
Uncertain Voronoi Cell Computation based on Space
Decomposition

Tobias Emrich1, Klaus Arthur Schmid1, Andreas Züfle1,
Matthias Renz1, and Reynold Cheng2

1 Institute for Informatics, Ludwig-Maximilians-Universität München, Germany
{emrich,schmid,zuefle,renz}@dbs.ifi.lmu.de

2 Department of Computer Science, University of Hong Kong, Hong Kong
ckcheng@cs.hku.hk

Abstract. The problem of computing Voronoi cells for spatial objects whose lo-
cations are not certain has been recently studied. In this work, we propose a new
approach to compute Voronoi cells for the case of objects having rectangular un-
certainty regions. Since exact computation of Voronoi cells is hard, we propose an
approximate solution. The main idea of this solution is to apply hierarchical ac-
cess methods for both data and object space. Our space index is used to efficiently
find spatial regions which must (not) be inside a Voronoi cell. Our object index
is used to efficiently identify Delauny relations, i.e., data objects which affect the
shape of a Voronoi cell. We develop three algorithms to explore index structures
and show that the approach that descends both index structures in parallel yields
fast query processing times. Our experiments show that we are able to approxi-
mate uncertain Voronoi cells much more effectively than the state-of-the-art, and
at the same time, improve run-time performance.

1 Introduction

The extensive use of social media, s.a. smartphones, and social networks produce a huge
flood of geo-spatial and geo-spatio-temporal data. This data allows to assess informa-
tion about the current positions of mobile entities, such as friends in social networks,
unoccupied cabs in a taxi application, or the current position of users in augmented
reality games. However, our ability to unearth valuable knowledge from large sets of
spatial and spatio-temporal data is often impaired by the quality of the data.

– Data may be imprecise, due to measurement errors, for instance in applications
using sensor measurements such as location-based services.

– Data records can be obsolete. For example, ties of friendship bind and break over
time, without necessarily reflecting such changes in a social network; in location-
based services, users may update their location infrequently, due to bad connectivity
or to preserve battery.

– Data can be obtained from unreliable sources, such as crowd-sourcing applications,
where data is obtained from individual users, which may incur inaccurate or plain
wrong data, deliberately or due to human error.



(a) An uncertain Voronoi cell. (b) Spatially Dominated Regions.

Fig. 1. Uncertain Voronoi cells.

– To prevent privacy threats and to protect user anonymity, users often consent to
relay just a cloaked indication of their whereabouts [1] abstracted as an uncertainty
region enclosing (but apparently not centered at) their current position.

Simply ignoring these notions of imprecise, obsolete, unreliable and cloaked data, thus
pretending that the data is accurate, current, reliable and correct is a common source
of false decision making. The research challenge in handling uncertainty in spatial and
spatio-temporal data is to obtain reliable results despite the presence of uncertainty. In
this work, we revisit the problem of reliably answering nearest-neighbor queries in un-
certain data. The problem of finding the closest uncertain object, which has applications
such as taxi-customer matching, has gained much attention in recent years [2–5]. Fol-
lowing a common approach in uncertain data management, these approaches assume
that uncertain objects are represented by rectangular or circular uncertainty regions,
which are guaranteed to enclose the true (but unknown) position of the respective spa-
tial objects. Following the approach of [6], we carry the concept of Voronoi cells to
uncertain data. The idea of [6] is to approximate the possible Voronoi cell V(O) of an
object O, which is defined as the space where a query point q can possibly have O as
its nearest neighbor. Applications for possible Voronoi cells include geo-location-based
services, such as taxi assignments: The possible Voronoi cell of an individual taxi cab
c covers the space of a city where customers may possibly have c as their nearest taxi.
In such an application, as we see in taxi-GPS data sets such as the T-drive dataset [7,
8], the GPS position c(t) of a cab c at a time t may be highly obsolete, due to infre-
quent GPS updates. Models to infer the uncertainty region of a mobile object on a road
network given past observations have been given in the literature [9].

As an example of a possible Voronoi cell, consider Figure 1(a), where rectangles
correspond to the uncertainty regions of objects. The highlighted region corresponds to
the subspace V(A), for which it holds that any point q ∈ V(A) may possibly have object
A as its nearest neighbor, i.e., the possible Voronoi cell ofA. Finding this region, which
is the goal of this paper, is not a trivial task: The shape of V(A) is a non-convex region



which is bounded by hyperbolic curves. As explained in [3, 10, 6], an exact construction
of V(A) requires an exponential amount of time. For this reason, an approximate tech-
nique for deriving possible Voronoi cells was given in [6]. We propose a new solution
for this problem, which extends the existing solution of [6] by the following aspects:

– Unlike previous solutions, our approach offers full index support, indexing the ob-
ject space using an R∗-tree [11] and indexing the data space using a kd-trie [12].

– Rather than approximating the Voronoi cell V(o) by a single rectangle ([6]), we use
a set of kd-trie partitions, which allows much higher approximation quality. This
gain in approximation quality not only improves query times, as our experiments
show, but can also be used to gain a detailed visual exploration of possible Voronoi
cells.

