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Abstract. Directions and paths, as commonly provided by navigation systems,
are usually derived considering absolute metrics, e.g., finding the shortest or the
fastest path within an underlying road network. With the aid of Volunteered Ge-
ographic Information (VGI), i.e., geo-spatial information contained in user gen-
erated content, we aim at obtaining paths that do not only minimize distance but
also lead through more popular areas. Based on the importance of landmarks in
Geographic Information Science and in human cognition, we extract a certain
kind of VGI, namely spatial relations that define closeness (nearby, next to) be-
tween pairs of points of interest (POIs), and quantify them following a probabilis-
tic framework. Subsequently, using Bayesian inference we obtain a crowd-based
closeness confidence score between pairs of PoIs. We apply this measure to the
corresponding road network based on an altered cost function which does not
exclusively rely on distance but also takes crowdsourced geo-spatial information
into account. Finally, we propose two routing algorithms on the enriched road
network. To evaluate our approach, we use Flickr photo data as a ground truth for
popularity. Our experimental results – based on real world datasets – show that
the paths computed w.r.t. our alternative cost function yield competitive solutions
in terms of path length while also providing more “popular” paths, making rout-
ing easier and more informative for the user.

1 Introduction

User generated content has benefited many scientific disciplines by providing a wealth
of new data. Technological progress, especially smartphones and GPS receivers, has
facilitated contributing to the plethora of available information. OpenStreetMap5 con-
stitutes the standard example and reference in the area of VGI. Authoring geo-spatial
information typically implies coordinate-based, quantitative data. Contributing quanti-
tative data requires specialized applications (often part of social media platforms) and/or
specialized knowledge, as is the case with OpenStreetMap (OSM).

5 https://www.openstreetmap.org/
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The broad mass of users contributing content, however, are much more comfortable
using qualitative information. People typically do not use geo-coordinates to describe
their spatial motion, for instance when traveling or roaming. Instead, they use qualita-
tive information in the form of toponyms (landmarks) and spatial relationships (“near”,
“next to”, “close by”, etc.). Hence, there is an abundance of geo-spatial information
(freely) available on the Internet, e.g., in travel blogs, largely unused. In contrast to
quantitative information, which is mathematically measurable, qualitative information
is based on personal cognition. Therefore, accumulated and processed qualitative infor-
mation may better represent human way of thinking.

This is of particular interest when considering the “routing problem” (equivalent to
“path computation”). Traditional routing queries use directions from systems that only
take inherent cost measure of the underlying road network into account, e.g., distance or
travel time. In human interaction, such information is usually enhanced with qualitative
information (e.g. “the street next to the church”, “the bridge north of the Eiffel tower”).
Combining traditional routing algorithms with crowdsourced geo-spatial references we
aim to more properly represent human perception while keeping it mathematically mea-
surable.

In [1], the authors analyze the important role of landmarks for the representation of
geographic space in human mind, i.e., people tend to describe their position in space
based on landmarks and relations between them. Based on this fact, in this work, we
enrich a road network with information about spatial relations between pairs of Points
of Interest (POI) extracted from user generated data (travel-blog data). Using these rela-
tions, we obtain routes that are easier to interpret and follow, possibly rather resembling
a route that a person would provide.

Fig. 1. Shortest (continuous) and alternative paths
(dot dashed and dotted) alongside POIs in the city of
Paris. This result is an output of some of the algo-
rithms presented in this paper.

As an example, consider the
routing scenario in Figure 1 which is
set in the city of Paris, France. The
continuous line represents the con-
ventional shortest path from start-
ing point “Gare du Nord” to the tar-
get at “Quai de la Rapée” while the
dot dashed and dotted lines repre-
sent alternative paths computed by
the algorithms introduced in this pa-
per. The triangles in this example de-
note touristic landmarks and sights.
For instance, the dot dashed path on
the bottom right passing recogniz-
able locations such as “Place de la
République”, “Cirque d’hiver” and
“la Bastille”, as proposed by our al-
gorithms, is considerably easier to
describe and follow, and might yield
more interesting sights for tourists
than the shortest path.



The major challenge in this contribution is the extraction of crowdsourced geo-
spatial information from textual data and the enrichment of an existing road network
with this information. The enriched road network is subsequently used to provide paths
between a given start and target that satisfy the claim of higher popularity (which is for-
mally introduced in Section 3), while only incurring a minor additional spatial distance.
In addition to this main application, we note that our techniques can furthermore be
used to automatically provide interesting tourist routes in any place where information
about POIs is available. The transition from textual information to routing in networks
is not at all straightforward, therefore we employ and develop various methods from
different angles of computing science. To summarize, our contributions are as follows:

– We first mine VGI from user generated texts, by employing Natural Language Pro-
cessing (NLP) methods in order to determine spatial entities (POIs) and spatial
relations between them (see Section 2).

– Due to the inherent uncertainty of crowdsourced data, we employ probability dis-
tributions to quantitatively model spatial relations mined from the text (see Sec-
tion 2.2).

