peak Reconstruction
In some cases, the sensor recordings may be incomplete. The approach that will be presented

in this paper uses a sensor that measures acceleration amplitudes in the range of ±2g. However,
very intense or fast movements with a higher acceleration value create amplitudes that exceed
this range. For consecutive values that are beyond this range, these intervals are cut, yielding
significant gaps. One solution to overcome this problem is, of course, to use a sensor that
supports measurements of a higher amplitude range up to ±12g [10]. However, in order to
be independent of technical constraints, the following method provides a reconstruction of the
original signal.
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Algorithm 1 Peak Reconstruction: reconstructPeaks(X , o, maxAmp)
Require: X , o, maxAmp

1: n← |X| i← 1, j ← i+ 1
2: while j ≤ n do
3: while xi = maxAmp AND xj = maxAmp do
4: j ← j + 1
5: end while
6: a← i, b← j − 1
7: compute ∆before, ∆after and ∆total according to Eqs. (1), (2) and (3)
8: c← b− a
9: h← b c

2
c

10: for i = 1→ h− 1 do
11: xa+i ← xa+i + (

√
i ·∆total)

12: xb−i ← xb−i + (
√
i ·∆total)

13: end for
14: if c mod 2 = 1 then
15: xa+h ← xa+h + (

√
h ·∆total)

16: else if |∆before| > |∆after| then
17: xb−(h−1) ← xb−(h−1) + ∆total

18: else
19: xa+(h−1) ← xa+(h−1) + ∆total

20: end if
21: i← j + 1, j ← j + 2
22: end while

The first step is to identify time intervals where the measured acceleration has exceeded
the amplitude range. In these parts, at least two observations must exist with a maximum
(minimum) amplitude of exactly +2g (−2g). As this scenario is an improbable case, such a
sequence is likely to be the result of truncated data. The missing data after truncations can
be reconstructed using the preceding and following observations. Based on these values, the
average gradients before and after a peak (∆before and ∆after) are derived (cf. Equations (1)
and (2)) and the average total gradient ∆total can be computed (cf. Equation (3)).

∆before =
1

o

a∑
i=a−o

xi+1 − xi (1)

∆after =
1

o

b+o∑
i=b

xi − xi+1 (2)

∆total =
∆before + ∆after

2
(3)
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Figure 2. An example time series with periodic and nonperiodic segments.

Here, xi corresponds to the observation measured at time ti (1 ≤ i ≤ n) and n corresponds
to the length of the time series. A truncated data peak is defined to start at time ta and to
end at time tb. The variable o denotes the number of observations before and after the peak
(respectively) that are considered for the computation of the missing data.

Algorithm 1 presents the steps of the peak reconstruction for one axis. The truncated peaks
are determined while scanning the time series once (condition in line 2). If two successive
maximum amplitudes are detected (the maximum depends on the sensor characteristics and can
be set as a parameter maxAmp), the algorithm finds the whole truncated time range (line 4)
and computes the average gradients (line 7). The variable c denotes the number of subsequent
occurring maximum (minimum) values, which is 2 in the most simple case. Using the variable
h, the first (line 11) and last b c

2
c values (line 12) are interpolated based on a weighted total

gradient. If c is odd, then the central value in the peak, now represented by xa+h, has to be
recomputed in addition (line 15). Otherwise, both amplitudes xa+(h−1) and xb−(h−1) are equal.
Then, a global extremal value within this segment is ensured by increasing one of the middle
values (lines 16ff).

IV. SEGMENTATION

Detecting periodic parts in time series is performed via segmentation, where a time series
is divided into periodic and nonperiodic sequences (cf. Figure 2), in the following called
segments. Both periodic and nonperiodic sequences are then processed separately based on
extracted features (cf. Section V). For a periodic segment, it can be assumed that the detected
activity holds for the entire time period, which is due to the periodicity in the signal. A
nonperiodic segment may contain activity changes or indefinable acceleration recordings. A
feature vector describing a segment is independent of the segment’s length.