– Our experiments further show that our provided index support for both data and
space enables the scaling of uncertain Voronoi cell computation to large databases.

2 Related Work

The problem of answering nearest neighbor queries on uncertain data generally involves
two steps: A filter approach and a refinement step. In the filter step, a (possibly small)
set of objects is returned that contains all objects having a non-zero probability of being
the result object. In the refinement step, the exact probability of each candidate object
is computed. The refinement step is the main research topic of [13–15], showing how
to compute exact probabilities of an object to be the nearest neighbor of a query object,
given the probability density functions of objects. In contrast, other existing work fo-
cuses on the filter step, applying spatial filter steps in order to identify object that are
guaranteed to have a zero probability to be the result object [5, 3, 6]. In this work, we
focus on the filter step, i.e., the step of finding objects having a non-zero probability to
be the nearest neighbor of an object using Voronoi-cells.

The idea of using Voronoi diagrams to answer nearest neighbor (NN) queries over
points has been widely studied [16] . In this context, Voronoi diagrams have been used
to support nearest neighbor queries in geo-spatial applications [17], location-based ser-
vices [18, 19], in spatial data streams [20] and in distributed spatial environments [21]
as well as in spatial network environments [22]. To support nearest neighbor queries
on uncertain data, initial approaches have been presented in [13, 2]. However, in these
work, only the database objects are assumed to be uncertain, whereas the query object
is assumed to be a point. In [3] a solution to compute possible Voronoi-cells for the case
of circular uncertainty regions has been presented. This exact approach has exponen-
tial construction and storage cost. Due to this computational drawback, an approximate
solution was presented in [6]. The aim of this approach is to approximate the true (but
unknown) possible Voronoi-cell V(O) of an uncertain object O using two rectangle: A
single conservative rectangle h(O) which is guaranteed to completely contain V(O),
and a single progressive rectangle l(O) which is guaranteed to be completely contained
by V(O). These two approximation rectangles are obtained by iteratively expanding the
progressive rectangle l(O), and iteratively shrinking the conservative rectangle h(O).
However, considering examples such as shown in Figure 1, it is evident that such ap-
proximations may be rather inaccurate. Thus, h(O) may cover a large body of space not



belonging to V(O), while l(O) may miss a large body of V(O), even in the case where
h(O) is the smallest conservative bounding rectangle and l(O) is the largest progressive
bounded rectangle.3 Furthermore, an approach for nearest neighbor search on moving
uncertain objects has been presented in [4]. A problem common to [3] and [4] is that
their solutions are customized for 2D data, making extensive use of intersection and ro-
tation operations of 2D hyperbolic curves. Our approach, as well as the approach of [6]
is applicable to arbitrary dimensionality. In comparison to [6], the main contribution of
this work is that we can accurately approximate an arbitrarily shaped possible Voronoi-
cell, rather than using a single rectangular approximation only. This allows to answer
nearest-neighbor queries more efficiently, since less candidates have to be checked, and
it allows to more precisely illustrate the Voronoi-region of an uncertain object.

3 Problem Definition

Figure 1(b) shows how the possible Voronoi cell V(U) of an uncertain object U is
defined. Each shaded region in Figure 1(b) corresponds to a pruning region SA(U), i.e.,
the smallest region such that for any q ∈ SA(U), object A must be closer to q than U .
Formally,

Definition 1 (Nearest Neighbor Pruning Region). Let D = {O1, ..., ON} be an un-
certain database where each objectOi ∈ D is represented by a rectangular uncertainty
region in Rd. Let dist(., .) denote any Lp norm.4 For any A,B ∈ D, we define the
nearest neighbor pruning region where any point must be closer to A than to B as
follows:

SA(B) := {q ∈ Rd : maxDist(q, A) < minDist(q,B)},

where maxDist(q, A) and minDist(q,B) denote the maximum and minimum distance
between a point q and a rectangle A or B, respectively, as defined in [23].

Figure 1(b) shows five nearest neighbor pruning regions SO1(U), ..., SO5(U) as shaded
regions. Using Definition 1, we can now define the possible Voronoi cell V(U) of an
object U as the space that does not intersect any nearest neighbor pruning region asso-
ciated with U , formally:

Definition 2 (Possible Voronoi Cell). Let U ∈ D be an uncertain object. Then the
possible Voronoi cell V(U) is defined as

V(U) = Rd \
⋃

O∈D\{U}

SO(U).

In Figure 1(b), the white (i.e., non-shaded) region corresponds to the Voronoi cell V(U).
The problem tackled in this paper is to compute V(U) for a given object U ∈ D effi-
ciently.

3 The later case can not be guaranteed by the approach of [6] due to the numeric nature of their
approach.

4 We use Euclidean distance in all examples and illustrations, but any Lp norm can be applied.



Notation Meaning Notation Meaning

D The Database S = Rd d-dimensional data space
U ∈ D an uncertain object V(U) possible Voronoi cell of U
ID Hierarchical Data Index IS Hierarchical Space Index
G d-dimensional grid gi ∈ G Rectangular Grid Cell
SA(B) ⊆ Rd The region where object A dominates object B
Dom(A,B,R) Predicate that is true iff rectangle R is fully contained SA(B).

