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Abstract. Time series of sensor databases and scientific time series
often consist of periodic patterns. Examples can be found in environ-
mental analysis, where repeated measurements of climatic attributes like
temperature, humidity or barometric pressure are taken. Depending on
season-specific meteorological influences, curves of consecutive days can
be strongly related to each other, whereas days of different seasons show
different characteristics. Analyzing such phenomena could be very valu-
able for many application domains. Convenient similarity models that
support similarity queries and mining based on periodic patterns are
realized in the framework TiP, which provides methods for the compari-
son of similarity query results based on different threshold-based feature
extraction methods. In this demonstration, we present the visual and
analytical methods of TiP of detecting and evaluating periodic patterns
in time series using the example of environmental data.

1 Introduction

In a large range of application domains, e.g. environmental analysis, evolution of
stock charts, research on medical behavior of organisms, or analysis and detec-
tion of motion activities, we are faced with time series data featuring activities
which are composed of regularly repeating sequences of activity events. For that
purpose, existing periodic patterns that repeatedly occur in specified periods
over time have to be considered. Though consecutive motion patterns show sim-
ilar characteristics, they are not equal. We can observe changes of significant
importance in the shape of consecutive periodic patterns.

TiP utilizes the dual-domain representation of time series and the threshold-
based approach [1] to extract periodic patterns from them. Beyond the interest of
[2], the temporal location and the evolution of consecutive patterns are focused.
For efficient similarity computation, relevant feature information is extracted
so that data mining techniques can apply. By visualization, TiP provides first
information about the existence and the location of periodic patterns in the time
domains in the 3D space. Further knowledge about large datasets and the choice
of adequate parameter settings for similarity queries and mining can be obtained
by diverse analysis methods.
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Fig. 1. Feature extraction and similarity computation on dual-domain time series.

Overall, TiP serves as a framework to effectively and efficiently manage dual-
domain time series. Furthermore, it provides several methods to process simi-
larity queries on this type of time series based on user-defined features as well
as an intuitive graphical user interface. Theoretical background of the applied
techniques in TiP will be given in Section 2. Details of the system and the ar-
chitecture will be explained in Section 3. Section 4 describes the planned demo
tour in more detail.

2 Theoretical Background

Time Series Representation A time series X can be split into a sequence of
subsequences of fixed length by adding an additional time domain [1]. This yields
a dual-domain representation having a 3D surface. A dual-domain time series
represents the temporal behavior along two time axes. Consider an example of
environmental research. The trend of temperature within one month of a year
having one value for each hour of a day is then represented by the evolution
of the temperature within one day (first time domain), and, additionally, over
consecutive days of the entire time period (second time domain). Formally, a
dual-domain time series is defined as

Xdual = 〈〈x1,1, . . . , x1,N−1, x1,N 〉, . . . , 〈xM,1, . . . , xM,N−1, xM,N 〉〉

where xi,j denotes the value of the time series at time slot i in the first (discrete)
time domain T = {t1, . . . , tN} and at time slot j in the second (discrete) time
domain S = {s1, . . . , sM}.



Time Series Similarity TiP compares dual-domain time series based on their
periodic patterns that we call intersection sets. An intersection set Pτ (X) of a
time series X is created by a set of polygons that are derived according to [2],
where time series with one time domain are represented as a sequence of intervals
w.r.t. to a threshold value τ . In this case, τ corresponds to a 2D plane which
intersects the 3D time series X. The polygons of an intersection set represent
the evolution of amplitude-level patterns as spatial objects, as they deliver all
information about the periods of time during which the amplitudes of the time
series exceed τ . In the temperature example, the polygons contain only values
beyond a certain temperature level. Thus, the patterns emerge from temperature
values that are greater than τ . However, patterns of summer and winter months
are different in their occurrence and their dimensions, as depicted in Figure 1:
the patterns of August 2003 are more concentrated within the days, but they are
more constant over the whole month, whereas January 2001 contains patterns
having a lower variance over consecutive days but that hardly change within the
days. The degree of periodicity of a time series is reflected by the extent of the
polygons, so even non-periodic patterns can be detected and addressed by their
spatial location. The distance dτ (X,Y ) of two time series X and Y reflects the
dissimilarity of the intersection sets Pτ (X) and Pτ (Y ) for a certain τ . This step
reduces the comparison of time series to comparing the sets of polygons such
that spatial similarity computation methods can apply. To save computational
cost while computing the distance as well as to allow for the usage of index
structures like the R∗-tree [3], TiP derives local features (e.g. approximations
or numerical values) from the polygons and global features (e.g. characteristics)
from the intersection sets and computes the distance based on them (cf. Figure
1). The number of polygons and, thus, the number of local features varies for
different intersection sets, so TiP employs the Sum of Minimal Distances (SMD)
measure [4]. The distance based on global features is simply calculated as the
Lp-distance between the associated features, as, for each intersection set, TiP
derives the same amount of global features. For similarity calculation and further
analysis, intersection sets for different threshold values can be pre-computed for a
dataset and stored in an underlying database. Thus, relevant feature information
of intersection sets can simply be reloaded for similarity queries. Furthermore,
this threshold-based method is very efficient as, contrary to simple measures
like the Euclidean distance, it does not need to consider the originally high-
dimensional structure of time series.