The first step of the segmentation is the detection of present periodicity. For this purpose, a
commonly used method in the community of activity recognition is to apply a sliding window
algorithm [25], [39], [47], [48], where autocorrelation [11] is used in order to measure the
self-similarity of time series segments. In general, the autocorrelation ρ(X, t1, t2) of a time
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series X at two time stamps t1 and t2 is defined as

ρ(X, t1, t2) =
E[(Xt1 − µt1)(Xt2 − µt2)]

σt1σt2
, (4)

where Xti denotes the subsequence of X starting at time ti and µti (σti) denotes the mean
(variance) of Xti (i = 1, 2). Hereby, the length of the subsequence is limited to the current
reference sample length m̂, which is defined below. The pseudocode of the segmentation
algorithm is illustrated in Algorithm 2.

For each starting point of a potential period (denoted by the time stamp ti, which is initially
set to the first time stamp 1), the algorithm consists of two phases: Phase 1 determines the
periodicity of the time series X of length n (lines 15-21), and Phase 2 extracts the periodic
segments (lines 29-32). Therefore, X has to be scanned once completely (condition in line 2).
In each iteration, a potential period is represented by a reference sample X̂ of length |X̂| =
m̂, which is extracted from X (line 3). Before starting the process in the actual iteration, a
maximum shift range has to be set in order to limit the length of a pattern period and, thus, to
increase the matching chances. This range will be denoted by ∆max in the following. Generally,
∆max is set as an input parameter. However, its value has to be decreased if it exceeds the time
series length (line 4f). Also, if ∆max < 2 · m̂ holds, i.e., a shift of the reference sample length
m̂ cannot be performed, all remaining observations are inserted in a temporary list called Lnp,
which collects all observations that are regarded to be nonperiodic (line 9). The elements will
later be materialized as a nonperiodic segment (line 12). Otherwise, Phase 1 is started.

Phase 1, starting from line 15, detects the optimal window shift between periodic occurrences
of patterns. The reference sample X̂ is now matched with a sliding window that contains the
following observations of the time series within the maximum shift range ∆max. The window
shift ∆opt yielding the highest correlation between X̂ and the pattern occurring in the window
is considered as optimal. Thus, the optimal distance between patterns of a periodic cycle is
given by ∆opt observations. A sufficiently high correlation value is defined by a threshold
τρ, which is also an input parameter of the algorithm. Thus, if no correlation higher than
τρ is found within the maximum shift range ∆max, the current optimal shift ∆opt does not
contain any significant periodic pattern. Then, the algorithm considers the current start time ti
to be nonperiodic (line 23) and continues with the next iteration using the respective sample
sequence shifted by one time stamp, now starting at time stamp ti+1 (line 24).

If a periodic pattern (with ρopt ≥ τρ) is found, the remaining observations in the Lnp list, i.e.,
the observations that have before been marked as nonperiodic, are combined to a nonperiodic
segment (line 26) and removed from the Lnp list (line 27). Then, Phase 2 extracts periodic
segments from the time series X , starting from line 29. The pattern is shifted by ∆opt, yielding
the new starting time tj , and the correlation between the current reference sample and the
following subsequence is computed. If a minimum correlation of τρ between Xti and Xtj is
obtained (which is obvious with the first shift, as this was the “highest” correlation value
that yielded the value for ∆opt), the periodic segment is extended performing further shifts
of length ∆opt. This shifting procedure is continued until a correlation value less than τρ is
obtained or the periodic pattern reoccurs until the end of the time series is reached (condition
in line 29). A periodic segment is required to have a minimum length mp. If the extracted
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Algorithm 2 Time Series Segmentation: segmentation(X , τρ, ∆max, mp)
Require: X , τρ, ∆max, mp

1: i← 1, Lnp ← [], n← |X|
2: while i ≤ n do
3: X̂ ← extractReferenceSample(X , ti), m̂← |X̂|
4: if i+ ∆max = n then
5: ∆max ← n− i− m̂+ 1 {cut ∆max if too long}
6: end if
7: if ∆max < 2 · m̂ then
8: while i ≤ n do
9: Lnp.add(xi) {assign remaining observations to a nonperiodic segment}

