
MARiO: Multi Attribute Routing in Open Street Map

Franz Graf Matthias Renz Hans-Peter Kriegel Matthias Schubert

Institute for Informatics, Ludwig-Maximilians-Universität München, Oettingenstr. 67, D-80538
Munich, Germany

{kriegel, schubert, zuefle}@dbs.ifi.lmu.de

Abstract. In recent years, the Open Street Map (OSM) project collected a large
repository of spatial network data containing a rich variety of information about
traffic lights, road types, points of interest etc.. Formally, this network can be
described as a multi-attribute graph, i.e. a graph considering multiple attributes
when describing the traversal of an edge. In this demo, we present our frame-
work for Multi Attribute Routing in Open Street Map (MARiO). MARiO in-
cludes methods for preprocessing OSM data by deriving attribute information
and integrating additional data from external sources. There are several routing
algorithms already available and additional methods can be easily added by using
a plugin mechanism. Since routing in a multi-attribute environment often results
in large sets of potentially interesting routes, our graphical fronted allows various
views to interactively explore query results.

1 Introduction

The Open Street Map (OSM)1 project collects rich and up-to-date information about
road networks and the landscape surrounding them. Combining this information with
other publicly available information about the spatial landscape allows to derive a large
variety of information that previously has not been considered in routing systems. For
example, a network might contain information about the distance, the speed limit, the
altitude difference or the number of traffic lights for each road segment. Thus, a driver
looking for the route which fits best to his personal preferences might want to consider
various cost criteria at the same time. When employing ordinary shortest path routing,
multiple attributes can be integrated by selecting a preference function combining cost
criteria. For example, a user might enter that his major preference is driving the fastest
path with a weight of 80%, but still wants to consider driving distance with a minor
weight of 20%. By still considering travel distance with a minor weight, the selected
route might be considerable shorter and only slightly slower than the fastest path. Thus,
the gas consumption and the risk of getting into a congestion should be considerably
smaller. However, finding an appropriate weighting is not intuitive and thus, better so-
lutions should be found.

To conclude, considering multiple attributes has the potential to improve the usabil-
ity of routing but raises a lot of further research questions requiring new problem speci-
fications and solutions. First works in the area where proposed in [1] and [2]. While [1]

1 http://www.openstreetmap.org



ranks possible destinations w.r.t. to multiple cost attributes, [2] introduced route skyline
queries. The result of a route skyline query consists of all routes connecting one starting
point and one destination having an optimal cost value w.r.t. any linear combination of
cost values.

In our demonstration, we want to present our framework for Multi-Attribute-Routing
in OSM data (MARiO). MARiO is an open source project combining functionalities for
data integration and preprocessing, implementation of new algorithms and performance
evaluation. Our graphical frontend provides methods for posing queries and interac-
tively exploring result routes. Since there is a number of queries computing multiple
result routes, handling a result set of potentially hundreds of sroutes requires sophisti-
cated tools. Thus, we integrated various interconnected views on the potentially mul-
tidimensional cost space and perform post processing in the form of clustering result
routes.

The rest of this paper is organized as follows. In section 2, we provide an overview
of the framework and its functionalities. Section 3 describes the already implemented
algorithms. Afterwards, we sketch the content of the demonstration 4. Section 5 briefly
summarizes the demonstrated system features.

2 System Overview and Functionalities

In this section, we want to give an overview of the functionalities of MARiO. We im-
plemented our framework in Java 1.6 to be independent from a particular hardware
platform.