– We propose a Bayesian inference-based transition from the modeled spatial rela-
tions to spatial closeness confidence measurements according to the crowd (see
Section 3.1).

– We define a new cost criterion which is used to enrich an underlying road network
with the aforementioned confidence measurements (see Section 3.2).

– We extend our previously presented road network enrichment approach (see [2])
with a skyline-based road network enrichment approach.

– Finally, we propose two algorithms which use the enriched road network to com-
pute actual paths (see Section 4).

2 Spatial Relation Extraction and Modeling

This section highlights our approach on qualitative data extraction from texts and presents
a probabilistic approach for representing spatial relationships based on distance and ori-
entation features. Key ingredients of our approach are NLP methods for information
extraction from texts and algorithms that train probabilistic models, which are required
due to the inherent uncertainty of crowdsourced data. Our discussion below includes
a short description of NLP tools we use to extract spatial relations between POIs, the
features we used to model spatial relations as probability distributions, and a short anal-
ysis of the modeling approach used in [3]. These models are necessary to assess the
quality of spatial relations extracted from text which will be used in Section 3.2 for the
enrichment of the underlying road network.

2.1 Spatial Relation Extraction from Texts

In this work, we choose travel blogs as a rich source for (crowdsourced) geo-spatial
data. This selection is based on the fact that people tend to describe their experiences in
relation to their trips and places they have visited, which results in “spatial” narratives.



To gather such data, we use classical Web crawling techniques and compile a database
consisting of 250,000 texts, obtained from 20 travel blogs.

Obtaining qualitative spatial relations from text involves the detection of (i) POIs
(or toponyms) and (ii) spatial relationships linking the POIs. The employed approach
involves geoparsing, i.e., the detection of candidate phrases, and geocoding, i.e., linking
the phrases to actual coordinate information.

For the relation extraction task we follow the approach used in [4] where a Nat-
ural Language Processing Toolkit (NLTK) (cf. [5]) based spatial relation extraction
approach is presented. NLTK is a leading platform for analyzing raw natural language
data. The search for spatial relations in texts results into triplets of the form (Pi, Rk,
Pj), where Pi and Pj are named entities (landmarks) and Rk is the spatial relation
that intervenes between Pi and Pj . Following this path, we managed to extract 500,000
POIs from the aforementioned travel blog text corpus. For the geocoding of the POIs,
we rely on the GeoNames6 geographical gazetteer data, which contains over ten mil-
lion POI names worldwide and their coordinates. This procedure associates (whenever
possible) POIs found in the travel blogs with geo coordinates. Using the GeoNames
gazetteer we were able to geocode about 480,000 out of the 500,000 extracted POIs
and to end up with about 600,000 triplets of the form (Pi, Rk, Pj) worldwide.

For our experiments we want to focus on regions with high triplet density in order
the get meaningful results. Therefore, we focus on the cities of Paris and New York.
The triplets we extracted for these two cities define a what we call Spatial Relationship
Graph, i.e., a spatial graph in which nodes represent POIs and edges are spatial relation-
ships between them. Let us point out that for the scope of this work, i.e., a combination
of short and enriched routes, we only consider distance and topological relations that
denote closeness (near, close, next to, at, in etc). The use of relations that denote di-
rection, e.g., north, south, east etc., or remoteness, e.g., away from, far etc., is an open
direction for future work.

2.2 Modeling Spatial Relations

Feature Extraction In order to train probabilistic models, we need informative fea-
tures. We model each spatial relation in terms of distance and orientation as presented
in [3]. Therefore, we extract occurrences of a spatial relation (such as “near”) from
travel blogs. For each occurrence, we create a two-dimensional spatial feature vector
D = (Dd, Do)

ᵀ where Dd denotes the distance and Do denotes the orientation be-
tween Pi and Pj . Specifically, assuming a projected (Cartesian) coordinate system, the
distance between two POIs Pi and Pj is computed as the Euclidean metric between
the two respective coordinates. The orientation is established as the counterclockwise
rotation of the x-axis, centered at point Pj , to point Pi. This way, we end up with a set
of two-dimensional feature vectors Drel = {D1, D2, . . . , Dn} for each spatial relation.
We will use the set of two-dimensional feature vectors in order to train a probabilistic
model for each spatial relation.

6 http://www.geonames.org/



Probabilistic Modeling As described in [3], by using a set of two-dimensional feature
vectors for each spatial relation such as “near” or “into”, we can train Gaussian Mixture
Models (GMMs), which have been extensively used in many classification and general
machine learning problems ([6]).

In general, a GMM is a weighted sum of M -component Gaussian densities as
p(d|λ) =

∑M
i=1 wig(d;µi, Σi) where d is a l-dimensional data vector (in our case

l = 2), wi are the mixture weights, and g(d;µi, Σi) is a Gaussian density function
with mean vector µi ∈ Rl and covariance matrix Σi ∈ Rl×l. To fully character-
ize the probability density function p(d|λ), one requires the mean vectors, the covari-
ance matrices and the mixture weights. These parameters are collectively represented
in λ = {wi, µi, Σi} for i = 1, . . . ,M .