10: i← i+ 1
11: end while
12: createNonPeriodicSegment(Lnp)
13: else
14: ∆t ← l, ρ← 0, ρopt ← 0, ∆opt ← i
15: while ∆t ≤ ∆max do
16: ρ← ρ(X̂, ti, ti + ∆t) {search for optimal shift ∆opt}
17: if ρ > ρopt then
18: ρopt ← ρ, ∆opt ← ∆t

19: end if
20: ∆t ← ∆t + 1
21: end while
22: if ρopt < τρ then
23: Lnp.add(xi) {τρ was never exceeded}
24: i← i+ 1
25: else
26: createNonPeriodicSegment(Lnp) {materialize nonperiodic segment}
27: Lnp.clear()
28: ρ← 0, j ← i
29: while ρ ≥ τρ AND j ≤ n− m̂+ 1 do
30: ρ← ρ(X̂, ti, tj)
31: j ← j + ∆opt {extend periodic segment}
32: end while
33: if j − i+ m̂ ≥ mp then
34: createPeriodicSegment(X, ti, tj−1) {materialize periodic segment}
35: else
36: createNonPeriodicSegment(X, ti, tj−1) {materialize nonperiodic segment}
37: end if
38: i← j
39: end if
40: end if
41: end while
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segment, thus, consists of mp or more observations, a periodic segment is created (line 34).
Otherwise, a nonperiodic segment is created (line 36). Afterwards, the algorithm restarts from
the observation at the first time stamp after the extracted segment (line 38). The segmentation
algorithm is finished if all observations have been assigned to a (periodic or nonperiodic)
segment. This condition is satisfied after all time stamps of the time series have been tested
(line 2).

The presented segmentation algorithm is generally restricted to a single time series. An
extension for three-dimensional accelerometer data requires a slight modification. Here, the
optimal pattern distance is chosen from the time series where the highest correlation value is
obtained, and it is then applied to all time series. In order to mark a periodic segment, the
correlation values ρopt of all three time series have to exceed τρ (line 22).

In general, the autocorrelation method is sensitive w.r.t. slight deviations of the periodicity.
Thus, an activity might be divided into several consecutive periodic segments showing different
behavior w.r.t. frequency or intensity of the acceleration.

The runtime complexity of the segmentation algorithm is O(n · (∆max− m̂)). In the worst
case, the segmenting process has to find the optimal shift within a range of ∆max − m̂ for
each of the n observations.

V. FEATURE EXTRACTION

As already stated in Section IV, the segments are of different length, so that classification
cannot be directly performed based on the raw segments, since subsequence matching would
require a high computational cost. Also, this step will not perform efficiently having segments
that consist of a high number of observations. In order to overcome these problems, each
segment is represented by a feature vector of the same dimensionality, where the choice of
features can vary for periodic and nonperiodic segments. An overview of the final choice of
features will be given in Subsection VIII-B.

The feature vectors used for the approach presented in this paper contain time-domain
features and heuristic features, which will be summarized in the following. Frequency-domain
features will not be considered in order to the save computational cost w.r.t. the transformation
of the time series to the frequency domain.

For each periodic segment S, it is sufficient to derive only one feature vector v, as common
characteristics for a segment follow directly from the periodicity of the observations contained
in the segment. If a minimum length of mp observations for S is assumed for each axis recorded
by the accelerometer, the usage of feature vectors now reduces the dimensionality from at least
3 ·mp values (regarding all three axes) to dv, where dv denotes the dimensionality of v and
in general dv � mp holds. In an exemplary case of mp = 100 and dv = 15 (which will be
the final size for the experimental part), this corresponds to a reduction of at least 95%. For
nonperiodic segments, it cannot be assumed that all observations were captured with the same
physical activity, as no periodicity has been detected. Thus, a single feature vector would not
represent the entire segment that well. In order to minimize this error, a nonperiodic segment
is again split up into subsegments having a number of mnp observations, each represented by
its own feature vector. In most cases, the last subsegment contains less than mnp observations,
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since a nonperiodic segment, in general, varies in its length. If the last subsegment contains
more than mnp

2
observations, another feature vector is computed. If this is not the case, this

subsegment will be neglected in the classification step, as it hardly contains sufficiently enough
information for the creation of some features, such as the ARC feature, which will be explained
in the following. However, this subsegment will be considered again in the reclassification step,
which is performed after the classification (cf. Section VII).