Can be evaluated efficiently [24].
PDom(A,B,R) Predicate that is true iff rectangle R intersects SA(B).

Can be evaluated efficiently [24].
h ⊆ Rd Rectangular Space Index Entry obtained from IS :

Partition of Space for which we want to decide if it belongs to V(U)

e ⊆ Rd Rectangular Data Index Entry obtained from ID:
Spatial approximation of a set of data objects if e is non-leaf entry,
Uncertainty region of a single data object if e is a leaf entry.

Table 1. Table of Notations.

4 Spatial Domination revisited

The concept of spatial domination and efficient techniques to verify it were introduced
in [24]. Spatial domination describes the spatial relation of three rectangles to each
other. Since the spatial domination can also be utilized for the computation of uncertain
voronoi cells, we briefly want to review the concept. Notations used throughout this
paper are explained in Table 1.

Definition 3 (Spatial Domination). LetA,B,R ⊆ Rd be rectangles in a d-dimensional
space and dist() be a distance function defined on that space. The rectangle A domi-
nates B w.r.t. R iff for all points r ∈ R it holds that every point a ∈ A is closer to r than
any point b ∈ B, i.e.

Dom(A,B,R)⇔ ∀r ∈ R,∀a ∈ A,∀b ∈ B : dist(a, r) < dist(b, r)

Informally speaking, Dom(A,B,R) is thus true if A is “certainly” closer to R than
B. In addition the concept of partial spatial domination was introduced.

Definition 4 (Partial Spatial Domination). Let A,B,R ⊆ Rd be rectangles in a d-
dimensional space and dist() be a distance function defined on that space. The rectan-
gle A dominates B partially w.r.t. R , denoted by PDom(A, B, R) if A dominates B for
some, but not all r ∈ R, i.e.

PDom(A,B,R)⇔ (∃r ∈ R : ∀a ∈ A,∀b ∈ B : dist(a, r) < dist(b, r))∧
(∃r ∈ R : (∃a ∈ A,∃b ∈ B : dist(a, r) ≤ dist(b, r))∧

(∃a ∈ A,∃b ∈ B : dist(a, r) ≥ dist(b, r))).

In [5] it was shown that spatial domination can be utilized when the rectangles conser-
vatively approximate uncertain objects. In this case Dom(A, B, R) means P(“R is closer



A
B

R5

R4
R3

R2

R1

R6SA(B)

SB(A)

Fig. 2. Domination relation

to A than to B”) = 1 and PDom(A, B, R) means 0≤ P(“R is closer to A than to B”)≤ 1.
Using the Dom()- and the PDom()-function it is thus possible to decide the location of
a rectangle w.r.t. the uncertain bisector of two uncertain objects. The uncertain bisector
between two uncertain objects A and B (conservatively approximated by rectangles)
defines three spaces: In SA(B) = {s ∈ S : Dom(A,B, {s})} all objects are certainly
closer to A than to B, in SB(A) = {s ∈ S : Dom(B,A, {s})} object are certainly
closer to B than to A and in the space in between no certain decision can be made.
This relation is shown in Figure 2. We are thus able to decide where the rectangle R
is located w.r.t. the bisector SB(A) and SA(B) of A and B respectively by performing
the Dom() and the PDom() function [24]. The following six cases are defined using a
function DomCase(A,B,R) as follows.

Definition 5 (Domination Cases). Let A and B be rectangles. For any rectangle R,
one of the following cases holds:

Case 1: R is fully contained in SA(B) iff Dom(A,B,R);

Case 2: R intersects SA(B) but not SB(A) iff PDom(A,B,R)∧¬PDom(B,A,R);

Case 3: R intersects neither SA(B) nor SB(A) iff

¬Dom(A,B,R) ∧ ¬PDom(A,B,R) ∧ ¬PDom(B,A,R)¬Dom(B,A,R);
Case 4: R intersects S(B) but not S(A) iff ¬PDom(A,B,R) ∧ PDom(B,A,R);

Case 5: R is fully contained in S(B) iff Dom(B,A,R);

Case 6: R intersects both S(A) and S(B) iff PDom(A,B,R) ∧ PDom(B,A,R);



U
e

g1

g2

g3

g4

g5

g6

(a) Cases of domination of a grid cell. (b) Example result.

Fig. 3. Illustration of the Naive approach.

Figure 2 depicts all possible cases. Here, each rectangle Ri corresponds to Case i in
Definition 5. Note that the materialization of the pruning regions SA(B) and SB(A) is
a hard problem [6]. Nevertheless, the function DomCase(A,B,R) allows to efficiently
decide between the six possible domination cases defined above. In the next section we
will show how to use these relations in order to compute uncertain Voronoi cells.