3 Architecture

TiP has been implemented using Java and the Java3D API. The framework
is able to load datasets of time series following the ARFF format1 into the
application. For each time series, the user can set several threshold planes to
compute intersection sets w.r.t. these threshold values. The polygons can be
approximated by simple conservative bounds like minimum bounding rectangles
1 http://weka.wiki.sourceforge.net/ARFF
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Fig. 2. Visual exploration of dual-domain time series with TiP.

(MBRs) and thus be stored efficiently in the internal database by the support of
internal index structures. This also accelerates similarity queries, as multi-step
query processing can be applied. For a time series X, each intersection set Pτ (X)
w.r.t. a specific value for the threshold τ does only have to be computed once.
Once stored in the internal database, the ID of Pτ (X) can simply be associated
with the ID of the time seriesX from which was derived whenX is opened by TiP
for another time. The user is able to perform an extensive evaluation using several
techniques to mine databases of time series that are based on periodic patterns,
such as k-nearest-neighbor (kNN) queries with distance ranking, precision-recall
analysis and kNN classification.

TiP provides an intuitive graphical user interface. Exemplary elements are
depicted in Figure 2. The core elements include two Java3D applets display-
ing two time series simultaneously in their dual-domain representation (cf. Fig.
2(a)). As several user-defined threshold planes can be set for each time series,
TiP offers two additional applets called iView to depict the polygons and the
presentable features (i.e. approximations) of the corresponding intersection sets.
Additionally, the user is able to split a time series along each axis. Then each
subsequence of a dual-domain time series can be displayed in an external 2D
chart (cf. Fig. 2(b)).

4 Demo Tour

In this section, a short overview of the nature of the demonstration of TiP is
given, which will be performed applying the example of environmental research
where the time series are built of normalized temperature measurements. The
recorded and prepared data, labelled corresponding to the four seasons of a year,
was provided by the Environmental State Office of Bavaria, Germany2.
2 http://www.lfu.bayern.de/



In the demo, we first present how the dual-domain time series representation
can discover a higher content of information compared to the original, sequential
representation. For example, depending on the season, the temperature curves
show different characteristics in their course, so representative patterns can al-
ready be derived visually from this 3D surface. When setting threshold planes
arbitrarily, the user can materialize those patterns. By setting several threshold
planes, the user can examine how to find suitable values for τ that should be
used while performing similarity queries. In general, the higher a threshold is, the
less is the number of amplitude values of a time series that exceed the threshold
and, thus, contribute to a polygon of the intersection set. By defining a value
or a range for τ , we show how to define the relevant time series values for the
queries. A high τ value, e.g. τ = 80◦F, in the temperature example corresponds
to the query: “Given the curve of a query month showing temperature values
higher than 80◦F on the first days at one certain time of day, please return all
months that also show values higher than 80◦F on their first days at this time of
day.”. If the query time series contains measurements of a summer month, it is
likely to get summer months returned in the result set, as winter months show
a different behavior, even if the amplitudes of the dataset are normalized. As an
additional feature, the system supports the automatic detection of the value for
τ that yields the best results without specifying any minimum query tempera-
ture level. For that purpose, a kNN classification is performed in order to find
a τ value to obtain the best accuracy results. Exemplarily for the normalized
temperature dataset, choosing τ = 0.6 yields an accuracy value of 0.65, where by
applying the Euclidean distance we get an accuracy of 0.56. To get an overview
of the quality of the results that can be achieved with different values for τ , a pa-
rameter analysis shows the classification accuracies and average precision values
for every possible τ within the amplitude range of the time series. Of course the
result strongly depends on the selection of the features of the intersection sets.
Therefore, we show that features can be combined to improve the expressiveness
of the results.
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