The following features will be examined in the context of the proposed approach.
1) Auto Regression Coefficients (ARC): The autoregressive model is commonly used in the

context of modeling time series [11]. Let xi be the observation of a time series X at time ti.
xi is modeled as the sum of p linearly weighted recent values. The autoregressive model of
order p is given by

xi =

p∑
j=1

aj · x(i−j) + εi, (5)

where aj is the jth autoregressive coefficient and εi is a noise term at time ti. Given a time
series X , the coefficients aj can be estimated in various ways, such as the method of least
squares [9].

Autoregressive coefficients predict the prospective course of a signal based on recent values
and have been used in [23], [24] in the context of activity recognition. For the solution of this
work, the first three coefficients for each axis of the accelerometer data are used, yielding nine
feature values.

2) Signal Magnitude Area (SMA): The Signal Magnitude Area (SMA) is a well-known
heuristic energy measure in the context of activity classification [3], [10], [18], [24], [55]. It
is computed by summing up the absolute observation amplitudes of the three accelerometer
axes and by normalizing the result w.r.t. the length of the corresponding segment S, i.e.,

SMA =
1

m

m∑
i=1

(|xi|+ |yi|+ |zi|). (6)

Hereby, m corresponds to the length of S, and xi, yi and zi are the values of the respective axis
at time ti. As the maximum amplitudes might vary for each axis, activities showing intense
acceleration values occurring with high frequency contribute to a high SMA value, whereas
low-acceleration activities result in a low SMA.

3) Tilt Angle (TA): The Tilt Angle (TA) feature is described by the average tilt angle of
the lower leg over time. The accelerometer is supposed to be worn in the same position at
the ankle. Hence, physical activity can be described by the angle ϑ between the gravitational
vector and the positive z-axis of the sensor, i.e., ϑ = arccos(z). Recognition of activities like
swimming, which enforces a different tilt angle of the lower leg, takes considerable advantage
of the TA feature. The TA feature has been used in [24] and will, thus, be examined in the
experimental evaluation.

4) Average Peak Amplitude (APA): The Average Peak Amplitude (APA) will be introduced,
which is an energy measure and is, in contrast to the SMA, restricted to the (positive and
negative) peak amplitudes within a temporal window of the current segment S.
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Algorithm 3 Peak Detection: detectPeaks(S, pmin, τmin, ∆τ , minDist)
Require: S, pmin, τmin, ∆τ , minDist

1: Smax ← arg maxx∈S(S)
2: τ ← Smax
3: PPeak ← {x ∈ S : x ≥ τ}
4: while |PPeak| < pmin AND τ > τmin do
5: τold ← τ
6: τ ← τ −∆τ · Smax
7: PPeak.add({x ∈ S : τold > x ≥ τ})
8: for all xi, xj ∈ PPeak do
9: if ti − tj ≤ minDist then

10: PPeak ← PPeak \ {min(xi, xj)}
11: end if
12: end for
13: end while
14: avg ← 1

|PPeak|
∑

x∈PPeak x

15: if |PPeak| ≥ pmin then
16: RETURN avg
17: else
18: RETURN sgn(avg)
19: end if

The process of identifying the peaks is outlined in Algorithm 3. The signal has been
cleaned w.r.t. outliers beforehand (cf. Subsection III-A), so that the set of detected peaks
is not influenced by erroneous observations. The actual identification step first determines the
global absolute extremum of S, denoted by Smax (line 1).