5 Possible-Voronoi Cell Approximation

Computing the possible-Voronoi cell is a daunting task for two reasons: First, it is chal-
lenging to find the objects in the database that have an effect on its shape. Second, the
representation of the cell is hard since it consists of many linear and parabolic parts that
grow exponentially with the dimensionality. This section will present four algorithms
that apply the concept of spatial domination to efficiently approximate the possible-
Voronoi cell V(U) of an object U as tight as possible. The first, naive, algorithm divides
the space into equi-distant grid cells and labels the cells according to their membership
to the possible-Voronoi cell. The second algorithm, additionally uses an R*-tree to in-
dex the data objects to avoid exploration of irrelevant objects. The third algorithm uses
a kd-trie to index the grid cells, in order to identify large regions of space which can
not be part of V(U) or which must be part of V(U). The fourth algorithm uses both a
kd-trie to index the space and an R-tree to index the data. For the later algorithm, the
main challenge is to smartly descend both hierarchical index structures in parallel, to
minimize the computational overhead.

5.1 Naive solution

A straightforward way of computing V(U) is to apply an equi-distant d-dimensional
grid to partition the data space. For each cell gi we decide weather it belongs to V(U)
or not.



Algorithm The algorithm takes as input the target object U , D and a grid G covering
the space of D. We iterate over all grid cells g ∈ G and in order to decide whether
gi is part of the UV cell of U , domination against all objects O ∈ D \ U has to be
checked. All possible cases of domination of a grid-cell g are depicted in Figure 3(a).
To determine if a grid-cell is (i) completely outside of V(U) or (ii) completely inside
V(U) or (iii) a boarder cell, we can apply the six cases of Definition 5 as follows:

i) If ∃O ∈ D \ U : Dom(O,U, gi) then gi is not part of V(U). This corresponds to
Case 5 of Definition 5 and cell g5 in Figure 3(a).

ii) Otherwise, if ∃O ∈ D : PDom(O,U, gi) then at least a small part of gi can be part
of V(U). This case corresponds to the cases of cells g4 and g6 in Figure 3(a), i.e.,
Case 4 or Case 6 of Definition 5.

iii) Otherwise we can conclude that gi can be completely contained in V(U), since for
database object, U , it holds that g corresponds to one of the remaining cases Case
1, Case 2 and Case 3 of cells g1, g2 or g3, respectively, as shown in Figure 3(a)

The set of all grid cells satisfying iii) define a lower bound of V(U), and all grids
cells satisfying ii) or iii) define an upper bound of V(U). An exemplary result of this
approach for a small database of uncertain objects is depicted in Figure 3(b). Here, the
space grid is shown, where (i) unfilled cells are guaranteed to be outside of V(U), (ii)
black cells are guaranteed to be on the border of V(U) and (iii) blue cells are guaranteed
to be inside V(U). In the next subsection, we show how we can obtain this result in a
more efficient way. Thus note that the algorithms presented in the following subsections
compute the same result approximation, but in a more efficient way.

5.2 Indexing D

Obviously, checking an object U against all uncertain objects O ∈ D is very expensive.
Instead, we can use an MBR based index structure ID (such as an R*-Tree) to organize
the objects hierarchically.

Algorithm The algorithm takes as input the target object U , ID and a grid covering the
space of ID. For each grid cell gi the algorithm traverses the entries e of ID in a best
first manner [25] according to MinDist(e, U). Note that the entry e can be a single
uncertain object (i.e., a leaf-entry) or an intermediate node that conservatively approxi-
mates multiple uncertain objects. Since we assume that our data index uses rectangular
approximations, we can then apply Definition 5 to decide which index entries have to
be accessed. For reference, the following cases are shown in Figure 3(a). Keep in mind
that in this case, the entries e are data index entries, which may be intermediate entries
representing multiple data objects.

Case 1: Dom(U, e, g1): e and none of its children can exclude g1 from the UV-cell
V(U). Thus, e don’t has to be resolved and g1 can be part of V(U).

Case 2: PDom(U, e, g2): same as case 1.

Case 3: ¬PDom(U, e, g3) ∧ ¬PDom(e, U, g3): As long as e is not a leaf entry (an



object), there might exist a child of e which excludes g3 from the UV-cell, thus e has to
be resolved. If e is a leaf entry g3 is labeled as candidate for being part of V(U)

Case 4: PDom(e, U, g4): same as case 3.

Case 5: Dom(e, U, g5): g5 (and all child nodes of g5) cannot be part of V(U).

Case 6: PDom(U, e, g6) ∧ PDom(e, U, g6): same as case 1.

5.3 Indexing S

Instead of indexing the data objects one could also think of indexing the space con-
taining the grid cells. We propose to use a tree based index structure (denoted as IS to
organize the data space (e.g. Quadtree, kd-trie). For each entry h ∈ IS it can be checked
if it is part of the UV cell of U .

Algorithm The algorithm takes as input the target object U , IS , maxdepth and a list
of all data objects O ∈ D. The entries h ∈ IS are traversed in a depth-first manner.
For each entry h we check all O ∈ D to decide if the traversal has to go deeper (to
the children of h) or its subtree can be discarded for further processing. The parameter
maxdepth defines the maximum depth that IS is traversed. Thus the largermaxdepth,
the finer the granularity of the UV-cell approximation.