A first functionality is importing map data from OSM. In order to apply multi-
attribute routing, we cannot rely on the rich map representation provided by OSM. First
of all, the OSM format contains a lot of unnecessary information for route computation.
A second more important reason is that several of the employed optimization criteria
are not directly maintained in the maps. For example, we have information about traf-
fic lights and altitudes connected to the nodes which have to be reassigned and post
processed into edge attributes of a multi-attribute graph. Furthermore, there is publicly
available data from other sources than OSM that provide further useful information.
Therefore, we allow to add topographic data from the SRTM2 program. Another reason
making preprocessing of the map information advisable is that available maps often
contain a lot of nodes which are not required for routing purposes, e.g. nodes that are
integrated to display turns in an edge. In order to allow efficient path computation,
deleting these nodes and combining the neighboring edges can significantly reduce the
number of considered routes.

After loading network data into an internal adjacency list representation, it is pos-
sible that additionally preprocessing steps are required. An important functionality for
many routing algorithms, e.g. A*-Search, is to compute an approximation for the min-
imal cost of a path between two nodes. A common approximation for the shortest path
w.r.t. network distance is the Euclidian distance between the spatial coordinates of both
nodes. However, the same idea is not applicable for general attributes. For example, the

2 http://www2.jpl.nasa.gov/srtm/



Fig. 1. Screen shot of the MARiO Frontend.

number of traffic lights on a route cannot be estimated based on distance. Therefore, we
implemented a reference node embedding storing at each node the distance to each of a
well selected set of reference nodes. The advantage of this approach is that it is viable
to arbitrary positive edge attributes. The drawback of the approach is the large memory
consumption because it is necessary to store a distance value for each node, each refer-
ence node and each attribute type. To significantly lower the memory consumption of
this method, we implemented a sparse variant of the embedding being proposed in [3].

To integrate various query types and compare algorithms solving the same problem,
we designed our framework in a way allowing the fast and flexible integration of new al-
gorithms. Therefore, new algorithms are integrated by employing a plugin mechanism.
As a result, it is possible to add additional query types or algorithms without altering
the original code of the framework. After adding the algorithm the framework lists the
algorithms in the frontend and automatically generates a dialog to select parameter val-
ues. The result is expected to be a list of result routes which can be displayed in user
interface. A further generalized feature of the framework is the possibility to analyze
the performance of the algorithms. Therefore, is is possible to monitor and report gen-
eral performance measures for route planning algorithms like query time, result size,
the number of accessed network nodes or the number of extended routes.

A final component of the MARiO framework is its frontend which is displayed in
figure 1. The frontend allows to display the OSM map data by using the map view com-
ponent of SwingX-WS3 which contains versatile viewing controls. Furthermore, the
frontend allows the user to pose queries using various algorithms and provides multiple
methods for displaying the result set. The first view on the result set consists of a grid
control containing the cost w.r.t. each of the selected cost attributes. There exists further
views visualizing the cost values for the case of two and three attributes. To handle the

3 http://swinglabs.org



particularly large number result routes that sometimes occur in multi-attribute routing,
we can display the result in the form of a clustering tree. The clustering is derived by
single link clustering which is based on a weighted variant of Hemming distance. Thus,
the result is clustered w.r.t. the visited nodes instead of the cost attributes. The resulting
clustering can be seen in the lower left corner of figure 1.

3 Implemented Algorithms

In the previous section, we described the general functionalities that can be used when
implementing and testing a routing algorithm. In this section, we shortly review the
already available algorithms. For basic shortest path computation based on a single
cost attribute, the framework implements Dijkstra’s algorithm and A*-search. The A*-
search is based on the reference point embedding named above.

A second type of query being already implemented is a route skyline query. To
calculate the route skyline for a given set of quality criteria, we employ the ARSC
algorithm described in [2]. The basic idea of this algorithm is a best first traversal of
the graph beginning with the starting position. During query procession the algorithm
maintains two data structures. The first is a priority queue containing all nodes that still
must be visited to find all skyline paths. The second structure consists of a table storing
the already encountered pareto-optimal sub-routes for each visited node. Due to the
monotonicity of local sub-routes, it can be shown that each sub route of a skyline route
ending at the destination must be a skyline route between the starting location and its
ending location. Thus, extending any path which is not part of the local skyline of its
ending location cannot lead to a skyline route to the destination. To further speed up
skyline computation, we additionally compare the lower bound approximation for any
path to the current skyline of paths of the destination. If the lower bound approximation
is already dominated by a member of the current skyline of the destination, the path can
be pruned as well. The algorithms terminates when there is no path left that could be
extended into a member of the route skyline to the destination node. For a more detailed
description of the algorithm please refer to [2].