Next, a threshold τ is introduced, which defines a minimum amplitude for all potential peaks
contained in S. τ is initialized with the value of Smax (line 2). The set of observations w.r.t. τ ,
denoted by PPeak, is initially created (line 3) . As long as the algorithm has not yet detected
a mandatory minimum number of peaks pmin, τ is decreased by ∆τ · Smax (line 6), yielding
new elements for PPeak (line 7).
PPeak may contain neighboring observations that actually belong to the same peak. In order

to reduce the result to a single observation per peak, a minimum distance minDist between
peaks is introduced that has to hold. If two amplitudes identified as peaks show a distance less
than minDist , the observation with the lower amplitude value will be removed (line 10; here,
a numerical ordering w.r.t. the amplitudes is assumed for the observations).

The described procedure is repeated until pmin is reached or τ has reached a minimum value
of τmin (condition in line 4). In the latter case, S contains only few significant amplidudes.

Finally, the feature value represents the average of all peak amplitudes in the current segment,
where the APA is only considered as significant if the number of peaks is at least pmin
(lines 15ff). Otherwise, a default value depending on the amplitude sign is returned.



13

5) Surrounding Segmentation Rate (SSR): Physical activity classes can also differ in their
fraction of periodic segments. For example, in the context of this work, the sensor recordings
for the activity Cycling showed to contain more nonperiodic segments than Running, as peri-
odic movements often have been interrupted by external influencing factors. This observation
leads to the derivation of a simple, but suitable heuristic feature describing the Surrounding
Segmentation Rate (SSR). The computation of the SSR is performed for a temporal window of
wSSR seconds surrounding the current segment, which is in particular suitable for long-term
activities. Thus, for a window containing overall s segments, sp and snp denote the numbers
of periodic and nonperiodic segments, respectively; it holds that s = sp + snp. Then, the SSR
is computed by SSR = sp

s
.

VI. DIMENSIONALITY REDUCTION

A. Feature Selection
In order to reduce the computational effort of the actual classification process, a dimension-

ality reduction of feature vectors is typically applied in order to remove redundant information;
this decreases the size of the feature vectors. In the context of accelerometer data, the literature
distinguishes between methods of feature selection and feature transformation, which can also
be used in combination. The selection of most relevant features for the feature vector was
performed using the forward-backward search [57]. This method can be applied to reduce the
effort of testing all feature combinations, which would be exponential in the number of features.
This is achieved by alternately adding features to the feature vector with the currently best
quality (which yields a new feature combination) and removing features (to examine subsets
of combinations that have not been considered before).

B. Feature Transformation
The separation of different activity classes can further be supported applying the Linear

Discriminant Analysis (LDA) [13] on the feature vector after the feature selection step. This is
called feature transformation. The LDA minimizes the variance of features within a class and
maximizes the variance of features between different classes, having the side effect of slight
performance gain. Applying the benefits of the LDA to the current application scenario, this
step neglects person-specific differences with the same physical activity, which is caused by
different body heights or variations in the execution of movements. Finally, the LDA leads to
a robustness of the classification w.r.t. the exact position of the sensor. Despite the fact that
the sensor is fixed on the ankle, continuous movements can lead to a rotation or a shift of
the sensor, which influences the quality of the data and, thus, the quality of the classification
results. Applying the LDA, these errors can be corrected.

VII. RECLASSIFICATION

In order to classify short subsegments where no features were extracted (cf. Section V), a
postprocessing step is applied which assigns the most likely class label to these subsegments.
This likelihood depends on the classification results obtained for the surrounding segments.
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Algorithm 4 Reclassification of Observation xi: reclassObservation(xi, W , cl)
Require: xi, W , cl

1: w ← |W |
2: I ← {0, . . . , cl − 1}
3: W ← [0, . . . , 0]
4: Lold ← xi.label , Lnew ← −1
5: for all xj ∈ W \ {xi} do
6: xj.weight ← w−1

2
− |j − i|+ 1

7: W [xj.label ]←W [xj.label ] + xj.weight
8: end for
9: Lnew ← arg maxl∈I(W)

10: if Lold 6= −1 OR Lold 6= Lnew AND W [Lnew] >
∑

l∈I\{Lnew}(W [l]) then
11: xi.label ← Lnew
12: end if

Furthermore, this step detects errors that occurred in the actual classification step. These
errors may contain highly improbable results. The application of activity recognition pro-
vides sufficiently interpretable information for these cases. For example, if two significantly
long segments classified as Cycling contain a short segment classified as Elliptical Trainer,
the classification result of the latter segment will be revised. A formal description of the
unsupervised reclassification is outlined in Algorithm 4.