Let R = {R1, . . . , Rn} denote the set of all spatial relations that we take into ac-
count. In our setting, each relation Rk is modeled under a probabilistic framework by
a 2-dimensional GMM, trained on each relation’s set of two-dimensional feature vec-
tors Drel. For the parameter estimation of each Gaussian component of each GMM, we
use Expectation Maximization (EM) ([7]). EM enables us to update the parameters of a
given M-component mixture with respect to a feature vector set Drel = {D1, . . . , Dm}
with 1 ≤ j ≤ m and allDj ∈ Rl, such that the log-likelihood L =

∑m
j=1 log(p(Dj |λ))

increases with each re-estimation step, i.e., EM re-estimates model parameters λ until
convergence. Further details on modeling spatial relations under a probabilistic frame-
work are given in [3].

This procedure results in a trained GMM of the form pk(D|λ), for each spatial
relation Rk, 1 ≤ k ≤ n. Given a distance and orientation vector, we can use this model
to estimate the probability that a particular relation exists. Based on this information,
by bayesian inference we derive a closeness score for pairs of POIs. This procedure is
described in the next section.

3 Road Network Enrichment
In this section, we describe our approach to enrich an actual road network with crowd-
sourced geo-spatial information. Our discussion below includes a description of how
we transform a Spatial Relationship Graph, as presented in Section 2.1, into a weighted
graph, and how we use the edge weights of the weighted graph in order to modify the
edge costs of a real road network.

3.1 From Relationship to Weighted Graphs

As presented in Section 2, the spatial relation extraction procedure results in a rela-
tionship graph between POIs. A simple example of such a graph is shown in Figure 2.
In general, let P = {P1, . . . , Pm} denote the set of nodes representing the POIs, and
let R = {R1, . . . , Rn} denote the pre-defined set of spatial closeness relations, repre-
sented by spatial NLP expressions like “next to” or “close by”.

Furthermore, let Ri,j ⊆ R denote the set of relations extracted from the text be-
tween two distinct nodes Pi and Pj . Note that Rk denotes an abstract relation, while
Ri,j denotes a set of occurrences of relations between a pair of nodes. Let Di,j denote
the spatial feature vector (distance and orientation), between two distinct POIs Pi and



Pj (as presented in Section 2.2). Finally, let D :=
⋃

i6=j∧Ri,j 6=∅Di,j denote the set
of all spatial feature vectors between all pairs of POIs which have non-empty sets of
relations.

P1 P2

P3P4

R1,2(W1,2)

R1,3(W1,3)
R2,3(W2,3)

R3,4(W3,4)

R4,1(W4,1)

R4,3(W4,3)

Fig. 2. Simple relationship graph. Nodes represent POIs and each edge represents the set of
relations Ri,j through which its adjacent nodes Pi and Pj are connected. Each of these sets is
mapped onto the closeness scoreWi,j , turning the relationship into a weighted graph.

We want to estimate the posterior probability of a class Rk ∈ Ri,j based on the
spatial feature data Di,j between two POIs Pi and Pj . This is given by Equation 1.
Here, p(Di,j |Rk) denotes the likelihood of Di,j given relation Rk based on the trained
GMM (presented as p(D|λ) Section 2.2), while P (Rk) denotes the prior probability of
relation Rk given only the observed relations Ri,j .

P (Rk|Di,j) =
p(Di,j |Rk)P (Rk)
n∑

l=1

p(Di,j |Rl)P (Rl)
(1)

In a traditional classification problem the spatial relation Rk between a pair of POIs
would be classified to the spatial relation model with the highest posterior. In contrast
to this approach, we consider each posterior probability P (Rk|Di,j) as a measure of
confidence of the existence of relation Rk between Pi and Pj . Remember that all the
relations we consider reflect terms of spatial closeness. We combine all these posteriors
into one measure which we refer to as closeness scoreWi,j of the pair of POIs Pi and
Pj , defined in Equation 2.

Wi,j =
1

|R|
·
|Ri,j |∑
i=1

P (Rk|Di,j)

maxk{P (Rk|D)}
(2)

Here, we sum all the posteriors P (Rk|Di,j) normalized by the maximum poste-
rior of each relation in the relationship graph and we normalize the summation by the
total number of spatial relations in the relationship graph. This is done for all pairs



Pi, Pj where Ri,j 6= ∅. We refer to these pairs as close since at least one of our rela-
tions reflecting closeness exists. As is illustrated in Figure 2, assigning the respective
weightsWi,j to the edges of the relationship graph, we obtain a weighted graph. Note
that Wi,j ∈ [0, 1] but typically 0 < Wi,j � 1. In Section 5 the influence of Wi,j on
the results is examined, in particular, different scalings are tested. In this weighted rela-
tionship graph, denoted by H∗, there exists a vertex for each POI and an edge (Pi, Pj)
(equipped with weightsWi,j and Euclidean distances dij) for each pair of POIs Pi, Pj

that are close in the above sense (Ri,j 6= ∅).