4 Demonstration

To demonstrate the functionalities of the MARiO framework, we will focus on query
processing and result browsing in the frontend.

To pose a query, the user has to select an available query algorithm. Depending on
this selection, the system can now generate a query dialog requesting the required input
parameters from the users. For example, a route skyline query being processed by the
ARSC algorithm requires a set of cost attributes, a starting point and a destination. The
cost attributes are selected as a subset of the attributes being supported by the currently
loaded graph. To select spatial locations the system allows to mark the coordinates
directly on the map view. As an alternative, MARiO supports an address search to
pinpoint locations. After parameter selection, the search is being started and the system
collects the statistical information about query times, visited nodes and extended routes.



The result is a set of routes in the network which are characterized by a trajectory
and a cost vector describing the cost of each of the selected attribute types. A basic view
of this result set is a grid control containing a row for each result route and a column for
each type of selected cost attribute. When clicking one or several routes in the control
the corresponding route is marked in the map view. Furthermore, it is possible to sort
the result set by any type of selected cost in the result set. A further view on the result
data that is being made available for two attributes is a 2D vector view. For the route
skyline query, this view always displays the well-known step function of a skyline. For
3D data, there exists a further view displaying the result set in simplex.

A final feature being extremely useful for rather large result sets is to view the
result routes by browsing its cluster tree. The tree is displayed in an tree control and
thus, a user can navigate deeper into the cluster by expanding the notes. To get an
impression of the contents of a cluster, it is possible to select a node in the tree and
simultaneously display all contained routes in the map view. Furthermore, the tool tip
of the node displays upper and lower bounds for each cost value of the clustered routes.
For example, a cluster might be described by 4 routes having a travel time between 0.25
and 0.5 hours and a distance between 10 and 12 km. By clustering result routes w.r.t.
the visited nodes in the graph, the routes within a cluster do not have to minimize the
displayed intervals. However, the clusters display similar trajectories on the map view.
Thus, top-level clusters distinguish rather general areas a trajectory is visiting while
low-level clusters rather represent local variations. Thus, examining the top level can
be employed to investigate general directions and by traversing the tree the user can
stepwise decide which route fits best to her particular preferences.

5 Conclusion

In this proposal, we introduced MARiO a framework for Multi-Attribute Routing in
OSM data. Our framework, has three main functionalities. The first is data integration
and preprocessing in order to construct multi-attribute graphs from OSM data. The sec-
ond is the simple implementation and integration of new algorithm via a plugin mech-
anism. Finally, we provide a frontend for posing queries and exploring query results.
Since the result set being generated by a multi-attribute routing algorithm can be rather
large, there exists several interconnected views displaying result routes on the map, in
the cost space or summarize the result with a clustering algorithms.

References
1. Mouratidis, K., Lin, Y., Yiu, M.: Preference queries in large multi-cost transportation net-

works. In: Proceedings of the 26th International Conference on Data Engineering (ICDE),
Long Beach,CA,USA. (2010) 533–544

2. Kriegel, H.P., Schubert, M., Renz, M.: Route skyline queries: A multi-preference path plan-
ning approach. In: Proceedings of the 26th International Conference on Data Engineering
(ICDE), Long Beach,CA,USA. (2010)

3. Graf, F., Kriegel, H.P., Renz, M., Schubert, M.: Memory-efficient a*-search using sparse
embeddings. In: Proc. ACM 17th International Workshop on Advances in Geographic Infor-
mation Systems (ACM GIS), San Jose, CA,US. (2010)