Hereby, the variable cl denotes the number of activity classes; also, the activity class labels
are represented as indices. Temporally used data structures are the list of class label indices I
and the list of weightsW of the class labels; the weight values are referenced by the respective
class label index i ∈ {0, . . . , cl − 1}. The reclassification step takes, for each observation, the
available information of the neighboring observations into account by considering a temporal
window W of size w = |W |, containing the current observation xi as well as w−1

2
preceding

and w−1
2

successive observations. For observations that are close to the border of the time
series, W is cut off accordingly. Based on the class labels of each observation xj contained in
W (j 6= i), a weighted linear distribution of the occurring labels is computed, which considers
more recent observations to have more impact. Thus, the distance-based weight xj.weight
of a neighboring observation xj corresponds to w−1

2
, whereas the weight of the most distant

observation is 1 (line 6). The distribution of the weights of the observations xj corresponds
to a linear time-fading function. A quadratic or general distribution-based fading function
would also be applicable here. If xi has not been classified before (the label obtained in the
classification is denoted by Lold, where a value of -1 implies no assignment to a class label)
or the class label Lnew that shows the highest weighted occurrence has a significant influence
on xi (i.e., its relative weighted occurrence is higher than the sum of all other classes), the
reclassification was successful and Lnew is assigned to xi (line 11).

For the reclassification of each of the n observations, the surrounding w − 1 observations
within the window W have to be regarded; thus, this algorithm requires a runtime complexity
of O(n · w).
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Activity # Datasets Duration (hh:mm:ss)
Ell. Trainer 3 00:55:07
Walking 6 02:42:09
IL Skating 3 01:55:50
Running 6 02:37:13
Cycling 4 02:32:46
Total 22 10:43:05

Table II
DATASETS USED FOR THE EXPERIMENTAL EVALUATION.

VIII. EXPERIMENTAL EVALUATION

A. Datasets
The application scenario for this paper was given by a collaboration with the Sendsor GmbH,

who also provided the accelerometers used to record the datasets that will be used in this
section. The accelerometers are able to record amplitudes in the range of ±2g with a rate of 25
Hz. In order to obtain accurate and representative acceleration measurements, the accelerometer
is worn by the patients at the ankle [44].

In the context of this paper, five different activity classes were examined: Walking, Running,
Cycling, In-line Skating (IL Skating) and Elliptical Trainer (Ell. Trainer). The datasets used
for the following experiments are summarized in Table II. The evaluation was performed using
the data mining framework Knowing [8].

B. Experimental Setup
1) Choice of the Classifier: The evaluation of the presented activity classification approach

was performed using the Naı̈ve Bayes classifier [17]. In the context of implementing the
Knowing framework, an evaluation of overall 32 classifiers that are available in WEKA [16] has
been performed, where Naı̈ve Bayes turned out to provide most effective solutions on periodic
and nonperiodic segments. Hereby, the effectiveness of the classifier was measured by the
classification accuracy, which is a common measure in the field of information retrieval [5].

The first experiment was performed without applying reclassification. Naı̈ve Bayes yielded a
classification accuracy of 97.18% (more details will be provided in Subsection VIII-C). Results
of slightly minor quality could were obtained using Sequential Minimum Optimization [37]
(accuracy of 96.67%) and a normalized Gaussian radial basis function network (accuracy of
94.88%).