We can again distinguish the same cases as in Section 5.1:

1. If ∃O ∈ D : Dom(O,U, h) (Case 5) then h is not part of the UV cell of U and it
does not have to be resolved further.

2. Otherwise if ∃O ∈ D : PDom(O,U, h) (Case 4 or Case 6) then at least a small
part of h can be part of the UV cell of U . Thus we have to resolve h further. If h is
on the maxdepth-level we label it as candidate to be part of V(U).

3. Otherwise (Cases 1-3) we can conclude that h can be completely contained in the
UV cell of U . In this case we label h as candidate to be part of V(U) and don’t have
to resolve it, even if h is not on the maxdepth-level.

5.4 Indexing D and S

It seems apparent to combine the ideas of Section 5.2 and Section 5.3 and utilize both
index structures (ID and IS ) to boost the performance. The non trivial task is the defi-
nition of a traversal order to minimize necessary operations.

Prelude Our approach is basically a depth-first traversal of IS . Additionally we define
ASD to be the active set of entries of the indexD. Each entry h ∈ IS has its own active
set and passes it on to its children (always removing irrelevant entries e ∈ ASD). ASD
contains all entries of D which have already been seen and not yet resolved during the
traversal of the algorithm. For each entry h ∈ IS we first try to identify one of the two
following properties (cf Figure 4):

Case 5: ∃e ∈ ASD : Dom(e, U, h)⇒ h is not part of the UV cell of U .



Fig. 4. Cases of domination for a data index entry e.

Case 1: ∀e ∈ ASD : Dom(U, e, h)⇒ h can be part of V(U) .

If neither of the two conditions hold, either the current entry h or an entry e ∈ ASD
has to be resolved. Here we propose the following heuristics:

Case 2: PDom(U, e, h)⇒ resolve e or h depending on which one covers more space.
Intuition: uncertain area becomes small if both constructing objects are small

Case 3 ¬PDom(U, e, h) ∧ ¬PDom(e, U, h)⇒ resolve e.
Intuition: Resolving h can not yield any new information, since any child of h must
also yield Case 3.

Case 4 PDom(e, U, h) ⇒ resolve h if we find another data entry for which Case 4
holds (for this space entry h). Otherwise resolve e or h depending on which one
covers more space. If e is a leaf entry only resolve h.
Intuition: If more than one data entry constructs Case 4, chances are good that
large portions of h can be decided.

Case 6 PDom(U, e, h) ∧ PDom(e, U, h)⇒ resolve h. (cf Figure 4, case 6)
Intuition: Resolving e can not yield any new information

Clearly, at one point there may be multiple data entries in the activate set of a space
node h, which may yield different cases. It may be smart to prioritize the refinement
of some data entries. In a nutshell, a data entry should be chosen which maximizes the
chance that we can guarantee that h is not part of V(U). We propose to choose an entry
e according to the following priority schema:

1. directory entries are prioritized over leaf entries.
2. prioritize cases in order 5, 4, 6, 3, 2, 1.
3. prioritize entries according to mindist to query

For ease of presentation of our algorithm, we define the function maxprio(U ∈
D, h ∈ IS , E ⊆ ID) which maps an uncertain object U , a space region h and a set of
data index entries E to the object which has the highest priority corresponding to the
heuristics above.



Algorithm 1 UV-Cell computation
Require: U ,ID ,IS
1: ASD = windowQuery*(U ,ID)
2: UVCellCheck(U ,IS .root,ASD)

Algorithm 1: Takes as parameters the object U for which the UV-cell is to be com-
puted; the databaseD indexed by anR∗-tree ID; and the Quadtree/KD-trie IS indexing
the space. The idea of Algorithm 1 is to build an initial active setASD that is reasonable
for all space partitions hi ∈ IS to come during query processing. For this we perform
a window-query-like operation. windowQuery*(U ,ID) basically performs a window
query on ID, but discards entries e ∈ D that fall in the window (since these entries can-
not help to decide the borders of V(U)). The result are now all entries e ∈ ID that have
been seen during the window-query but have not been resolved. This set is then used as
an initial active set(denoted as ASD) in the recursive Algorithm 2 which is initiated by
Algorithm 1.

Algorithm 2: This algorithm requires the uncertain object U for which the UV-cell is
being computed, one region of the result space h(initially the root of the kd-tree), and
the active set ASD containing a set of ID-entries. The algorithm works as follows:

– In a loop (lines 2 - 11)the algorithm first searches for the entry e defining the most
prioritized case (8 - 10). Of course we can stop further consideration of h if we find
an entry e which defines case 5 (lines 3 - 5). On the other hand side if an entry e
defines case 1, it can never disqualify the current h thus can be excluded fromASD
(lines 6 - 7)

– In lines 12-14 we check if all entries in the active setASD have been pruned. If that
is the case, no object may possible prune h and thus h must be a true hit, i.e. fully
contained in the Voronoi cell.

– Now we decide whether we want to refine emax or h, depending on the case (c.f.
Figure 4 and Definition 5).

Case 4: there is a chance that refining h may allow child entries of h to be pruned, and
refining emax may allow child entries of emax to prune all of h. Therefore, we
refine both entries in this case.

Case 6: refining e cannot possibly allow us to prune h. However, refining h may allow
us to either prune children of h or to return children of h as true hits. Thus we
refine h.