3.2 From Weighted Graphs to Road Network Enrichment

Now that we have extracted and statistically condensed the crowdsourced data into
a closeness score, we need to apply the obtained closeness scores to the underlying
network. We have investigated several strategies and have decided upon a compromise
between simplicity and effectiveness. We will present two road network enrichment
approaches and we propose two algorithms on routing with enriched graphs. The first
enrichment approach, also analyzed in our previous work in [2], is based on Djikstra
shortest path computation while the second is based on Skyline path computation.

Initially, let G = (V,E, d) denote the graph representing the underlying road net-
work, i.e., the vertices v ∈ V correspond to crossroads, dead ends, etc., the edges
e ∈ E = V × V represent roads connecting vertices. Furthermore, let d : E → R+

0

denote the function which maps every edge onto its distance. We assume that P ⊆ V ,
i.e., each POI is also a vertex in the graph. This is only a minor constraint since we can
easily map each POI to the nearest node of the graph or introduce pseudo-nodes. Our
two enrichment methods are described below.

Djikstra Shortest Path Approach For each pair of spatially connected POIs, Pi, Pj ,
we compute the shortest path connecting Pi and Pj in G, which we denote by r(i, j).
We then define a new cost function c : E → R+

0 which modifies the previous cost d(e)
of an edge as follows:

c(e) = d(e) ·
∏

e∈r(i,j)

(1− αWi,j) (3)

where e ∈ r(i, j) iff e is an edge within the shortest path from Pi to Pj and where
α ∈ [0, 1] is a weight scaling factor to control the balance between the spatial distance
d(e) and the modification caused by the closeness score Wi,j . In the case of α = 0,
we obtain the unadapted edge weight c(e) = d(e). Summarizing, the more shortest
paths between POI pairs run through e, the lower its adjusted cost c(e). The reason for
enriching the shortest paths is that they represent the most intuitive connections between
any two points in a road network.

We now define the enriched graphG∗ = (V,E, c). It consists of the original vertices
and edges and is equipped with the new cost function which implies the re-weighting
of edges. Any path computation algorithm inG∗(e.g. a Dijkstra search) therefore favors
edges which are part of shortest paths between POIs which are close according to the
crowd. When computing the cost of a path on G∗, as before, we sum the respective
edge weights which now differ from the original edge weights (due to the altered cost



function). We refer to this procedure of incorporating the crowdsourced information
and the respective graph as D-enrich.

Path Skyline Approach One shortcoming of D-enrich is the assumption that the crowd
unanimously favors exactly one path to connect a pair of POIs Pi and Pj , namely the
shortest path. Especially in multicriteria networks which comprise of a set of cost crite-
ria, e.g., travel time, energy consumption, road tolls, optimality is usually defined as a
personal trade-off between the given criteria. For example: How much additional time
has to be spent to avoid a toll road? However, defining this trade-off numerically as a
vector of preferences is not reasonable, and even if it would be, finding the personally
preferred trade-offs for all users is in general not possible. Therefore, the best practice
is to present a set of alternative paths to the user. The most established and very com-
prehensive set of alternative paths is the so-called path skyline [8]. This set contains all
paths which are non-dominated in the following sense: The cost vector u dominates a
cost vector v, denoted u ≺dom v, if u has a smaller cost value than v in at least one
dimension i and v does not have a smaller cost value than u in any dimension j. Hence,
the path skyline comprises all path which are optimal under some monotone combina-
tion function of the cost criteria. Hence, the path skyline contains all optimal paths for
all possible trade-offs between the cost criteria.

To enrich our road network, we compute the path skyline (w.r.t. distance and travel
time) as proposed in [9] between each pair of spatially connected POIs Pi and Pj in G,
denoted by s(i, j). Although the paths contained in s(i, j) differ from one another, they
often share some edges. Simply following each path for enrichment might unnecessarily
favor edges contained in many skyline paths. Therefore, we adjust the weights of edges
independent of the number of skyline paths in which they occur. Let Si,j ⊂ E denote
the set of all distinct edges which are part of at least one skyline path from Pi to Pj .
Analogously to D-enrich, we define the cost function c : E → R+

0 to modify the
original cost d(e) of an edge, as before. While the adjusted cost function is the same as
before (see Equation 3), the set of edges with adjusted costs is a superset, i.e., Si,j ⊇
r(i, j).

We now define the enriched graph G∗∗ = (V,E, c). It consists of the original ver-
tices and edges equipped with the altered cost function reflecting a re-weighting of
edges contained in skyline paths. Any path computation algorithm in G∗∗(e.g. a Dijk-
stra search) therefore favors edges which are part of the Skyline paths between POIs
which are close according to the crowd. We refer to this procedure of incorporating the
crowdsourced information and the respective graph as S-enrich.