In addition, two methods based on Artificial Neural Networks (ANNs) were tested in order to
provide the comparability to the approach of [24]. The latter uses a multilevel perceptron based
on backpropagation learning [41], [53], which is available in WEKA. The second evaluated
ANN, which is based on resilient propagation learning [40], is available in the Encog Machine
Learning Framework2. In the evaluated settings, each of the neural networks consisted of
a hidden layer of ten neurons and an output layer of five neurons, which corresponds to

2http://www.heatonresearch.com/encog

http://www.heatonresearch.com/encog
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Description Abbreviation # Values [24] This Approach
Auto Regression Coefficients ARC 9 X X
Signal Magnitude Area SMA 1 X X
Average Peak Amplitude APA 3 - X
Tilt Angle TA 1 X X
Surrounding Segmentation Rate SSR 1 - X
Inter-Axis Correlation IAC 3 - -
Arithmetic Mean Mean 3 - -
Variance VAR 3 - -

Table III
SET OF EXAMINED FEATURES.

the number of evaluated activities. While the resilient propagation classifier yielded a total
classification accuracy of 93.43%, the backpropagation classifier achieved a very low accuracy
value of 27.7%. In addition, the backpropagation classifier required extensive computational
cost on the used dataset. Thus, for the comparison experiments in the context of this paper
(cf. Subsection VIII-C), the resilient propagation classifier was applied to be used with the
approach of [24] instead.

2) Feature Selection: The selection of most relevant features for the feature vector was per-
formed using the forward-backward search technique [57] (cf. Subsection VI-A). For periodic
segments, the feature selection step yielded a feature vector dimensionality of dv = 15. For
the nonperiodic segments, the selection process yielded the same feature vector as for periodic
segments. An overview of the used features for the evaluation of the current approach and
the competing approach of [24] is given in Table III. In addition to the features presented
in Section V, the simple features Arithmetic Mean, Variance and Inter-Axis Correlation, used
in [6], were included into the selection process, but proved to contain no significant information.

For creating the experimental setup as well as in the following experiments, some feature
parameters were set to default values (cf. Section V). For the APA feature, values for the
minimum peak threshold (τmin = 0.7), the peak threshold step (∆τ = 0.02), the minimum
number of peaks (pmin = 3) and the minimum distance between peaks (minDist = 10) were
set. For the SSR feature, the window size wSSR was set to 1500, which corresponds to a
temporal window of 60 seconds.

3) Further Parameters: The window size for the average filter that is applied to remove
outliers is set to 3. For the segmentation (cf. Section IV), the following default values were
used:
• The reference sample X̂ consisted of 25 observations, which corresponds to one second.
• The required minimum correlation ρmin was set to 75%.
• The minimum length mp of periodic segments was set to 100 observations, which corre-

sponds to four seconds.
• The length mnp of nonperiodic subsegments was set to 80 (3.2 seconds).

In the reclassification step (cf. Section VII), the size w for the temporal window, which is used
to capture the weighted occurrences of the class information of the surrounding observations,
consists of 751 observations (750 plus the observation that is to reclassify), which corresponds
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Figure 3. Classification result.

to 15 seconds before and after the current observation, respectively. Furthermore, as five activity
classes are evaluated in this paper, cl = 5.

C. Classification Results
The classification algorithm was evaluated by performing a cross validation on the ac-

tivity classes. For each time series segment containing one of the five activities (cf. Subsec-
tion VIII-A), the obtained classification accuracy using the default settings of Subsection VIII-B
are depicted in Figure 3(a). The classification yields accuracies of more than 95% for each
activity. The highest classification error was obtained with the activity Walking, which was
classified as Cycling with 3.56%, which can simply be explained by the observation that
these activities are likely to create similar acceleration measurements. In order to visualize the
percentage of segments that were incorrectly classified or could not be classified at all, the
reclassification step was omitted in the first experiment. The effect of the reclassification will
be examined in Subsection VIII-D.

In [24], the classification of 15 different activities yielded an accuracy of 97.9%. For the
evaluation in the context of this paper, a slight adaption of this approach was implemented:
the resilient propagation algorithm was used instead of the usually applied backpropagation
algorithm due to performance reasons (cf. Subsection VIII-B). Figure 3(b) illustrates the
classification results of the approach introduced in this paper compared to the results of [24].
It can be observed that, for each class, the approach of [24] achieves less accuracy compared
to the approach presented in this paper.