Case 3: no children of h can possibly be pruned. 5 Thus we split emax, which may
allow h to be pruned.

Case 2: we refine h.
– Finally, space index entries h which must be completely contained in V(U) are

identified as entries having only Cases 1-3 in their active set. Computation breaks
if this is the case. After splitting the objects according to the rules above. We recur-
sively restart the algorithm with the new objects.

5 recall that if eDmax corresponds to case 3, then there exists no R∗-entry such that case 4 holds



Algorithm 2 UVCellCheck
Require: U ,h,ASD
1: emax //entry with maximum priority
2: for all e ∈ ASD do
3: if Dom(e, U, h) then
4: h is not part of UVCell
5: return
6: else if Dom(U, e, h) then
7: ASD = ASD \ e
8: else
9: emax = maxprio(emax, e)

10: end if
11: end for
12: if ASD is empty then
13: h is part of UVCell
14: return
15: end if
16: if case(emax, U, h) != 6 then
17: ASD = ASD \ emax ∪ emax.children
18: end if
19: //redundant calculations can be reduced in the following
20: if case(emax, U, h) = 4 or 6 && ¬ maxdepth then
21: for all hc ∈ h.children do
22: UVCellCheck(U ,hc,ASD .clone())
23: end for
24: else
25: UVCellCheck(U ,h,ASD)
26: end if

Figure 5 illustrates in which manner the algorithm resolves entries of ID and IS .
The figures shows all pages and objects of ID which have been seen during the com-
putation of the possible Voronoi-cell V(U) of the green objects U . Refined data objects
are represented by filled red rectangles and refined directory nodes are represented by
unfilled red rectangles. Furthermore, refined entries of IS are shown as (i) unfilled black
rectangles if they are guaranteed to be fully outside of V(U), (ii) as black rectangles if
on the border of V(U), and (iii) as blue rectangles if completely inside V(U). We can
observe that in areas far away from the UV cell, IS is resolved coarse whereas at the
border of the cell it is resolved at very fine granularity. The entries of ID are also only
resolved around the UV cell. Note that although the number of resolved objects seems
large, most of the objects are only needed for a small fraction of the computations, es-
pecially on coarser levels of IS . Finally, note that a nice side effect of this computation
is that we obtain a tight superset of the (uncertain-) delaunay neighbors of U . This can
be achieved by memorizing the objects O for which Case 4 or Cast 6 (see Definition 5)
holds.



Fig. 5. Example of refinement

6 Experiments

Our experimental evaluation investigates algorithm behaviour w.r.t. maximum kd-trie
depth, database size, object extent and dimension. Extent is a parameter to control the
size of the uncertain objects (object MBR) and corresponds to the maximum extent of
an object in one dimension. Experiments use synthetically generated datasets as well as
an excerpt from the T-Drive trajectory dataset[7, 8] which we modified to fit the scope.
We implemented all approaches in the ELKI framework[26], which also provided an
R-tree implementation.

Dataspace is always normalized to [0,1] per dimension. In synthetic data, objects
are uniformly distributed over space with a randomly assigned side length between
0 and maximum extent. Data points from the real world dataset were sampled as a
single snapshot of the world, on the afternoon of February 2nd, 2008. Therefore, one
data point corresponds to the position of one taxicab within the city of Beijing, China.
After removing some outliers, this dataset contains 890 separate entities. To suit our



application of location obfuscation, sample locations were randomized using a Gaussian
distribution based on this object’s location. A single sample from this distribution is then
set as center of the object’s new MBR, with its extent set to 6σ of this object’s Gaussian
(3 to each direction). On said city scale, an extent of 0.01 would equal an area of 100m
side length.

Parameter default value Notation Algorithm
Dimension 2 DI Data Index traversal (Section 5.2)
db size 1000 SI Space Index traversal (Section 5.3)
extent 0.01 DSI Data & Space Index traversal (Section 5.4)
tree depth 14 SR Single Rectangle (Implementation of [6])

Table 2. Default settings.

Table 2 denotes input parameters and their default settings, as well as an explana-
tion of our algorithm notation. If not otherwise specified, the following experiments use
these input values. Those setups focusing on approximation quality useDSI exemplar-
ily for all algorithms from Sections 5.2–5.4, since result quality is the same. Naturally,
our real world dataset T-Drive has inherent values that override parameters, namely di-
mension and size of database. The standard depth of 14 refers to a maximum of 14 splits
in our index structure, corresponding to 16384(= 214) individual grid cells. Applied to
a city scale of 10 by 10 kilometers, each grid cell side would measure some 78 meters.
As the proposed approach is later scaled up to a depth of 22, grid cells correspond to an
area of only 4.8 by 4.8 meters, which on a city scale is extremely precise.

6.1 Approximation Quality

Our first evaluation explores how well the generated bounds approximate a cell. For
this, we set the tree depth for our implementation to various levels between 5 and 22,
corresponding to the number of splits. Evidently, smaller grid cells can more closely
follow the outline of a UV-cell.