3.3 Influence of Adjusted Costs

In order to measure the influence of the adjusted cost values along a computed path
p = (e1, . . . , er) on an enriched graph (G∗or G∗∗), we introduce the enrichment ratio
(ER) function er.

er(p) =
1

d(p)

r∑
i=1

c(ei) (4)

Here, d(·) and c(·) are as in the previous two sections. By normalizing with the total
length of the path, we are able to compare the spatial connectivity of paths independent



of length as well as start and target nodes. Here, a lower ratio implies higher closeness
score values along the edges of the path. If none of the edges of a path is part of any
shortest or skyline path between POIs, its enrichment ratio is 1, while the (highly un-
likely) optimal enrichment ratio is 0. On the enriched graphs G∗ and G∗∗ we may now
define our path computation algorithms.

4 Path Computation on Enriched Graphs

Now that we have a measure quantifying the enrichment of a path, we investigate the
effect of D-enrich and S-enrich on the actual path computation. For this purpose, we
present two approaches which make use of the enriched network and the weighted re-
lationship graph H∗ (Section 3.1). In Section 5 they are compared to the conventional
shortest paths within the original graph, as obtained with Dijkstra’s algorithm, which
we denote by Dij-G.

Note that for the evaluation procedure, all paths in this paper are computed by Dijk-
stra’s algorithm because our main focus is not the routing itself but the incorporation of
textual information into existing road networks. If desired, speed-up techniques, such
as preprocessing steps and/or other search algorithms, could easily be employed.

Our first approach, given start and target nodes, it executes a Dijkstra search in the
enriched road network graph G∗ or G∗∗ w.r.t. the adjusted cost function. Depending on
the enrichment used, D-enrich or S-enrich, we refer to the first algorithm as Dij-G∗or
Dij-G∗∗, respectively.

Our second approach, uses the enriched road network graphs G∗ or G∗∗ as well as
the weighted relationship graph H∗. Given start and target nodes within the enriched
graph (G∗or G∗∗), entry and exit nodes within H∗ are determined. Subsequently, we
route within H∗, i.e., from POI to POI, again using Dijkstra’s algorithm. Depending on
the enrichment used, D-enrich or S-enrich, we refer to the second approach we want
to present as Dij-H∗or Dij-H∗∗, respectively. Note that in both cases we use the same
graph H∗, but we refer to the S-enrich case as Dij-H∗∗ in order to differentiate the two
methods.

All our approaches return paths connecting start and target. But while Dij-G com-
putes the shortest path in the original graph G, all the approaches compute the shortest
paths in the enriched graphs w.r.t. the adjusted cost function c. By construction of c, it
favors edges which are part of the Dijkstra shortest paths or the skyline paths, between
close POIs. Dij-H∗ and Dij-H∗∗ in contrast, do not only favor these edges, but are re-
stricted to them. Having found entry and exit nodes withinH∗, Dij-H∗ and Dij-H∗∗ hop
from POI to POI in direction of the target. Hence, Dij-G, Dij-G∗, Dij-G∗∗, Dij-H∗, Dij-
H∗∗ in that order, represent an increasing binding to the extracted relations. Dij-G is not
bound to the relations at all, while Dij-G∗ and Dij-G∗∗ (by the adjusted cost function)
favors “relation-edges”, and Dij-H∗ and Dij-H∗∗ are strictly bound to the relations and
the graph formed by them.

Let us formalize Dij-H∗ (Dij-H∗∗ can be formalized in the same way). Given start
and target node in G∗ (or G∗∗ for the Dij-H∗∗ case), it first determines the so-called
entry and exit nodes to and from H∗. However, to exclude POIs which would imply
a significant detour, we restrict the set of valid POIs, i.e., we restrict the search to a
subgraph of H∗, denoted as h∗. Figure 3 illustrates our computationally inexpensive



implementation of a query ellipse that allows for some deviation in the middle of the
path as well as for minor initial and final detours.

The pseudo-code for the second approach is given in Algorithm 1. Here, we present
only the Dij-H∗case, since Dij-H∗∗ works in the same way by utilizing the G∗∗ graph.
After selecting the valid set of POIs (Step 2), entry and exit nodes to and from H∗ are
determined, i.e., the closest POIs to start and target node, respectively (Steps 4 and 5).

Start End

1.4 d
1.6 d

d

Fig. 3. Restriction of relationship graph H∗ to a sub-
graph h∗, in order to avoid implausible detours. The
green dots represent POIs, i.e., nodes of H∗ which
are also in h∗, the blue ones are left out.

Entry and exist nodes connect the
road network G∗ to the relationship
graph H∗. Subsequently, the short-
est path in h∗ from entry to exit node
is computed using Dijkstra’s algo-
rithm w.r.t. the Euclidean distance
(Step 5). Note that a shortest path
withinH∗ is a sequence of POIs. We
therefore map this sequence onto G∗

by computing the shortest paths be-
tween the consecutive pairs of POIs
in G∗ w.r.t. the adjusted cost func-
tion (Step 8). Also, we compute the
shortest paths in G∗ from start to en-
try node and exit to target node. Con-
catenating these paths (start to entry,
POI to POI, exit to target), we return
a full path.