D. Effect of the Processing Steps
The next experiment will examine the effect of the preprocessing steps. Evaluating the peak

reconstruction (cf. Subsection III-B), the classification results could be improved for three out
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Figure 4. Effect of data preprocessing.

of five activities (Walking, Running and In-line Skating). This can be explained by the fact that
these activities take advantage from their significant peaks because of significant movements,
whereas the movements of Cycling and Elliptical Trainer are indirectly supported by the sports
equipment, which may lead to rather smooth movements. Overall, this step yielded an overall
precision gain of almost 1% (cf. Figure 4(a)).

Next, the effect of the segmentation (cf. Section IV) was evaluated. Instead of choosing
a naı̈ve solution without a segmentation that extracts only one feature vector for the time
series, the time series was divided into non-overlapping subsequences of equal length, each
containing 80 observations, analogously to the size of nonperiodic segments in the original
approach (cf. the experimental setup in Subsection VIII-B), and a feature vector was derived
for each segment. The SSR feature could not be applied here, as, for this segmentation variant,
no information about the amount of surrounding periodic segments is available. Hence, the
used feature vector consisted of 14 features for this variant of the classification approach. The
results are shown in Figure 4(b). It can be observed that, for the equal-length segmentation,
almost no segment remains unclassified. This is due to the fact that short segments that do not
contain enough information to be represented by a feature vector (cf. Section V) only occur
at the end of the time series. For long-term activities that are very constant over time, such
as Running and Elliptical Trainer, the equal-length segmentation yields comparable results, as
there are only few gaps in the data. For activities consisting of short-term periods interrupted by
several breaks due to external influence factors, e.g., in the case of Cycling, where pedaling is
often noncontinuous, a classification supported by a segmentation into periodic and nonperiodic
parts achieves a significant improvement of 4% in average. Similar observations explain the
significant improvement with the activities Walking and In-line Skating, as the step length is
not homogeneous.
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Figure 5. Effect of the LDA and the reclassification.

E. Effect of the Feature Transformation
In the next experiment, the effect of the LDA (cf. Subsection VI-B) was examined. With

the most activity classes, the LDA improves the results only slightly. This shows that the
combination of features done by the forward-backward search already yielded representative
feature vectors with almost no redundant information. In the processing chain, the forward-
backward search step is performed before the application of the LDA.

The only activity that obtains a performance gain with applying the LDA is the activity
Elliptical Trainer. As this activity is, intuitively, very similar to both activities Walking and
Cycling, an accurate separation among these classes is not always possible. Moreover, the
training datasets for this activity class seem to be very inhomogeneous due to significantly
different velocities. Here, the LDA maximizes the differences to the other activity classes
successfully. Thus, these errors can be corrected. The results of this comparison are depicted
in Figure 5(a).

F. Effect of the Reclassification
The reclassification step was omitted with the evaluations of Subsections VIII-D and VIII-E

in order to get the amount of unclassified data returned. Finally, the observed results with an
additional application of the reclassification step are illustrated in Figure 5(b)). Here, a slight
improvement of 1.6% was achieved. Most nonperiodic segments that could not be classified in
the actual classification step seem to contain many activity changes within a short time period,
which leads to errors in the reclassification step.

G. Conclusions
Concluding, it can be stated that the proposed approach achieve results of high quality,

since a state-of-the-art activity recognition method could be outperformed. The evaluation of
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the processing step showed that each of them is able to support the actual classification step
in order to provide reliable statements about the performed activity. For the case of limited
resources, i.e., if the classification algorithm has to run on the firmware of the sensor in order
to provide a real-time recognition and to return results quickly, a trade-off solution between
storage and processing time requirements and classification accuracy has to be found.

IX. SUMMARY

This paper provided an effective solution for the application scenario of activity recog-
nition on periodic time series that are collected from accelerometers, which emerged from
the application scenario of [45], [46]. The proposed solution, which can be categorized as
matching-based approach, extends existing methods by integrating additional processing steps,
such as a reconstruction of the data peaks, a utilization of suitable periodicity features and a
reclassification of the data to improve the classification results. The experimental part showed
an improved recognition quality in comparison with existing work.
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