Figure 6 visualizes how upper and lower bounds converge with higher tree gran-
ularities. The dark blue line refers to the upper bound of DSI , the orange line to its
lower bound, each represented by the total volume of their cells. The hatched space
in between the two lines refers to the range in which the true cell volume must be lo-
cated. As a point of reference, upper and lower bounds from the Single Rectangle (SR)
approach have also been denoted in the same graphic, with the area shaded in grey
corresponding to the approximation error. Since SR does not use an index, its results
remain unchanged for all tree granularities.

Performance was tested on different datasets. Figure 6(a) represents average results
for runs on synthetic data, while Figure 6(b) contains the results for our real world
dataset. While overall performance is fairly comparable, DSI provides a usable lower
bound remarkably early, with as little as 8 tree splits necessary to outperform SR. SR
itself shows fairly similar behaviour on both datasets, with results looking even more
similar than they are due to logarithmic scale.



(a) Synthetic Dataset (b) Real-world Dataset

Fig. 6. Approximation Quality for DSI and SR

6.2 Algorithmic Runtime

Runtime experiments were conducted while modifying database population and dimen-
sionality, between our three different traversal approaches compared to SR as well as
for DSI alone to cover larger ranges of database size (others have been excluded due
to their worse performance). Although the taxi dataset is not applicable here since we
modify parameters that are inherent to specific datasets, the semantics still stand: in-
serting more objects into a database of the same geometric expansion could represent
offering more taxis for hire in a city, hence changing the nearest neighbor situation in
most of the places. Therefore, the maximum object extent remained unchanged for all
database sizes, since obfuscation of one’s location is independent of the world’s object
density.

(a) All Approaches Compared (b) DSI (Data & Space)

Fig. 7. A runtime comparison for all algorithms over different sizes of DB

In Figure 7, run times to calculate one UV -cell are denoted over different database
sizes. Figure 7(a) contains results for the approaches Dataindex Traversal (DI), Spacein-
dex traversal (SI), Data and Space Index Traversal (DSI) and SR. Note how DI shows
a relatively constant, high runtime since for each query, every grid cell gi is explored,
independently of database population. SR starts off better, but since it features pairwise



comparisons without the use of an index, it does not scale well for higher numbers ob
database objects. SI clearly shows how such an index improves performance drasti-
cally, but also scales up rather fast. DSI also increases in runtime for higher dimen-
sional datasets, but at generally much lower absolute values than the other approaches.
Also,DSI increases at a lower rate. This is because the combined approach of data and
space index allows for early pruning of large portions of the database.

As query performance generally deteriorates for larger datasets (or remains at high
values in the case of DI), further scaling experiments were conducted using DSI only.
Figure 7(b) shows the results of database populations from 10K to 15 Million objects.
To avoid gross overlapping of objects, object extent has been lowered to 0.001 for these
runs. The left axis again refers to the average time to perform one UV-cell calculation,
which corresponds to the blue data line. We observe a slightly superlinear scaling, con-
firming our theoretical observations that (i) adding more objects leads to linearly more
intersections with Voronoi cells, which are at least as big as U , and (ii) a linear in-
crease in object count causes logarithmic tree index growth. This results in a combined
log-linear growth in runtime.

The right scale denotes average page views during cell calculation, with the orange
line referring to pages of the data index, and the green line for pages of the space
index. Note that data index exploration roughly follows runtime development, while the
space index is used less for larger databases. This is easily explained by a constant tree
depth, resulting in a constant resolution of space. With a higher database population,
the likelyhood of all relevant objects being enclosed in a small space increases.

6.3 Effect of data dimensions

Although the trivial case of a two-dimensional world is most intuitive for most applica-
tions mentioned before, all approaches can manage high-dimensional datasets as well.
The main limitation here is keeping the approximation error low in all dimensions at
once, as well as computational complexity.

(a) Runtime (b) Approximation Quality

Fig. 8. A comparison for increasing data dimensions.



Figure 8 displays performance of all approaches for multi-dimensional datasets. As
runtime and memory usage of SR do not scale well for more than five data dimensions,
experiments excluded this approach for higher dimensionalities than 5. An evaluation
of runtime as shown in Figure 8(a) shows constant increase for all approaches. The
relative steepness of increase is due to the growing inefficiency of pruning methods
in high dimensions, which deteriorates searches toward a linear scan, which itself has
quadratic complexity.

Approximation quality for higer dimensions is shown in Figure 8(b). As mentioned
before, fitting a bound to a more and more complex object leaves much room for ap-
proximation error. Therefore, volumes of upper and lower bounds diverge more for
higher dimensions. Displayed here are bounds for SR up to dimension 5 (grey) and
two different settings of our DSI approach, once with a depth of 14 (blue) and a depth
of 20 (orange). As expected, a higher depth allows for more tree splits per dimension
and thus a better approximation.