Algorithm 1: Dij-H∗

Input: Enriched Graph G∗, Spatial Relationaship Graph H∗, start s, target t
Output: Path p between s and t

1 begin
2 h∗ ← subgraph of H∗ in bounding ellipse
3 p← empty path

4 Pentry ← select POI P ∈ h∗ closest to s
5 Pexit ← select POI P ∈ h∗ closest to t
6 ph ← Dijkstra(h∗, Pentry, Pexit)

7 predecessor← s
8 foreach POI P on path ph do
9 v ← select node v ∈ G∗ representing P

10 p.APPEND(Dijkstra(G∗, predecessor, v))
11 predecessor← v

12 end
13 p.APPEND(Dijkstra(G∗, last, t))

14 return p

15 end



5 Experimental Evaluation

In this section, we want to investigate the effect and impact of the network enrichment.
We compare the results of the conventional Dijkstra search, Dij-G, to the results of Dij-
G∗and Dij-H∗, which use the Djikstra shortest path enriched (D-enrich) graph G∗, and
the results of Dij-G∗∗and Dij-H∗∗, which use the skyline path enriched (S-enrich) graph
G∗∗. All approaches are evaluated on real world datasets. Besides comparing the com-
puted path w.r.t. their enrichment ratio (ER) and length (as presented in Section 3.2), we
introduce a measure of popularity based on Flickr data, which is explained in the fol-
lowing section. All the text processing parts were implemented in Python while model-
ing parts were implemented in Matlab. Network enrichment and path computation tasks
were conducted using the Java-based MARiO Framework [10] on an Intel(R) Core(TM)
i7-3770 CPU at 3.40GHz and 32 GB RAM running Linux (64 bit).

5.1 Enrichment Ratio, Distance and Popularity Evaluation

Our experiments are set in two cities, Paris and New York. These regions have com-
paratively high density of spatial relations, Flickr photo data, and OSM data, which
accounts for an exact representation of the road networks. As mentioned before, we
compare the output of Dij-G, Dij-G∗, Dij-H∗, Dij-G∗∗and Dij-H∗∗ w.r.t. to the paths
they return, more precisely, w.r.t. ER and length of these paths. Since ER is a measure
introduced in this paper, we use Flickr data as an independent ground truth. We are
aware that to cognitive aspects (like the importance of sights or the value of landmarks)
there is no absolute truth. However, in order to be able to draw comparisons, we pre-
sume that if the dataset is large enough, the bias can be neglected. We use a geotagged
Flickr photo dataset, provided by the authors in [11], to assign a number of photos to
each vertex of the underlying road network. The number of Flickr photos assigned to
each vertex is referred to popularity. In our settings, every photo which is within the
20-meter radius of a vertex, contributes to the popularity of that vertex. The popularity
of a path is computed by summation of all popularity values along this path.

The sizes of the weighted relationship graphs H∗, road network and Flickr photo
data for both cities are shown in Table 1. Regarding the weighted relationship graphs,
we provide the number of unique POI pairs extracted from the travel blog corpus and
the number of spatial (closeness) relations extracted between them, as was presented
in Section 2. Regarding Flickr data, we provide the total number of geotagged photos
in each city and the maximum number of photos assigned to one vertex of the road
network. Finally, regarding the road network, we provide the total number of edges and
vertices. Note that although the datasets differ in terms of density (w.r.t. to relations and
Flickr photos), our algorithms provide similar results.

We present two experimental settings: In Setting (i) we examine the influence of
different scalings of the closeness scoreWi,j in terms of enrichment ratio, path length
increase (distance) and popularity. Setting (ii) investigates the influence of the path
length, i.e., the distance between start and target is varied, again in terms of enrichment
ratio, path length increase (distance) and popularity. In both settings we present the ER
performance of the algorithms separately from their performance in terms of distance
and popularity as ER is a measure that mainly proves that our network enrichment



Table 1. Statistics for the weighted relationship graphs, Flickr datsets and road networks of Paris
and New York respectively.

Relationship Graph (H∗) Flickr Road Network (G)

Dataset # POI Pairs # Relations # Photos # Max Photos per Vertex # Vertices # Edges

Paris 400 2000 400K 100 550K 300K
New York 300 1500 90K 200 220K 120K

approach works properly, i.e., ER should increase with the increase of the influence
of Wi,j on the network and the increase of the path length. Hence, based on our own
measure (ER) we validate that the proposed approach works properly.

In Setting (i), for 100 randomly chosen pairs of start and target nodes the respective
shortest paths within the actual road network are computed using Dijkstra’s algorithm,
Dij-G. Continuing, for the same start and target pairs, we run Dij-G∗, Dij-H∗, Dij-
G∗∗ and Dij-H∗∗. Subsequently, for each pair the difference w.r.t. ER, distance and
popularity is computed, and finally averaged out over all pairs. We require the distance
between start and target nodes to be at least 30% and at most 50% of the Euclidean
extent of the network (approximately 6km to 10km), in order to exclude paths which
start and end in the outskirts of the city (where there are few to no POIs). Figure 4
((a), (c)) show the influence of the weight scaling factor Wi,j on ER for the datasets
of Paris and New York respectively. As we increase Wi,j , we observe an increase of
ER for all four cases in comparison to Dij-G in both datasets. For the Paris dataset,
the increase in ER is in the range of 80% to 250% for the Dij-G∗ and Dij-G∗∗, with
the latter performing better, and in the range of 250% to 620% for Dij-H∗ and Dij-H∗∗

with the latter performing better. For the New York dataset, the increase in ER is in the
range of 20% to 80% for the Dij-G∗ and Dij-G∗∗ , with the latter performing better, and
in the range of 80% to 150% for Dij-H∗ and Dij-H∗∗ , with the latter performing better.

Moreover, the first column of Figure 5 and Figure 6 ((a), (c)) shows the influence of
weight scaling factorWi,j on distance and popularity. As we increaseWi,j from 0.2 to
1.0, we observe an increase of distance and popularity for both all cases in comparison
to Dij-G in both datasets. The increase among all datasets, in terms of path length is in
the range of 3% to 16% for Dij-G∗ and Dij-G∗∗ , and in the range of 7% to 38% for
Dij-H∗ and Dij-H∗∗. Additionally, the increase in popularity is in the range of 30% to
120% for Dij-G∗ and Dij-G∗∗, and in the range of 40% to 160% for Dij-H∗and Dij-H∗∗.

It is clear that Dij-G∗ and Dij-G∗∗always perform better than Dij-H∗ and Dij-H∗∗ in
terms of path length increase, but Dij-H∗ and Dij-H∗∗ perform always better in terms of
ER and popularity. This is because Dij-H∗ and Dij-H∗∗route directly through the POIs,
causing greater detours, but passing along highly weighted parts of the enriched graphs
(G∗ orG∗∗), which mostly coincide with dense Flickr regions. Moreover, it is clear that
S-enrich always performs better than D-enrich, in terms of ER and popularity with a
very short increase, of about 2 − 3% in path length. This validates that skyline enrich-
ment provides competitive paths in terms of distance (minor increase) and popularity
(significant increase).
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Fig. 4. (a), (b) show ER increase for algorithms Dij-G∗ and Dij-H∗for Paris dataset for Settings
i and ii respectively. (c), (d) show ER increase for algorithms Dij-G∗ and Dij-H∗for New York
dataset for Settings i and ii respectively.

Continuing, in Setting (ii) we vary the distance of start and target relative to the
extent of the whole network. We consider five different distance brackets of shortest
path in the original graphG, the first one ranging from 10% to 20%, the last one ranging
from 50% to 60% of the extent of the whole network. For 100 randomly chosen pairs of
start and target nodes (within the respective distance bracket) paths with Dij-G , Dij-G∗

, Dij-G∗∗ , Dij-H∗ and Dij-H∗∗ are computed. As before, for each pair the difference
w.r.t. ER, distance and popularity is computed and averaged out over all pairs. Figure 4
((b), (d)) show the increase of ER as we proceed through the distance brackets for both
datasets. The second column of Figure 5 and Figure 6 ((b), (d)) show the results in terms
of distance and popularity increase. As we proceed through the distance brackets, we
observe an increase of the distance and popularity for all cases in comparison to Dij-G
in both datasets. The increase among all datasets, in terms of path length, is in the range
of 3% to 18% for Dij-G∗ and Dij-G∗∗, and in the range of 5% to 30% for Dij-H∗ and
Dij-H∗∗. Finally, the increase in terms of popularity is in the range of 10% to 70% for
Dij-G∗ and Dij-G∗∗, and in the range of 30% to 140% for Dij-H∗ and Dij-H∗∗. As in
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Fig. 5. (a), (c) show Distance and Flickr popularity increase for algorithms Dij-G∗ and Dij-H∗

for Paris dataset for experimental Setting i. (b), (d) show Distance and Flickr popularity increase
for algorithms Dij-G∗ and Dij-H∗ for Paris dataset for experimental Setting ii.

our previous experimental setting, it is clear that Dij-G∗ and Dij-H∗ always perform
slightly better (only 2-3%) in terms of path length increase, while Dij-G∗∗and Dij-H∗

always outperform Dij-G∗ and Dij-H∗in terms of enrichment ratio and popularity. This
underlines the validaty of S-enrich, as it provides significantly more popular paths while
only incurring minor detours (2− 3% in terms of path length).