6.4 Conclusions

In this work, we proposed an index-supported approach to approximate the shape of
a possible Voronoi-cell to support nearest neighbor queries on uncertain data. Our ap-
proache uses an R∗-tree as a hierarchical access method to efficiently find the set of un-
certain objects that influence the possible Voronoi-cell of an uncertain object U , i.e., the
set of Delauny-neighbors of U . In addition, we propose to use a kd-trie as a hierarchical
access method to identify regions of space which must (not) be part of a Voronoi-cell.
Compared to the state-of-the-art of computing uncertain Voronoi-cells, our approach
allows for much higher approximation quality, since our result approximation consists
of a set of rectangular kd-trie nodes, rather than a single bounding rectangle. As future
work, we want to extend our ideas to find certain Voronoi-cells, that is regions, where
a query object has a probability of one of having some object U as its nearest neighbor.
Furthermore, we want to extend our solution to the case of k’th-order Voronoi-cells to
support k-nearest neighbor queries. Even in the case of certain data, k’th-order Voronoi-
cells become complexly shaped, having a representation complexity exponential in k.
However, since we are using space approximation techniques, rather than computing
exact bounds, we can avoid this computational drawback.

Acknowledgements
Part of the research leading to these results has received funding from the Deutsche Forschungs-
gemeinschaft (DFG) under grant number RE 266/5-1 and from the DAAD supported by BMBF
under grant number 57055388. Reynold Cheng was supported by the Research Grants Council
of Hong Kong (RGC Project (HKU 711110)).

References

1. Chow, C.Y., Mokbel, M.F., Aref, W.G.: Casper*: Query processing for location services
without compromising privacy. ACM TODS 34(4) (2009) 24

2. Beskales, G., Soliman, M.A., Ilyas, I.F.: Efficient search for the top-k probable nearest
neighbors in uncertain databases. VLDB Endowment 1(1) (2008) 326–339



3. Cheng, R., Xie, X., Yiu, M.L., Chen, J., Sun, L.: Uv-diagram: A voronoi diagram for uncer-
tain data. In: ICDE, IEEE (2010) 796–807

4. Ali, M.E., Tanin, E., Zhang, R., Kotagiri, R.: Probabilistic voronoi diagrams for probabilistic
moving nearest neighbor queries. DKE 75 (2012) 1–33

5. Bernecker, T., Emrich, T., Kriegel, H.P., Mamoulis, N., Renz, M., Züfle, A.: A novel prob-
abilistic pruning approach to speed up similarity queries in uncertain databases. In: Proc.
ICDE. (2011) 339–350

6. Zhang, P., Cheng, R., Mamoulis, N., Renz, M., Zufle, A., Tang, Y., Emrich, T.: Voronoi-
based nearest neighbor search for multi-dimensional uncertain databases. In: ICDE, IEEE
(2013) 158–169

7. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: Driving
directions based on taxi trajectories. In: SIGSPATIAL. (2010) 99–108

8. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In:
SIGKDD. (2011) 316–324

9. Emrich, T., Kriegel, H.P., Mamoulis, N., Renz, M., Züfle, A.: Querying uncertain spatio-
temporal data. In: ICDE, IEEE (2012) 354–365

10. Emrich, T., Kriegel, H.P., Kröger, P., Renz, M., Züfle, A.: Incremental reverse nearest neigh-
bor ranking in vector spaces. In: SSTD. Springer (2009) 265–282

11. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust
access method for points and rectangles. Volume 19. ACM (1990)

12. Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching. In: ACM
SIGACT-SIGMOD, ACM (1984) 181–190

13. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving object
environments. In: IEEE TKDE. (2004)

14. Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic databases.
VLDB Endowment 2(1) (2009) 502–513

15. Bernecker, T., Kriegel, H.P., Mamoulis, N., Renz, M., Zuefle, A.: Scalable probabilistic
similarity ranking in uncertain databases. TKDE 22(9) (2010) 1234–1246

16. Aurenhammer, F.: Voronoi diagrams-a survey of a fundamental geometric data structure.
ACM CSUR 23(3) (1991) 345–405

17. Sharifzadeh, M., Shahabi, C.: Vor-tree: R-trees with voronoi diagrams for efficient process-
ing of spatial nearest neighbor queries. VLDB Endowment 3(1-2) (2010) 1231–1242

18. Zheng, B., Xu, J., Lee, W.C., Lee, L.: Grid-partition index: a hybrid method for nearest-
neighbor queries in wireless location-based services. VLDB Journal 15(1) (2006) 21–39

19. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The v*-diagram: a query-dependent approach
to moving knn queries. VLDB Endowment 1(1) (2008) 1095–1106

20. Sharifzadeh, M., Shahabi, C.: Approximate voronoi cell computation on spatial data streams.
VLDB Journal 18(1) (2009) 57–75

21. Akdogan, A., Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Voronoi-based geospatial
query processing with mapreduce. In: IEEE CloudCom, IEEE (2010) 9–16

22. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network
databases. In: VLDB Endowment, VLDB Endowment (2004) 840–851

23. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: ACM SIGMOD.
Volume 24., ACM (1995) 71–79

24. Emrich, T., Kriegel, H.P., Kröger, P., Renz, M., Züfle, A.: Boosting spatial pruning: On
optimal pruning of MBRs. In: Proc. SIGMOD. (2010) 39–50

25. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Proc. SSD. (1995) 83–95
26. Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining with 3D-Parallel-

Coordinate-Trees. In: Proc. SIGMOD. (2013) 1009–1012