Here, we may conclude that both D-enrich and S-enrich approaches show convinc-
ing results.Both cases yield significant increase in terms of ER as well as in terms
of the independent Flickr-based measure popularity, while increasing path length only
slightly. In the best case, ER increase amounts to almost 700% while popularity in-
crease amounts to almost 160% increase (in comparison to the conventional shortest
paths, as computed by Dij-G ), while the worst case increase in path length is about
38% with most cases being less than 10%. Overall, D-enrich works slightly (2-3%) bet-
ter in terms of path length while the S-enrich is always significantly better (more than
10% in most of the cases) in terms of popularity scores. Consequently, we can claim
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Fig. 6. (a), (c) show Distance and Flickr popularity increase for algorithms Dij-G∗ and Dij-H∗

for New York dataset for experimental Setting i. (b), (d) show Distance and Flickr popularity
increase for algorithms Dij-G∗ and Dij-H∗ for New York dataset for experimental Setting ii.

that spatial relations, extracted from crowdsourced information, can indeed be used to
enrich actual road networks and define an alternative kind of routing which reflects what
people perceive as “close”.

Finally, Figure 7 illustrates the trade-off (mean distance and popularity increase
overall experiments) that we take by deviating from the shortest path in order to obtain
more interesting paths. This figure shows the relative increase in distance and popularity
of the paths returned by our proposed approaches, compared to the baseline approach
Dij-G. Here, we use letter D to refer to the distance increase while we use letter P to
refer to popularity increase. For both datasets, we can observe that by road network
enrichment we can obtain a significant increase in popularity of up to 120% for the
meager price of no more than 25% additional distance incurred in both experimental
settings. With the proposed S-enrich approach we achieve to significantly increase pop-
ularity while keeping the distance increase almost in the same levels with the D-enrich
approach.



(a) Setting i (b) Setting ii

Fig. 7. Trade-off between distance and popularity increase of paths.

6 Related Work

Research areas relevant to this work include: (i) qualitative routing and (ii) mining of
semantic information from moving object trajectories and trajectory enrichment with
extracted semantic information. In what follows, we discuss previous work in both of
these areas.

While finding shortest paths in road networks is a thoroughly explored research
area, qualitative routing has hardly been explored. Nevertheless, providing meaningful
routing directions in road networks is a research topic of great importance. In various
real world scenarios, the shortest path may not be the ideal choice for providing direc-
tions in written or spoken form, for instance when in an unfamiliar neighborhood, or
in cases of emergency. Rather, it is often more preferable to offer “simple” directions
that are easy to memorize, explain, understand and follow. However, there exist cases
where the simplest route is considerably longer than the shortest. The authors in [12]
and [13] try to tackle the problem of efficient routing by using cost functions that trade
off between minimizing the length of a provided path while also minimizing the number
of turns on the provided path. The major shortcoming of these approaches is that they
focus almost exclusively on road network data without taking into account any kind of
qualitative information, i.e., information coming from the user. Opposed to that, we try
to approach the problem of efficient routing by integrating spatial knowledge coming
from the crowd thus enriching an actual road network.

The discovery of semantic places through the analysis of raw trajectory data has
been investigated thorougly over the course of the last years. The authors in [14], [15]
and [16] provide solutions for the semantic place recognition problem and categorize
the extracted POIs into pre-defined types. Moreover, the concept of “semantic behav-
ior” has recently been introduced. This refers to the use of semantic abstractions of
the raw mobility data, including not only geometric patterns but also knowledge ex-
tracted jointly from the mobility data as well as the underlying geographic and applica-
tion domains in order to understand the actual behaviour of moving users. Several ap-
proaches like [17], [18], [19], [20], [19] and [21] have been introduced the last decade.
The core contribution of these articles lies in the development of a semantic approach



that progressively transforms the raw mobility data into semantic trajectories enriched
with POIs, segmentations and annotations. Finally, a recent work, [22], can extract and
transform the aforementioned semantic information into a text description in the form
of a diary. The major drawback of these approaches is that they do not intergrate the
extracted semantic information into the road network. Instead, they use the extracted
information only on specific trajectories. In our contribution, we analyze crowdsourced
data in order to extract semantic spatial information and intergrate it into an actual road
network. This will enable us to provide routes that are near-optimal w.r.t. distance while
spatially more popular according to the crowd.

7 Conclusions and Outlook
In this work we presented new approaches to computing knowledge-enriched paths
within road networks. We incorporated novel methods to extract spatial relations be-
tween pairs of Points of Interest such as “near” or “close by” from crowdsourced textual
data, namely travel blogs. We quantified the extracted relations using probabilistic mod-
els to handle the inherent uncertainty of user-generated content. Based on these models,
we proposed a new cost function to enrich real world road networks, based on Djikstra
and skyline path computation. The new cost function reflects the closeness aspect ac-
cording to the crowd. In contrast to existing approaches, we did not enrich previously
computed paths with semantical information, but the entire network. Continuingly, two
routing algorithms were presented taking this closeness aspect into account. Finally, we
evaluated our ideas on two real world road network datasets, i.e., Paris, France, and
New York City, USA. We used metadata from geotagged Flickr photos as a ground
truth to support our initial goal of providing more popular paths. All our approaches
performed very well by providing slightly longer paths but with significantly higher
values of popularity.

For future work, we are researching alternative methods for aggregating all cate-
gories of spatial relations. Furthermore, we would like to investigate ways to suggest
the popular path descriptions to the user based on the Points of Interest they will en-
counter underway.
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